1
|
Lagoa R, Rajan L, Violante C, Babiaka SB, Marques-da-Silva D, Kapoor B, Reis F, Atanasov AG. Application of curcuminoids in inflammatory, neurodegenerative and aging conditions - Pharmacological potential and bioengineering approaches to improve efficiency. Biotechnol Adv 2025; 82:108568. [PMID: 40157560 DOI: 10.1016/j.biotechadv.2025.108568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Curcumin, a natural compound found in turmeric, has shown promise in treating brain-related diseases and conditions associated with aging. Curcumin has shown multiple anti-inflammatory and brain-protective effects, but its clinical use is limited by challenges like poor absorption, specificity and delivery to the right tissues. A range of contemporary approaches at the intersection with bioengineering and systems biology are being explored to address these challenges. Data from preclinical and human studies highlight various neuroprotective actions of curcumin, including the inhibition of neuroinflammation, modulation of critical cellular signaling pathways, promotion of neurogenesis, and regulation of dopamine levels. However, curcumin's multifaceted effects - such as its impact on microRNAs and senescence markers - suggest novel therapeutic targets in neurodegeneration. Tetrahydrocurcumin, a primary metabolite of curcumin, also shows potential due to its presence in circulation and its anti-inflammatory properties, although further research is needed to elucidate its neuroprotective mechanisms. Recent advancements in delivery systems, particularly brain-targeting nanocarriers like polymersomes, micelles, and liposomes, have shown promise in enhancing curcumin's bioavailability and therapeutic efficacy in animal models. Furthermore, the exploration of drug-laden scaffolds and dermal delivery may extend the pharmacological applications of curcumin. Studies reviewed here indicate that engineered dermal formulations and devices could serve as viable alternatives for neuroprotective treatments and to manage skin or musculoskeletal inflammation. This work highlights the need for carefully designed, long-term studies to better understand how curcumin and its bioactive metabolites work, their safety, and their effectiveness.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal; Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials LSRE-LCM, Associate Laboratory in Chemical Engineering ALiCE, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Applied Molecular Biosciences Unit UCIBIO, Institute for Health and Bioeconomy i4HB, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Logesh Rajan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| | - Cristiana Violante
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Smith B Babiaka
- Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon; Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena-Alto do Vieiro, 2411-901 Leiria, Portugal; Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials LSRE-LCM, Associate Laboratory in Chemical Engineering ALiCE, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research iCBR, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology CIBB, University of Coimbra, 3000-548 Coimbra, Portugal; Clinical Academic Center of Coimbra, 3004-531 Coimbra, Portugal.
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Magdalenka, Poland; Laboratory of Natural Products and Medicinal Chemistry LNPMC, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences SIMATS, Thandalam, Chennai, India; Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
| |
Collapse
|
2
|
KANG S, LEE S, MOON BC, SONG JH, KIM SH, MOON C, LEE SI, KIM C, KIM JS. Multi-omics analysis reveals the neuroprotective effect of extract against Parkinson's disease in mouse. J TRADIT CHIN MED 2024; 44:1111-1117. [PMID: 39617696 PMCID: PMC11589551 DOI: 10.19852/j.cnki.jtcm.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/06/2023] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To assess Atractylodis Rhizoma Alba extract (ARE) neuroprotective function in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice and related genes. METHODS Examined mRNA-DNA methylation changes induced by ARE in MPTP-induced Parkinson's disease (PD) model's substantia nigra. RESULTS ARE mitigated MPTP-induced motor impairment in rotarod and open field tests and preserved tyrosine hydroxylase-positive neuronal cells in substantia nigra and striatum. Genome RNA-Sequencing and Methyl-Sequencing in substantia nigra of vehicle/ARE-treated MPTP-induced PD mice showed 84 differentially expressed genes (DEGs) and 1804 differentially methylated regions (DMRs). Upregulated genes involved zinc ion homeostasis, cilium protein localization, and transcription; downregulated genes linked to ephrin receptor signaling, somitogenesis, and gene expression regulation. Hyper/hypomethylated DMRs post-ARE treatment associated with Wnt signaling, mitochondrial organization, dopamine biosynthesis, and hindbrain development. No significant correlation between DEGs and methylated genes related to PD pathogenesis. CONCLUSION This research has identified the epigenetic targets of ARE's therapeutic action and gives insight on how ARE protects neurons in Parkinson's disease.
Collapse
Affiliation(s)
- Sohi KANG
- 1 Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Gyeongsang National University, Jinju 52727, Republic of Korea
- 2 College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sueun LEE
- 3 Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - Byeong Cheol MOON
- 3 Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - Jun Ho SONG
- 3 Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111, Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea
- 4 Department of Biology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sung-Ho KIM
- 2 College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Changjong MOON
- 2 College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Soong-In LEE
- 5 Department of Oriental Medicine Prescription, College of Oriental Medicine, Dong-Shin University, Naju-si, Jeollanam-do 58245, Republic of Korea
| | - Chul KIM
- 6 KM Data Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Joong Sun KIM
- 2 College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
3
|
Duan M, Mahal A, Alkouri A, Wang C, Zhang Z, Ren J, Obaidullah AJ. Synthesis, Anticancer Activity, and Molecular Docking of New 1,2,3-Triazole Linked Tetrahydrocurcumin Derivatives. Molecules 2024; 29:3010. [PMID: 38998962 PMCID: PMC11243220 DOI: 10.3390/molecules29133010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Cancer is one of the deadliest diseases to humanity. There is significant progress in treating this disease, but developing some drugs that can fight this disease remains a challenge in the field of medical research. Thirteen new 1,2,3-triazole linked tetrahydrocurcumin derivatives were synthesized by click reaction, including a 1,3-dipolar cycloaddition reaction of tetrahydrocurcumin baring mono-alkyne with azides in good yields, and their in vitro anticancer activity against four cancer cell lines, including human cervical carcinoma (HeLa), human lung adenocarcinoma (A549), human hepatoma carcinoma (HepG2), and human colon carcinoma (HCT-116) were investigated using MTT(3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetraz-olium bromide) assay. The newly synthesized compounds had their structures identified using NMR HRMS and IR techniques. Some of prepared compounds, including compounds 4g and 4k, showed potent cytotoxic activity against four cancer cell lines compared to the positive control of cisplatin and tetrahydrocurcumin. Compound 4g exhibited anticancer activity with a IC50 value of 1.09 ± 0.17 μM against human colon carcinoma HCT-116 and 45.16 ± 0.92 μM against A549 cell lines compared to the positive controls of tetrahydrocurcumin and cisplatin. Moreover, further biological examination in HCT-116 cells showed that compound 4g can arrest the cell cycle at the G1 phase. A docking study revealed that the potential mechanism by which 4g exerts its anti-colon cancer effect may be through inhabiting the binding of APC-Asef. Compound 4g can be used as a promising lead for further exploration of potential anticancer agents.
Collapse
Affiliation(s)
- Meitao Duan
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, China; (M.D.); (C.W.); (Z.Z.); (J.R.)
- Xiamen Medical College Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil 44001, Kurdisan Region, Iraq
| | - Anas Alkouri
- College of Pharmacy, Cihan University-Erbil, Erbil 44001, Kurdisan Region, Iraq;
| | - Chen Wang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, China; (M.D.); (C.W.); (Z.Z.); (J.R.)
- Xiamen Medical College Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, China
| | - Zhiqiang Zhang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, China; (M.D.); (C.W.); (Z.Z.); (J.R.)
- Xiamen Medical College Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, China
| | - Jungang Ren
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, China; (M.D.); (C.W.); (Z.Z.); (J.R.)
- Xiamen Medical College Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, China
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
4
|
González Y, Mojica-Flores R, Moreno-Labrador D, Pecchio M, Rao KSJ, Ahumedo-Monterrosa M, Fernández PL, Larionov OV, Lakey-Beitia J. Tetrahydrocurcumin Derivatives Enhanced the Anti-Inflammatory Activity of Curcumin: Synthesis, Biological Evaluation, and Structure-Activity Relationship Analysis. Molecules 2023; 28:7787. [PMID: 38067518 PMCID: PMC10708537 DOI: 10.3390/molecules28237787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Tetrahydrocurcumin, the most abundant curcumin transformation product in biological systems, can potentially be a new alternative therapeutic agent with improved anti-inflammatory activity and higher bioavailability than curcumin. In this article, we describe the synthesis and evaluation of the anti-inflammatory activities of tetrahydrocurcumin derivatives. Eleven tetrahydrocurcumin derivatives were synthesized via Steglich esterification on both sides of the phenolic rings of tetrahydrocurcumin with the aim of improving the anti-inflammatory activity of this compound. We showed that tetrahydrocurcumin (2) inhibited TNF-α and IL-6 production but not PGE2 production. Three tetrahydrocurcumin derivatives inhibited TNF-α production, five inhibited IL-6 production, and three inhibited PGE2 production. The structure-activity relationship analysis suggested that two factors could contribute to the biological activities of these compounds: the presence or absence of planarity and their structural differences. Among the tetrahydrocurcumin derivatives, cyclic compound 13 was the most active in terms of TNF-α production, showing even better activity than tetrahydrocurcumin. Acyclic compound 11 was the most effective in terms of IL-6 production and retained the same effect as tetrahydrocurcumin. Moreover, acyclic compound 12 was the most active in terms of PGE2 production, displaying better inhibition than tetrahydrocurcumin. A 3D-QSAR analysis suggested that the anti-inflammatory activities of tetrahydrocurcumin derivatives could be increased by adding bulky groups at the ends of compounds 2, 11, and 12.
Collapse
Affiliation(s)
- Yisett González
- Center for Molecular and Cellular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama City 0843-01103, Panama; (Y.G.); (D.M.-L.); (P.L.F.)
- Sistema Nacional de Investigación (SNI), SENACYT, Panama City 0816-02852, Panama
| | - Randy Mojica-Flores
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama City 0843-01103, Panama;
| | - Dilan Moreno-Labrador
- Center for Molecular and Cellular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama City 0843-01103, Panama; (Y.G.); (D.M.-L.); (P.L.F.)
| | - Marisín Pecchio
- Center for Academic Affairs and Collaboration, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama City 0843-01103, Panama;
| | - K. S. Jagannatha Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF) Deemed to be University, Vaddeswaram 522 302, India;
| | - Maicol Ahumedo-Monterrosa
- Natural Products Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia;
| | - Patricia L. Fernández
- Center for Molecular and Cellular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama City 0843-01103, Panama; (Y.G.); (D.M.-L.); (P.L.F.)
- Sistema Nacional de Investigación (SNI), SENACYT, Panama City 0816-02852, Panama
| | - Oleg V. Larionov
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Johant Lakey-Beitia
- Sistema Nacional de Investigación (SNI), SENACYT, Panama City 0816-02852, Panama
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama City 0843-01103, Panama;
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
5
|
Makinde E, Ma L, Mellick GD, Feng Y. Mitochondrial Modulators: The Defender. Biomolecules 2023; 13:biom13020226. [PMID: 36830595 PMCID: PMC9953029 DOI: 10.3390/biom13020226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Mitochondria are widely considered the "power hub" of the cell because of their pivotal roles in energy metabolism and oxidative phosphorylation. However, beyond the production of ATP, which is the major source of chemical energy supply in eukaryotes, mitochondria are also central to calcium homeostasis, reactive oxygen species (ROS) balance, and cell apoptosis. The mitochondria also perform crucial multifaceted roles in biosynthetic pathways, serving as an important source of building blocks for the biosynthesis of fatty acid, cholesterol, amino acid, glucose, and heme. Since mitochondria play multiple vital roles in the cell, it is not surprising that disruption of mitochondrial function has been linked to a myriad of diseases, including neurodegenerative diseases, cancer, and metabolic disorders. In this review, we discuss the key physiological and pathological functions of mitochondria and present bioactive compounds with protective effects on the mitochondria and their mechanisms of action. We highlight promising compounds and existing difficulties limiting the therapeutic use of these compounds and potential solutions. We also provide insights and perspectives into future research windows on mitochondrial modulators.
Collapse
|
6
|
Picca A, Ferri E, Calvani R, Coelho-Júnior HJ, Marzetti E, Arosio B. Age-Associated Glia Remodeling and Mitochondrial Dysfunction in Neurodegeneration: Antioxidant Supplementation as a Possible Intervention. Nutrients 2022; 14:2406. [PMID: 35745134 PMCID: PMC9230668 DOI: 10.3390/nu14122406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
Aging induces substantial remodeling of glia, including density, morphology, cytokine expression, and phagocytic capacity. Alterations of glial cells, such as hypertrophy of lysosomes, endosomes and peroxisomes, and the progressive accumulation of lipofuscin, lipid droplets, and other debris have also been reported. These abnormalities have been associated with significant declines of microglial processes and reduced ability to survey the surrounding tissue, maintain synapses, and recover from injury. Similarly, aged astrocytes show reduced capacity to support metabolite transportation to neurons. In the setting of reduced glial activity, stressors and/or injury signals can trigger a coordinated action of microglia and astrocytes that may amplify neuroinflammation and contribute to the release of neurotoxic factors. Oxidative stress and proteotoxic aggregates may burst astrocyte-mediated secretion of pro-inflammatory cytokines, thus activating microglia, favoring microgliosis, and ultimately making the brain more susceptible to injury and/or neurodegeneration. Here, we discuss the contribution of microglia and astrocyte oxidative stress to neuroinflammation and neurodegeneration, highlight the pathways that may help gain insights into their molecular mechanisms, and describe the benefits of antioxidant supplementation-based strategies.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (E.M.)
| | - Evelyn Ferri
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (E.M.)
| | - Hélio J. Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (E.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
7
|
Zhang K, Zhu S, Li J, Jiang T, Feng L, Pei J, Wang G, Ouyang L, Liu B. Targeting autophagy using small-molecule compounds to improve potential therapy of Parkinson's disease. Acta Pharm Sin B 2021; 11:3015-3034. [PMID: 34729301 PMCID: PMC8546670 DOI: 10.1016/j.apsb.2021.02.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/28/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease (PD), known as one of the most universal neurodegenerative diseases, is a serious threat to the health of the elderly. The current treatment has been demonstrated to relieve symptoms, and the discovery of new small-molecule compounds has been regarded as a promising strategy. Of note, the homeostasis of the autolysosome pathway (ALP) is closely associated with PD, and impaired autophagy may cause the death of neurons and thereby accelerating the progress of PD. Thus, pharmacological targeting autophagy with small-molecule compounds has been drawn a rising attention so far. In this review, we focus on summarizing several autophagy-associated targets, such as AMPK, mTORC1, ULK1, IMPase, LRRK2, beclin-1, TFEB, GCase, ERRα, C-Abelson, and as well as their relevant small-molecule compounds in PD models, which will shed light on a clue on exploiting more potential targeted small-molecule drugs tracking PD treatment in the near future.
Collapse
Key Words
- 3-MA, 3-methyladenine
- 5-HT2A, Serotonin 2A
- 5-HT2C, serotonin 2C
- A2A, adenosine 2A
- AADC, aromatic amino acid decarboxylase
- ALP, autophagy-lysosomal pathway
- AMPK, 5ʹAMP-activated protein kinase
- ATG, autophagy related protein
- ATP13A2, ATPase cation transporting 13A2
- ATTEC, autophagosome-tethering compound
- AUC, the area under the curve
- AUTAC, autophagy targeting chimera
- Autophagy
- BAF, bafilomycinA1
- BBB, blood−brain barrier
- CL, clearance rate
- CMA, chaperone-mediated autophagy
- CNS, central nervous system
- COMT, catechol-O-methyltransferase
- DA, dopamine
- DAT, dopamine transporter
- DJ-1, Parkinson protein 7
- DR, dopamine receptor
- ER, endoplasmic reticulum
- ERRα, estrogen-related receptor alpha
- F, oral bioavailability
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- GBA, glucocerebrosidase β acid
- GWAS, genome-wide association study
- HDAC6, histone deacetylase 6
- HSC70, heat shock cognate 71 kDa protein
- HSPA8, heat shock 70 kDa protein 8
- IMPase, inositol monophosphatase
- IPPase, inositol polyphosphate 1-phosphatase
- KI, knockin
- LAMP2A, lysosome-associated membrane protein 2 A
- LC3, light chain 3
- LIMP-2, lysosomal integrated membrane protein-2
- LRRK2, leucine-rich repeat sequence kinase 2
- LRS, leucyl-tRNA synthetase
- LUHMES, lund human mesencephalic
- Lamp2a, type 2A lysosomal-associated membrane protein
- MAO-B, monoamine oxidase B
- MPP+, 1-methyl-4-phenylpyridinium
- MPTP, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine
- MYCBP2, MYC-binding protein 2
- NMDA, N-methyl-d-aspartic acid
- ONRs, orphan nuclear receptors
- PD therapy
- PD, Parkinson's disease
- PDE4, phosphodiesterase 4
- PI3K, phosphatidylinositol 3-kinase
- PI3P, phosphatidylinositol 3-phosphate
- PINK1, PTEN-induced kinase 1
- PLC, phospholipase C
- PREP, prolyl oligopeptidase
- Parkin, parkin RBR E3 ubiquitin−protein ligase
- Parkinson's disease (PD)
- ROS, reactive oxygen species
- SAR, structure–activity relationship
- SAS, solvent accessible surface
- SN, substantia nigra
- SNCA, α-synuclein gene
- SYT11, synaptotagmin 11
- Small-molecule compound
- TFEB, transcription factor EB
- TSC2, tuberous sclerosis complex 2
- Target
- ULK1, UNC-51-like kinase 1
- UPS, ubiquitin−proteasome system
- mAChR, muscarinic acetylcholine receptor
- mTOR, the mammalian target of rapamycin
- α-syn, α-synuclein
Collapse
|
8
|
Liu X, Liu W, Wang C, Chen Y, Liu P, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Silibinin attenuates motor dysfunction in a mouse model of Parkinson's disease by suppression of oxidative stress and neuroinflammation along with promotion of mitophagy. Physiol Behav 2021; 239:113510. [PMID: 34181930 DOI: 10.1016/j.physbeh.2021.113510] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022]
Abstract
Silybum marianum (L.) Gaertn has been widely used to obtain a drug for the treatment of hepatic diseases. Silibinin (silybin), a flavonoid extracted and isolated from the fruit of S. marianumis investigated in our study to explore its motor protective potential on Parkinson's disease (PD) model mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). PD is a neurodegenerative disease that causes a debilitating movement disorder, characterized by a progressive loss of nigrostriatal (substantia nigra and striatum) dopaminergic neurons. Several studies have proven that neurodegeneration is aggravated by neuroinflammation, oxidative stress and/or the presence of α-synuclein (α-syn) aggregation. Essentially no causal therapy for PD exists at present. Our results demonstrate that silibinin significantly attenuates MPTP-induced movement disorder in behavioral tests. Immunohistochemical analysis shows that MPTP injection results in the loss of dopaminergic neurons in the substantia nigra, and the decrease of the striatal tyrosine hydroxylase. However, MPTP-injected mice were protected against dopaminergic neuronal loss by oral administration of silibinin (280 mg/kg) that increased expressions of PTEN-induced putative kinase 1 (PINK1) and Parkin, suggesting mitophagy activation. The neuroprotective mechanism of silibinin involves not only reduction of mitochondrial damage by repressing proinflammatory response and α-syn aggregation, but also enhancement of oxidative defense system. Namely, protection of dopaminergic nerves is due to promotion of mitophagy, leading to clearance of the toxic effects of damaged mitochondria. These findings suggest that silibinin has a potential to be further developed as a therapeutic candidate for PD.
Collapse
Affiliation(s)
- Xiumin Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Chenkang Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Yinzhe Chen
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Panwen Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo, 192-0015, Japan; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China.
| |
Collapse
|
9
|
Rodrigues FC, Kumar NA, Thakur G. The potency of heterocyclic curcumin analogues: An evidence-based review. Pharmacol Res 2021; 166:105489. [PMID: 33588007 DOI: 10.1016/j.phrs.2021.105489] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Curcumin, a potent phytochemical, has been a significant lead compound and has been extensively investigated for its multiple bioactivities. Owing to its natural origin, non-toxic, safe, and pleiotropic behavior, it has been extensively explored. However, several limitations such as its poor stability, bioavailability, and fast metabolism prove to be a constraint to achieve its full therapeutic potential. Many approaches have been adopted to improve its profile, amongst which, structural modifications have indicated promising results. Its symmetric structure and simple chemistry have prompted organic and medicinal chemists to manipulate its arrangement and study its implications on the corresponding activity. One such recurring and favorable modification is at the diketo moiety with the aim to achieve isoxazole and pyrazole analogues of curcumin. A modification at this site is not only simple to achieve, but also has indicated a superior activity consistently. This review is a comprehensive and wide-ranged report of the different methods adopted to achieve several cyclized curcumin analogues along with the improvement in the efficacy of the corresponding activities observed.
Collapse
Affiliation(s)
- Fiona C Rodrigues
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Nv Anil Kumar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Goutam Thakur
- Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576 104, India.
| |
Collapse
|
10
|
Fukutomi R, Ohishi T, Koyama Y, Pervin M, Nakamura Y, Isemura M. Beneficial Effects of Epigallocatechin-3- O-Gallate, Chlorogenic Acid, Resveratrol, and Curcumin on Neurodegenerative Diseases. Molecules 2021; 26:E415. [PMID: 33466849 PMCID: PMC7829779 DOI: 10.3390/molecules26020415] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
Many observational and clinical studies have shown that consumption of diets rich in plant polyphenols have beneficial effects on various diseases such as cancer, obesity, diabetes, cardiovascular diseases, and neurodegenerative diseases (NDDs). Animal and cellular studies have indicated that these polyphenolic compounds contribute to such effects. The representative polyphenols are epigallocatechin-3-O-gallate in tea, chlorogenic acids in coffee, resveratrol in wine, and curcumin in curry. The results of human studies have suggested the beneficial effects of consumption of these foods on NDDs including Alzheimer's and Parkinson's diseases, and cellular animal experiments have provided molecular basis to indicate contribution of these representative polyphenols to these effects. This article provides updated information on the effects of these foods and their polyphenols on NDDs with discussions on mechanistic aspects of their actions mainly based on the findings derived from basic experiments.
Collapse
Affiliation(s)
- Ryuuta Fukutomi
- Quality Management Division, Higuchi Inc. Minato-ku, Tokyo 108-0075, Japan
| | - Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410-0301, Japan;
| | - Yu Koyama
- Shizuoka Eiwa Gakuin University Junior College, Suruga-ku, Shizuoka 422-8545, Japan;
| | - Monira Pervin
- Tea Science Research Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (Y.N.)
| | - Yoriyuki Nakamura
- Tea Science Research Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (Y.N.)
| | - Mamoru Isemura
- Tea Science Research Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan; (M.P.); (Y.N.)
| |
Collapse
|
11
|
Lakey-Beitia J, Burillo AM, Penna GL, Hegde ML, Rao K. Polyphenols as Potential Metal Chelation Compounds Against Alzheimer's Disease. J Alzheimers Dis 2021; 82:S335-S357. [PMID: 32568200 PMCID: PMC7809605 DOI: 10.3233/jad-200185] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting more than 50 million people worldwide. The pathology of this multifactorial disease is primarily characterized by the formation of amyloid-β (Aβ) aggregates; however, other etiological factors including metal dyshomeostasis, specifically copper (Cu), zinc (Zn), and iron (Fe), play critical role in disease progression. Because these transition metal ions are important for cellular function, their imbalance can cause oxidative stress that leads to cellular death and eventual cognitive decay. Importantly, these transition metal ions can interact with the amyloid-β protein precursor (AβPP) and Aβ42 peptide, affecting Aβ aggregation and increasing its neurotoxicity. Considering how metal dyshomeostasis may substantially contribute to AD, this review discusses polyphenols and the underlying chemical principles that may enable them to act as natural chelators. Furthermore, polyphenols have various therapeutic effects, including antioxidant activity, metal chelation, mitochondrial function, and anti-amyloidogenic activity. These combined therapeutic effects of polyphenols make them strong candidates for a moderate chelation-based therapy for AD.
Collapse
Affiliation(s)
- Johant Lakey-Beitia
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Andrea M. Burillo
- Centre for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
| | - Giovanni La Penna
- National Research Council, Institute of Chemistry of Organometallic Compounds, Sesto Fiorentino (FI), Italy
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX, USA
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX, USA
- Weill Medical College of Cornell University, New York, NY, USA
| | - K.S. Rao
- Centre for Neuroscience, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Clayton, City of Knowledge, Panama
- Zhongke Jianlan Medical Institute, Hangzhou, Republic of China
| |
Collapse
|
12
|
Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM, Dini L. Novel Therapeutic Delivery of Nanocurcumin in Central Nervous System Related Disorders. NANOMATERIALS 2020; 11:nano11010002. [PMID: 33374979 PMCID: PMC7822042 DOI: 10.3390/nano11010002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Nutraceuticals represent complementary or alternative beneficial products to the expensive and high-tech therapeutic tools in modern medicine. Nowadays, their medical or health benefits in preventing or treating different types of diseases is widely accepted, due to fewer side effects than synthetic drugs, improved bioavailability and long half-life. Among herbal and natural compounds, curcumin is a very attractive herbal supplement considering its multipurpose properties. The potential effects of curcumin on glia cells and its therapeutic and protective properties in central nervous system (CNS)-related disorders is relevant. However, curcumin is unstable and easily degraded or metabolized into other forms posing limits to its clinical development. This is particularly important in brain pathologies determined blood brain barrier (BBB) obstacle. To enhance the stability and bioavailability of curcumin, many studies focused on the design and development of curcumin nanodelivery systems (nanoparticles, micelles, dendrimers, and diverse nanocarriers). These nanoconstructs can increase curcumin stability, solubility, in vivo uptake, bioactivity and safety. Recently, several studies have reported on a curcumin exosome-based delivery system, showing great therapeutical potential. The present work aims to review the current available data in improving bioactivity of curcumin in treatment or prevention of neurological disorders.
Collapse
Affiliation(s)
- Elisa Panzarini
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefania Mariano
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefano Tacconi
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Elisabetta Carata
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Ada Maria Tata
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciana Dini
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, Campus Ecotekne, University of Salento, 73100 Lecce, Italy
- Correspondence:
| |
Collapse
|
13
|
Soo SK, Rudich PD, Traa A, Harris-Gauthier N, Shields HJ, Van Raamsdonk JM. Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders. Mech Ageing Dev 2020; 190:111297. [PMID: 32610099 PMCID: PMC7484136 DOI: 10.1016/j.mad.2020.111297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
While aging is the greatest risk factor for the development of neurodegenerative disease, the role of aging in these diseases is poorly understood. In the inherited forms of these diseases, the disease-causing mutation is present from birth but symptoms appear decades later. This indicates that these mutations are well tolerated in younger individuals but not in older adults. Based on this observation, we hypothesized that changes taking place during normal aging make the cells in the brain (and elsewhere) susceptible to the disease-causing mutations. If so, then delaying some of these age-related changes may be beneficial in the treatment of neurodegenerative disease. In this review, we examine the effects of five compounds that have been shown to extend longevity (metformin, rapamycin, resveratrol, N-acetyl-l-cysteine, curcumin) in four of the most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis). While not all investigations observe a beneficial effect of these compounds, there are multiple studies that show a protective effect of each of these lifespan-extending compounds in animal models of neurodegenerative disease. Combined with genetic studies, this suggests the possibility that targeting the aging process may be an effective strategy to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Namasthée Harris-Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada; Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
14
|
Zalachoras I, Hollis F, Ramos-Fernández E, Trovo L, Sonnay S, Geiser E, Preitner N, Steiner P, Sandi C, Morató L. Therapeutic potential of glutathione-enhancers in stress-related psychopathologies. Neurosci Biobehav Rev 2020; 114:134-155. [DOI: 10.1016/j.neubiorev.2020.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
15
|
Bioactive Polyphenols and Neuromodulation: Molecular Mechanisms in Neurodegeneration. Int J Mol Sci 2020; 21:ijms21072564. [PMID: 32272735 PMCID: PMC7178158 DOI: 10.3390/ijms21072564] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
The interest in dietary polyphenols in recent years has greatly increased due to their antioxidant bioactivity with preventive properties against chronic diseases. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and are able to neutralize the effects of oxidative stress, inflammation, and apoptosis. Interestingly, all these mechanisms are involved in neurodegeneration. Although polyphenols display differences in their effectiveness due to interindividual variability, recent studies indicated that bioactive polyphenols in food and beverages promote health and prevent age-related cognitive decline. Polyphenols have a poor bioavailability and their digestion by gut microbiota produces active metabolites. In fact, dietary bioactive polyphenols need to be modified by microbiota present in the intestine before being absorbed, and to exert health preventive effects by interacting with cellular signalling pathways. This literature review includes an evaluation of the literature in English up to December 2019 in PubMed and Web of Science databases. A total of 307 studies, consisting of research reports, review articles and articles were examined and 146 were included. The review highlights the role of bioactive polyphenols in neurodegeneration, with a particular emphasis on the cellular and molecular mechanisms that are modulated by polyphenols involved in protection from oxidative stress and apoptosis prevention.
Collapse
|
16
|
Yang B, Yin C, Zhou Y, Wang Q, Jiang Y, Bai Y, Qian H, Xing G, Wang S, Li F, Feng Y, Zhang Y, Cai J, Aschner M, Lu R. Curcumin protects against methylmercury-induced cytotoxicity in primary rat astrocytes by activating the Nrf2/ARE pathway independently of PKCδ. Toxicology 2019; 425:152248. [PMID: 31330227 PMCID: PMC6710134 DOI: 10.1016/j.tox.2019.152248] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/07/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Methylmercury (MeHg) is a ubiquitous environmental toxicant that leads to long-lasting neurological deficits in animals and humans. Curcumin, a polyphenol obtained from the rhizome of turmeric, has well-known antioxidant functions. Here, we evaluated curcumin's efficacy in mitigating MeHg-induced cytotoxicity and further investigated the underlying mechanism of this neuroprotection in primary rat astrocytes. Pretreatment with curcumin (2, 5, 10 and 20 μM for 3, 6, 12 or 24 h) protected against MeHg-induced (5 μM for 6 h) cell death in a time and dose-dependent manner. Curcumin (2, 5, 10 or 20 μM) pretreatment for 12 h significantly ameliorated the MeHg-induced astrocyte injury and oxidative stress, as evidenced by morphological alterations, lactate dehydrogenase (LDH) release, reactive oxygen species (ROS) generation, and glutathione (GSH) and catalase (CAT) levels. Moreover, curcumin pretreatment increased Nrf2 nuclear translocation and downstream enzyme expression, heme oxygenase-1 (HO-1) and NADPH quinone reductase-1 (NQO1). Knockdown of Nrf2 with siRNA attenuated the protective effect of curcumin against MeHg-induced cell death. However, both the pan-protein kinase C (PKC) inhibitor, Ro 31-8220, and the selective PKCδ inhibitor, rottlerin, failed to suppress the curcumin-activated Nrf2/Antioxidant Response Element(ARE) pathway and attenuate the protection exerted by curcumin. Taken together, these findings confirm that curcumin protects against MeHg-induced neurotoxicity by activating the Nrf2/ARE pathway and this protection is independent of PKCδ activation. More studies are needed to understand the mechanisms of curcumin cytoprotection.
Collapse
Affiliation(s)
- Bobo Yang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Changsheng Yin
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yun Zhou
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiang Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuanyue Jiang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yu Bai
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hai Qian
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Guangwei Xing
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Suhua Wang
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Fang Li
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yun Feng
- Department of Pharmacology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yubin Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiyang Cai
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77550-1106, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Sciences, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Center for Experimental Research, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215132, China.
| |
Collapse
|
17
|
Jayaraj RL, Beiram R, Azimullah S, Meeran MFN, Ojha SK, Adem A, Jalal FY. Lycopodium Attenuates Loss of Dopaminergic Neurons by Suppressing Oxidative Stress and Neuroinflammation in a Rat Model of Parkinson's Disease. Molecules 2019; 24:molecules24112182. [PMID: 31185705 PMCID: PMC6600474 DOI: 10.3390/molecules24112182] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/26/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease, a chronic, age related neurodegenerative disorder, is characterized by a progressive loss of nigrostriatal dopaminergic neurons. Several studies have proven that the activation of glial cells, presence of alpha-synuclein aggregates, and oxidative stress, fuels neurodegeneration, and currently there is no definitive treatment for PD. In this study, a rotenone-induced rat model of PD was used to understand the neuroprotective potential of Lycopodium (Lyc), a commonly-used potent herbal medicine. Immunohistochemcial data showed that rotenone injections significantly increased the loss of dopaminergic neurons in the substantia nigra, and decreased the striatal expression of tyrosine hydroxylase. Further, rotenone administration activated microglia and astroglia, which in turn upregulated the expression of α-synuclein, pro-inflammatory, and oxidative stress factors, resulting in PD pathology. However, rotenone-injected rats that were orally treated with lycopodium (50 mg/kg) were protected against dopaminergic neuronal loss by diminishing the expression of matrix metalloproteinase-3 (MMP-3) and MMP-9, as well as reduced activation of microglia and astrocytes. This neuroprotective mechanism not only involves reduction in pro-inflammatory response and α-synuclein expression, but also synergistically enhanced antioxidant defense system by virtue of the drug's multimodal action. These findings suggest that Lyc has the potential to be further developed as a therapeutic candidate for PD.
Collapse
Affiliation(s)
- Richard L Jayaraj
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Shreesh K Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Abdu Adem
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Fakhreya Yousuf Jalal
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
18
|
Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience 2019; 406:1-21. [DOI: 10.1016/j.neuroscience.2019.02.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
|
19
|
Mishra S, Patel S, Halpani CG. Recent Updates in Curcumin Pyrazole and Isoxazole Derivatives: Synthesis and Biological Application. Chem Biodivers 2019; 16:e1800366. [PMID: 30460748 DOI: 10.1002/cbdv.201800366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Abstract
Curcumin is an admired, plant-derived compound that has been extensively investigated for diverse range of biological activities, but the use of this polyphenol is limited due to its instability. Chemical modifications in curcumin are reported to seize this limitation; such efforts are intensively performed to discover molecules with similar but improved stability and better properties. Focal points of these reviews are synthesis of stable pyrazole and isoxazole analogs of curcumin and application in various biological systems. This review aims to emphasize the latest evidence of curcumin pyrazole analogs as a privileged scaffold in medicinal chemistry. Manifold features of curcumin pyrazole analogs will be summarized herein, including the synthesis of novel curcumin pyrazole analogs and the evaluation of their biological properties. This review is expected to be a complete, trustworthy and critical review of the curcumin pyrazole analogs template to the medicinal chemistry community.
Collapse
Affiliation(s)
- Satyendra Mishra
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| | - Sejal Patel
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| | - Chandni G Halpani
- Medicinal Chemistry Laboratory, Center for Engineering and Enterprise, University and Institute of Advanced Research, Koba Institutional, Area Gandhinagar, Gujarat, 382426, India
| |
Collapse
|
20
|
Lapchak PA, Boitano PD, Bombien R, Chou D, Knight M, Muehle A, Winkel MT, Khoynezhad A. CNB-001 reduces paraplegia in rabbits following spinal cord ischemia. Neural Regen Res 2019; 14:2192-2198. [PMID: 31397359 PMCID: PMC6788235 DOI: 10.4103/1673-5374.262598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal cord ischemia associated with trauma and surgical procedures including thoraco-abdominal aortic aneurysm repair and thoracic endovascular aortic repair results in devastating clinical deficits in patients. Because spinal cord ischemia is inadequately treated, we studied the effects of [4-((1E)-2-(5-(4-hydroxy-3-methoxystyryl-)-1-phenyl-1H-pyrazoyl-3-yl) vinyl)-2-methoxy-phenol)] (CNB-001), a novel curcumin-based compound, in a rabbit SCI model. CNB-001 is known to inhibit human 5-lipoxygenase and 15-lipoxygenase and reduce the ischemia-induced inflammatory response. Moreover, CNB-001 can reduce the level of oxidative stress markers and potentiate brain-derived neurotrophic factor and brain-derived neurotrophic factor receptor signaling. The Tarlov scale and quantal analysis technique results revealed that CNB-001 administered as an intravenous dose (bolus) 30 minutes prior to spinal cord ischemia improved the behaviors of female New Zealand White rabbits. The improvements were similar to those produced by the uncompetitive N-methyl-D-aspartate receptor antagonist memantine. At 48 hours after aortic occlusion, there was a 42.7% increase (P < 0.05) in tolerated ischemia duration (n = 14) for rabbits treated with CNB-001 (n = 16), and a 72.3% increase for rabbits treated with the positive control memantine (P < 0.05) (n = 23) compared to vehicle-treated ischemic rabbits (n = 22). CNB-001 is a potential important novel treatment for spinal cord ischemia induced by aortic occlusion. All experiments were approved by the CSMC Institutional Animal Care and Use Committee (IACUC #4311) on November 1, 2012.
Collapse
Affiliation(s)
| | - Paul D Boitano
- Department of Surgery, Memorial Care Health System, Long Beach, CA, USA
| | - Rene Bombien
- Department of Surgery, Memorial Care Health System, Long Beach, CA, USA
| | - Daisy Chou
- Department of Surgery, Memorial Care Health System, Long Beach, CA, USA
| | - Margot Knight
- Department of Surgery, Memorial Care Health System, Long Beach, CA, USA
| | - Anja Muehle
- Department of Surgery, Memorial Care Health System, Long Beach, CA, USA
| | - Mihaela Te Winkel
- Department of Surgery, Memorial Care Health System, Long Beach, CA, USA
| | - Ali Khoynezhad
- Department of Surgery, Memorial Care Health System, Long Beach, CA, USA
| |
Collapse
|
21
|
Maiti P, Dunbar GL. Use of Curcumin, a Natural Polyphenol for Targeting Molecular Pathways in Treating Age-Related Neurodegenerative Diseases. Int J Mol Sci 2018; 19:E1637. [PMID: 29857538 PMCID: PMC6032333 DOI: 10.3390/ijms19061637] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/02/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022] Open
Abstract
Progressive accumulation of misfolded amyloid proteins in intracellular and extracellular spaces is one of the principal reasons for synaptic damage and impairment of neuronal communication in several neurodegenerative diseases. Effective treatments for these diseases are still lacking but remain the focus of much active investigation. Despite testing several synthesized compounds, small molecules, and drugs over the past few decades, very few of them can inhibit aggregation of amyloid proteins and lessen their neurotoxic effects. Recently, the natural polyphenol curcumin (Cur) has been shown to be a promising anti-amyloid, anti-inflammatory and neuroprotective agent for several neurodegenerative diseases. Because of its pleotropic actions on the central nervous system, including preferential binding to amyloid proteins, Cur is being touted as a promising treatment for age-related brain diseases. Here, we focus on molecular targeting of Cur to reduce amyloid burden, rescue neuronal damage, and restore normal cognitive and sensory motor functions in different animal models of neurodegenerative diseases. We specifically highlight Cur as a potential treatment for Alzheimer's, Parkinson's, Huntington's, and prion diseases. In addition, we discuss the major issues and limitations of using Cur for treating these diseases, along with ways of circumventing those shortcomings. Finally, we provide specific recommendations for optimal dosing with Cur for treating neurological diseases.
Collapse
Affiliation(s)
- Panchanan Maiti
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604, USA.
- Department of Biology, Saginaw Valley State University, Saginaw, MI 48610, USA.
- Brain Research Laboratory, Saginaw Valley State University, Saginaw, MI 48610, USA.
| | - Gary Leo Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Program in Neuroscience, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Department of Psychology, Central Michigan University, Mt. Pleasant, MI 48859, USA.
- Field Neurosciences Institute, St. Mary's of Michigan, Saginaw, MI 48604, USA.
| |
Collapse
|
22
|
Hosseini A, Hosseinzadeh H. Antidotal or protective effects of Curcuma longa (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review. Biomed Pharmacother 2018; 99:411-421. [DOI: 10.1016/j.biopha.2018.01.072] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/19/2022] Open
|
23
|
Mandal S, Mandal SD, Chuttani K, Sawant KK, Subudhi BB. Preclinical Study of Ibuprofen Loaded Transnasal Mucoadhesive Microemulsion for Neuroprotective Effect in MPTP Mice Model. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:23-38. [PMID: 29755536 PMCID: PMC5937075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), showed very promising neuroprotection action, but it suffers from high first pass metabolism and limited ability to cross blood brain barrier. Severe gastric toxicity following oral administration further limits its utility. Hence, the aim of this study was to investigate whether ibuprofen loaded mucoadhesive microemulsion (MMEI) could enhance the brain uptake and could also protect the dopaminergic neurons from MPTP-mediated neural inflammation. In this work, ibuprofen loaded polycarbophil based mucoadhesive microemulsion (MMEI) was developed by using response surface methodology (RSM). Male C57BL/6 mice were intranasally given 2.86 mg ibuprofen/kg/day for 2 consecutive weeks, which were pre-treated with four MPTP injections (20 mg/kg of body weight) at 2 h interval by intraperitoneal route and immunohistochemistry was performed. Globule size of optimal MMEI was 46.73 nm ± 3.11 with PdI value as 0.201 ± 0.19. Histological observation showed that optimal MMEI was biocompatible and suitable for nasal application. The result showed very significant effect (p < 0.05) of all three independent variables on the responses of the developed MMEI. Noticeable improvement in motor performance with spontaneous behavior was observed. TH neurons count in substantia nigra with the density of striatal dopaminergic nerve terminals after MMEI administration. Results of this study confirmed neuroprotection action of ibuprofen through intranasal MMEI against MPTP induced inflammation in dopaminergic nerves in animal model and hence, MMEI can be useful for prevention and management of Parkinson disease (PD).
Collapse
Affiliation(s)
- Surjyanarayan Mandal
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar, Orissa, India. ,Corresponding author: E-mail:
| | - Snigdha Das Mandal
- Department of Pharmacology, Parul Institute of Pharmacy and Research, Vadodara, Gujarat, India.
| | - Krishna Chuttani
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi-110054, India.
| | - Krutika K Sawant
- Department of Pharmaceutics, MS University, TIFAC Core, Vadodara, India.
| | - Bharat Bhushan Subudhi
- School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan University, Khandagiri Square, Bhubaneswar, Orissa, India.
| |
Collapse
|
24
|
Mandal S, Mandal SD, Chuttani K, Sawant KK, Subudhi BB. Design and evaluation of mucoadhesive microemulsion for neuroprotective effect of ibuprofen following intranasal route in the MPTP mice model. Drug Dev Ind Pharm 2016; 42:1340-50. [PMID: 26710671 DOI: 10.3109/03639045.2015.1135936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The present study is to investigate the neuroprotective effect of ibuprofen by intranasal administration of mucoadhesive microemulsion (MMEI) against inflammation-mediated by dopaminergic neurodegeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease (PD). METHODS Ibuprofen-loaded polycarbophil-based MMEI was developed by using response surface methodology (RSM). Ibuprofen with dose of 2.86 mg/kg/day was administered intranasally to male C57BL/6 mice for two consecutive weeks which were pre-treated with four intraperitoneal injections of MPTP (20 mg/kg of body weight) at 2 h intervals. Immunohistochemistry was performed. RESULTS Optimal MMEI was stable and non-ciliotoxic with 66.29 ± 4.15 nm as average globule size and -20.9 ± 3.98 mV as zeta potential. PDI value and transmission electron microscopy result showed the narrow globule size distribution of MMEI. The result showed that all three independent variables had a significant effect (p < 0.05) on the responses. Rota-rod and open-field test findings revealed the significant improvement in motor performance and gross behavioral activity of the mice. The results from in vivo study and immunohistochemistry showed that nasal administration of Ibuprofen significantly reduced the MPTP-mediated dopamine depletion. Furthermore TH neurons count in the substantia nigra and the density of striatal dopaminergic nerve terminals were found to be significant higher for ibuprofen treated groups. CONCLUSION Findings of the investigation revealed that Ibuprofen through developed MMEI was shown to protect neurons against MPTP-induced injury in the Substantia nigra pars compacta (SNpc) and striatum and hence, could be a promising approach for brain targeting of Ibuprofen through intranasal route to treat PD.
Collapse
Affiliation(s)
- Surjyanarayan Mandal
- a School of Pharmaceutical Sciences , Siksha 'O' Anusandhan University , Khandagiri Square , Bhubaneswar , Orissa , India
| | - Snigdha Das Mandal
- b Department of Pharmacology , Parul Institute of Pharmacy and Research , Vadodara , Gujarat , India
| | - Krishna Chuttani
- c Division of Cyclotron & Radiopharmaceutical Sciences , Institute of Nuclear Medicine and Allied Sciences (INMAS) , DRDO , Delhi , India
| | - Krutika K Sawant
- d Department of Pharmaceutics , MS University , TIFAC Core , Vadodara , India
| | - Bharat Bhushan Subudhi
- a School of Pharmaceutical Sciences , Siksha 'O' Anusandhan University , Khandagiri Square , Bhubaneswar , Orissa , India
| |
Collapse
|
25
|
Fernández-Moriano C, González-Burgos E, Gómez-Serranillos MP. Mitochondria-Targeted Protective Compounds in Parkinson's and Alzheimer's Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:408927. [PMID: 26064418 PMCID: PMC4429198 DOI: 10.1155/2015/408927] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 12/21/2022]
Abstract
Mitochondria are cytoplasmic organelles that regulate both metabolic and apoptotic signaling pathways; their most highlighted functions include cellular energy generation in the form of adenosine triphosphate (ATP), regulation of cellular calcium homeostasis, balance between ROS production and detoxification, mediation of apoptosis cell death, and synthesis and metabolism of various key molecules. Consistent evidence suggests that mitochondrial failure is associated with early events in the pathogenesis of ageing-related neurodegenerative disorders including Parkinson's disease and Alzheimer's disease. Mitochondria-targeted protective compounds that prevent or minimize mitochondrial dysfunction constitute potential therapeutic strategies in the prevention and treatment of these central nervous system diseases. This paper provides an overview of the involvement of mitochondrial dysfunction in Parkinson's and Alzheimer's diseases, with particular attention to in vitro and in vivo studies on promising endogenous and exogenous mitochondria-targeted protective compounds.
Collapse
Affiliation(s)
- Carlos Fernández-Moriano
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | - Elena González-Burgos
- Department of Pharmacology, Faculty of Pharmacy, University Complutense of Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
26
|
|