1
|
Hung YT, Wong ACN, Tang CK, Wu MC, Tuan SJ. Impact of diet and bacterial supplementation regimes on Orius strigicollis microbiota and life history performance. Sci Rep 2024; 14:20727. [PMID: 39237643 PMCID: PMC11377537 DOI: 10.1038/s41598-024-70755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Given the growing interest in manipulating microbiota to enhance the fitness of mass-reared insects for biological control, this study investigated the impact of an artificial diet on the microbiota composition and performance of Orius strigicollis. We compared the microbiota of O. strigicollis fed on an artificial diet and moth eggs via culturing and 16S rRNA gene amplicon sequencing. Subsequently, we assessed life history traits and immune gene expression of O. strigicollis fed on the artificial diet supplemented with Pantoea dispersa OS1. Results showed that microbial diversity remained largely unaffected by the artificial diet, with similar microbiota compositions in both diet groups. OS1, a minor member of the microbiota but significantly enriched in bugs fed on the artificial diet, improved nymphal survival rates and shifted adult longevity-reproduction life history in females. Additionally, OS1 supplementation elevated the transcription of antimicrobial peptide diptericin. According to population parameters, the group receiving OS1 only during the nymphal stage showed higher population growth potential compared to the group supplemented across all life stages. These findings reveal the resilience of O. strigicollis microbiota under distinct dietary conditions and highlight the potential of using natural symbionts and specific supplementation regimes to improve Orius rearing for future biocontrol programs.
Collapse
Affiliation(s)
- Yi-Ting Hung
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Adam Chun-Nin Wong
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, USA
| | - Cheng-Kang Tang
- Program in Plant Health Care, Academy of Circular Economy, National Chung Hsing University, Nantou, Taiwan, Republic of China
| | - Ming-Cheng Wu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| | - Shu-Jen Tuan
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan, Republic of China.
| |
Collapse
|
2
|
Rupawate PS, Roylawar P, Khandagale K, Gawande S, Ade AB, Jaiswal DK, Borgave S. Role of gut symbionts of insect pests: A novel target for insect-pest control. Front Microbiol 2023; 14:1146390. [PMID: 36992933 PMCID: PMC10042327 DOI: 10.3389/fmicb.2023.1146390] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/15/2023] Open
Abstract
Insects possess beneficial and nuisance values in the context of the agricultural sector and human life around them. An ensemble of gut symbionts assists insects to adapt to diverse and extreme environments and to occupy every available niche on earth. Microbial symbiosis helps host insects by supplementing necessary diet elements, providing protection from predators and parasitoids through camouflage, modulation of signaling pathway to attain homeostasis and to trigger immunity against pathogens, hijacking plant pathways to circumvent plant defence, acquiring the capability to degrade chemical pesticides, and degradation of harmful pesticides. Therefore, a microbial protection strategy can lead to overpopulation of insect pests, which can drastically reduce crop yield. Some studies have demonstrated increased insect mortality via the destruction of insect gut symbionts; through the use of antibiotics. The review summarizes various roles played by the gut microbiota of insect pests and some studies that have been conducted on pest control by targeting the symbionts. Manipulation or exploitation of the gut symbionts alters the growth and population of the host insects and is consequently a potential target for the development of better pest control strategies. Methods such as modulation of gut symbionts via CRISPR/Cas9, RNAi and the combining of IIT and SIT to increase the insect mortality are further discussed. In the ongoing insect pest management scenario, gut symbionts are proving to be the reliable, eco-friendly and novel approach in the integrated pest management.
Collapse
Affiliation(s)
- Pravara S. Rupawate
- Department of Zoology, Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarda Science College (Autonomous), Sangamner, Maharashtra, India
| | - Praveen Roylawar
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarda Science College (Autonomous), Sangamner, Maharashtra, India
| | | | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research, Pune, India
| | - Avinash B. Ade
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Durgesh Kumar Jaiswal
- Department of Botany, Savitribai Phule Pune University, Pune, India
- *Correspondence: Durgesh Kumar Jaiswal,
| | - Seema Borgave
- Department of Zoology, Sangamner Nagarpalika Arts, D. J. Malpani Commerce and B. N. Sarda Science College (Autonomous), Sangamner, Maharashtra, India
- Seema Borgave,
| |
Collapse
|
3
|
Zhou HZ, Zhang J, Sun QL. Description of Novosphingopyxis iocasae sp. nov., isolated from deep sea sediment from the Mariana Trench, and emended description of the genus Novosphingopyxis. Int J Syst Evol Microbiol 2021; 71. [PMID: 34287118 DOI: 10.1099/ijsem.0.004910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, we reported a Gram-stain-negative, orange-coloured, rod-shaped, motile and faculatively anaerobic bacterium named strain PB63T, which was isolated from the deep-sea sediment from the Mariana Trench. Growth of PB63T occurred at 10-35 °C (optimum, 28 °C), pH 5.0-8.0 (optimum, 5.0-6.0) and with 0-7 % (w/v) NaCl (optimum, 2-3 %). The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that PB63T represented a member of the genus Novosphingopyxis and was closely related to Novosphingopyxis baekryungensis DSM 16222T (97.9 % sequence similarity). PB63T showed tolerance to a variety of heavy metals, including Co2+, Zn2+, Mn2+ and Cu2+. The complete genome of PB63T was obtained, and many genes involved in heavy metal resistance were found. The genomic DNA G+C content of PB63T was 62.8 mol%. The predominant respiratory quinone of PB63T was ubiquinone-10 (Q-10). The polar lipids of PB63T contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, sphingoglycolipid, glycolipid, phosphatidylcholines and three unidentified lipids. The major fatty acids of PB63T included summed feature 8 (C18 : 1ω7c or/and C18 : 1ω6c), C14 : 0 2-OH, 11-methyl C18 : 1ω7c, C16 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C17 : 1ω6c. The results of phylogenetic, physiological, biochemical and morphological analyses indicated that strain PB63T represents a novel species of the genus Novosphingopyxis, and the name Novosphingopyxis iocasae sp. nov. is proposed with the type species PB63T (=CCTCC AB 2019195T=JCM 34178T).
Collapse
Affiliation(s)
- Hai-Zhen Zhou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, PR China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| | - Jian Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, PR China
| | - Qing-Lei Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Institute of Oceanology, Qingdao, PR China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China
| |
Collapse
|
4
|
Ibrahim S, Gupta RK, War AR, Hussain B, Kumar A, Sofi T, Noureldeen A, Darwish H. Degradation of chlorpyriphos and polyethylene by endosymbiotic bacteria from citrus mealybug. Saudi J Biol Sci 2021; 28:3214-3224. [PMID: 34121858 PMCID: PMC8176133 DOI: 10.1016/j.sjbs.2021.03.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/14/2021] [Accepted: 03/22/2021] [Indexed: 11/22/2022] Open
Abstract
Chlorpyriphos is one of the major organophosphorus pesticides used widely to control a range of insect pests across several crops. This insecticide is hazardous to the environment and toxic to mammals, thus, it is essential to remove the same from the environment. Similarly, use of polythene is also increasing day by day. Therefore, it is highly important to identify ways to degrade chlorpyriphos and other pesticides from the environment. We studied the degradation of chlorpyriphos and polyethylene by Citrus mealybug (Planococcus citri) bacterial endosymbionts such as Bacillus licheniformis, Pseudomonas cereus, Pseudomonas putida and Bacillus subtilis. This investigation revealed that bacterial endosymbionts use the polythene as a source of carbon and solubilize them by their enzymatic machinery. The degradation of polyethylene by endosymbionts showed a significant reduction in weight of polyethylene sheet after 15, 30 and 45 days of treatment. The SEM images showed localized degradation of the polyethylene around the bacterial cells in the biofilm. Further, the tensile strength (percentage elongation) was significantly reduced after 45 days of incubation. The weight of paraffin wax showed significant reduction in B. cereus. A significant reduction in total amount of chlorpyriphos in soil was observed at an interval of 7, 14 and 21 days after treatment by the bacterial isolates. Among the bacteria, B. cereus and P. putida were found to be most effective. The results from this study show that endosymbionts can be significantly implicated in degrading chlorpyriphos and polyethylene from the environment.
Collapse
Affiliation(s)
- Shahida Ibrahim
- Division of Entomology, SKUAST-J, Chatta-180009, Jammu, Jammu and Kashmir, India
| | - Rakesh Kumar Gupta
- Division of Entomology, SKUAST-J, Chatta-180009, Jammu, Jammu and Kashmir, India
| | - Abdul Rasheed War
- World Vegetable Center, ICRISAT Campus, Patancheru-502324, Hyderabad, Telangana, India
| | - Barkat Hussain
- Division of Entomology, SKUAST-K, Shalimar Campus-190025, Srinagar, Jammu and Kashmir, India
| | - Amit Kumar
- Instrumentation Division, Indian Institute of Integrative Medicine, Canal Road-180001, Jammu, Jammu and Kashmir, India
| | - Tariq Sofi
- Division of Plant Pathology, SKUAST-K, Shalimar-190025, Srinagar, Jammu and Kashmir, India
| | - Ahmad Noureldeen
- Department of Biology, College of Sciences, Taif University, P.O. Box 21944, Saudi Arabia
| | - Hadeer Darwish
- Department of Biotechnology, College of Sciences, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
5
|
Berasategui A, Moller AG, Weiss B, Beck CW, Bauchiero C, Read TD, Gerardo NM, Salem H. Symbiont Genomic Features and Localization in the Bean Beetle Callosobruchus maculatus. Appl Environ Microbiol 2021; 87:e0021221. [PMID: 33863703 PMCID: PMC8174668 DOI: 10.1128/aem.00212-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
A pervasive pest of stored leguminous products, the bean beetle Callosobruchus maculatus (Coleoptera: Chrysomelidae) associates with a simple bacterial community during adulthood. Despite its economic importance, little is known about the compositional stability, heritability, localization, and metabolic potential of the bacterial symbionts of C. maculatus. In this study, we applied community profiling using 16S rRNA gene sequencing to reveal a highly conserved bacterial assembly shared between larvae and adults. Dominated by Firmicutes and Proteobacteria, this community is localized extracellularly along the epithelial lining of the bean beetle's digestive tract. Our analysis revealed that only one species, Staphylococcus gallinarum (phylum Firmicutes), is shared across all developmental stages. Isolation and whole-genome sequencing of S. gallinarum from the beetle gut yielded a circular chromosome (2.8 Mb) and one plasmid (45 kb). The strain encodes complete biosynthetic pathways for the production of B vitamins and amino acids, including tyrosine, which is increasingly recognized as an important symbiont-supplemented precursor for cuticle biosynthesis in beetles. A carbohydrate-active enzyme search revealed that the genome codes for a number of digestive enzymes, reflecting the nutritional ecology of C. maculatus. The ontogenic conservation of the gut microbiota in the bean beetle, featuring a "core" community composed of S. gallinarum, may be indicative of an adaptive role for the host. In clarifying symbiont localization and metabolic potential, we further our understanding and study of a costly pest of stored products. IMPORTANCE From supplementing essential nutrients to detoxifying plant secondary metabolites and insecticides, bacterial symbionts are a key source of adaptations for herbivorous insect pests. Despite the pervasiveness and geographical range of the bean beetle Callosobruchus maculatus, the role of microbial symbioses in its natural history remains understudied. Here, we demonstrate that the bean beetle harbors a simple gut bacterial community that is stable throughout development. This community localizes along the insect's digestive tract and is largely dominated by Staphylococcus gallinarum. In elucidating symbiont metabolic potential, we highlight its possible adaptive significance for a widespread agricultural pest.
Collapse
Affiliation(s)
| | - Abraham G. Moller
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Benjamin Weiss
- Department of Evolutionary Ecology, Johannes Gutenberg University, Mainz, Germany
| | | | | | - Timothy D. Read
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Hassan Salem
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Mutualisms Research Group, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
6
|
Morrow JL, Om N, Beattie GAC, Chambers GA, Donovan NJ, Liefting LW, Riegler M, Holford P. Characterization of the bacterial communities of psyllids associated with Rutaceae in Bhutan by high throughput sequencing. BMC Microbiol 2020; 20:215. [PMID: 32689950 PMCID: PMC7370496 DOI: 10.1186/s12866-020-01895-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 07/08/2020] [Indexed: 12/30/2022] Open
Abstract
Background Several plant-pathogenic bacteria are transmitted by insect vector species that often also act as hosts. In this interface, these bacteria encounter plant endophytic, insect endosymbiotic and other microbes. Here, we used high throughput sequencing to examine the bacterial communities of five different psyllids associated with citrus and related plants of Rutaceae in Bhutan: Diaphorina citri, Diaphorina communis, Cornopsylla rotundiconis, Cacopsylla heterogena and an unidentified Cacopsylla sp. Results The microbiomes of the psyllids largely comprised their obligate P-endosymbiont ‘Candidatus Carsonella ruddii’, and one or two S-endosymbionts that are fixed and specific to each lineage. In addition, all contained Wolbachia strains; the Bhutanese accessions of D. citri were dominated by a Wolbachia strain first found in American isolates of D. citri, while D. communis accessions were dominated by the Wolbachia strain, wDi, first detected in D. citri from China. The S-endosymbionts from the five psyllids grouped with those from other psyllid taxa; all D. citri and D. communis individuals contained sequences matching ‘Candidatus Profftella armatura’ that has previously only been reported from other Diaphorina species, and the remaining psyllid species contained OTUs related to unclassified Enterobacteriaceae. The plant pathogenic ‘Candidatus Liberibacter asiaticus’ was found in D. citri but not in D. communis. Furthermore, an unidentified ‘Candidatus Liberibacter sp.’ occurred at low abundance in both Co. rotundiconis and the unidentified Cacopsylla sp. sampled from Zanthoxylum sp.; the status of this new liberibacter as a plant pathogen and its potential plant hosts are currently unknown. The bacterial communities of Co. rotundiconis also contained a range of OTUs with similarities to bacteria previously found in samples taken from various environmental sources. Conclusions The bacterial microbiota detected in these Bhutanese psyllids support the trends that have been seen in previous studies: psyllids have microbiomes largely comprising their obligate P-endosymbiont and one or two S-endosymbionts. In addition, the association with plant pathogens has been demonstrated, with the detection of liberibacters in a known host, D. citri, and identification of a putative new species of liberibacter in Co. rotundiconis and Cacopsylla sp.
Collapse
Affiliation(s)
- Jennifer L Morrow
- Western Sydney University, Hawkesbury Institute for the Environment, LB 1797, Penrith, NSW, 2752, Australia
| | - Namgay Om
- Western Sydney University, School of Science, LB 1797, Penrith, NSW, 2752, Australia.,National Plant Protection Centre, Department of Agriculture, Ministry of Agriculture & Forests, P.O. Box 670, Thimphu, Bhutan
| | - George A C Beattie
- Western Sydney University, School of Science, LB 1797, Penrith, NSW, 2752, Australia
| | - Grant A Chambers
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute Woodbridge Rd, Menangle, NSW, 2568, Australia
| | - Nerida J Donovan
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute Woodbridge Rd, Menangle, NSW, 2568, Australia
| | - Lia W Liefting
- Plant Health and Environment Laboratory, Ministry for Primary Industries, P.O. Box 2095, Auckland, 1140, New Zealand
| | - Markus Riegler
- Western Sydney University, Hawkesbury Institute for the Environment, LB 1797, Penrith, NSW, 2752, Australia
| | - Paul Holford
- Western Sydney University, School of Science, LB 1797, Penrith, NSW, 2752, Australia.
| |
Collapse
|
7
|
Barretto DA, Vootla SK. In Vitro Anticancer Activity of Staphyloxanthin Pigment Extracted from Staphylococcus gallinarum KX912244, a Gut Microbe of Bombyx mori. Indian J Microbiol 2018; 58:146-158. [PMID: 29651173 DOI: 10.1007/s12088-018-0718-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/08/2018] [Indexed: 01/27/2023] Open
Abstract
The present study reports the in vitro biological nature of the pigment produced by Staphylococcus gallinarum KX912244, isolated as the gut microflora bacterium of the insect Bombyx mori. The purified pigment was characterized as Staphyloxanthin based on bio-physical characterization techniques like Fourier transform infrared spectroscopy, high performance liquid chromatography, Proton nuclear magnetic resonance spectroscopy (1H NMR), Liquid chromatography-Mass spectroscopy and Gas chromatography-Mass spectroscopy. The Staphyloxanthin pigment presented considerable biological properties including in vitro antimicrobial activity against pathogens Staphylococcus aureus, Escherichia coli and Candida albicans; in vitro antioxidant activity by % DPPH free radical scavenging activity showing IC50 value of 54.22 µg/mL; DNA damage protection activity against reactive oxygen species and anticancer activity evaluated by cytotoxicity assay against 4 different cancer cell lines like the Dalton's lymphoma ascites with IC50 value 6.20 ± 0.02 µg/mL, Ehrlich ascites carcinoma having IC50 value 6.48 ± 0.15 µg/mL, Adenocarcinomic human alveolar basal epithelial cells (A549 Lung carcinoma) bearing IC50 value 7.23 ± 0.11 µg/mL and Mus mucus skin melanoma (B16F10) showing IC50 value 6.58 ± 0.38 µg/mL and less cytotoxicity towards non-cancerous human fibroblast cell lines (NIH3T3) with IC50 value of 52.24 µg/mL. The present study results suggest that Staphyloxanthin acts as a potential therapeutic agent especially due to its anticancer property.
Collapse
Affiliation(s)
- Delicia Avilla Barretto
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003 Karnataka India
| | - Shyam Kumar Vootla
- Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003 Karnataka India
| |
Collapse
|
8
|
Ivens ABF, Gadau A, Kiers ET, Kronauer DJC. Can social partnerships influence the microbiome? Insights from ant farmers and their trophobiont mutualists. Mol Ecol 2018; 27:1898-1914. [PMID: 29411455 PMCID: PMC5935579 DOI: 10.1111/mec.14506] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/21/2017] [Accepted: 11/28/2017] [Indexed: 01/02/2023]
Abstract
Mutualistic interactions with microbes have played a crucial role in the evolution and ecology of animal hosts. However, it is unclear what factors are most important in influencing particular host–microbe associations. While closely related animal species may have more similar microbiota than distantly related species due to phylogenetic contingencies, social partnerships with other organisms, such as those in which one animal farms another, may also influence an organism's symbiotic microbiome. We studied a mutualistic network of Brachymyrmex and Lasius ants farming several honeydew‐producing Prociphilus aphids and Rhizoecus mealybugs to test whether the mutualistic microbiomes of these interacting insects are primarily correlated with their phylogeny or with their shared social partnerships. Our results confirm a phylogenetic signal in the microbiomes of aphid and mealybug trophobionts, with each species harbouring species‐specific endosymbiont strains of Buchnera (aphids), Tremblaya and Sodalis (mealybugs), and Serratia (both mealybugs and aphids) despite being farmed by the same ants. This is likely explained by strict vertical transmission of trophobiont endosymbionts between generations. In contrast, our results show the ants’ microbiome is possibly shaped by their social partnerships, with ants that farm the same trophobionts also sharing strains of sugar‐processing Acetobacteraceae bacteria, known from other honeydew‐feeding ants and which likely reside extracellularly in the ants’ guts. These ant–microbe associations are arguably more “open” and subject to horizontal transmission or social transmission within ant colonies. These findings suggest that the role of social partnerships in shaping a host's symbiotic microbiome can be variable and is likely dependent on how the microbes are transmitted across generations.
Collapse
Affiliation(s)
- Aniek B F Ivens
- Animal Ecology Section, Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands.,Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Alice Gadau
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - E Toby Kiers
- Animal Ecology Section, Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| |
Collapse
|
9
|
Tarayre C, Charlier R, Delepierre A, Brognaux A, Bauwens J, Francis F, Dermience M, Lognay G, Taminiau B, Daube G, Compère P, Meers E, Michels E, Delvigne F. Looking for phosphate-accumulating bacteria in activated sludge processes: a multidisciplinary approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:8017-8032. [PMID: 28132192 DOI: 10.1007/s11356-017-8490-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
Over the past decades, an increasing need in renewable resources has progressively appeared. This trend concerns not only fossil fuels but also mineral resources. Wastewater and sewage sludge contain significant concentrations in phosphate and can be considered as a fertilizer source of the utmost importance. In wastewater treatment plants, the biological uptake of phosphate is performed by a specific microbiota: the phosphate-accumulating organisms. These microorganisms are recovered in sewage sludge. Here, we aimed to investigate the occurrence of phosphate accumulators in four wastewater treatment plants. A 16S metagenetic analysis identified the main bacterial phyla extracted from the aerobic treatment: α-Proteobacteria, β-Proteobacteria, and Sphingobacteria. An enrichment stage was performed to stimulate the specific growth of phosphate-accumulating bacteria in an acetate medium. An analysis of metabolic activities of sulfur and phosphorus highlighted strong modifications related to phosphorus and much less distinguishable effects with sulfur. A solid acetate medium containing 5-Br-4-Cl-3-indolyl phosphate was used to select potential phosphate-accumulating bacteria from the enriched consortia. The positive strains have been found to belong in the genera Acinetobacter, Corynebacterium, and Pseudomonas. Finally, electron microscopy was applied to the strains and allowed to confirm the presence of polyphosphate granules. Some of these bacteria contained granules the size of which exceeded 100 nm.
Collapse
Affiliation(s)
- Cédric Tarayre
- Microbial Processes and Interactions, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030, Gembloux, Belgium.
| | - Raphaëlle Charlier
- Microbial Processes and Interactions, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030, Gembloux, Belgium
| | - Anissa Delepierre
- Microbial Processes and Interactions, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030, Gembloux, Belgium
| | - Alison Brognaux
- Microbial Processes and Interactions, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030, Gembloux, Belgium
| | - Julien Bauwens
- Entomologie Fonctionnelle et Évolutive, AgroBioChem, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030, Gembloux, Belgium
| | - Frédéric Francis
- Entomologie Fonctionnelle et Évolutive, AgroBioChem, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030, Gembloux, Belgium
| | - Michaël Dermience
- Chimie Analytique, AgroBioChem, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030, Gembloux, Belgium
| | - Georges Lognay
- Chimie Analytique, AgroBioChem, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030, Gembloux, Belgium
| | - Bernard Taminiau
- Microbiologie des Denrées alimentaires, Fundamental and Applied Research for Animals and Health, University of Liege, Quartier Vallée 2, Avenue de Cureghem 10, B-4000, Liege, Belgium
| | - Georges Daube
- Microbiologie des Denrées alimentaires, Fundamental and Applied Research for Animals and Health, University of Liege, Quartier Vallée 2, Avenue de Cureghem 10, B-4000, Liege, Belgium
| | - Philippe Compère
- Département de Biologie, Ecologie et Evolution, Université de Liège, Allée du Six Août 15, B-4000, Liège, Belgium
| | - Erik Meers
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Evi Michels
- Department of Applied Analytical and Physical Chemistry, Laboratory of Analytical Chemistry and Applied Ecochemistry, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Frank Delvigne
- Microbial Processes and Interactions, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, B-5030, Gembloux, Belgium
| |
Collapse
|
10
|
Nam HS, Yang HJ, Oh BJ, Anderson AJ, Kim YC. Biological Control Potential of Bacillus amyloliquefaciens KB3 Isolated from the Feces of Allomyrina dichotoma Larvae. THE PLANT PATHOLOGY JOURNAL 2016; 32:273-80. [PMID: 27298603 PMCID: PMC4892824 DOI: 10.5423/ppj.nt.12.2015.0274] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/16/2016] [Accepted: 02/20/2016] [Indexed: 05/23/2023]
Abstract
Most biocontrol agents for plant diseases have been isolated from sources such as soils and plants. As an alternative source, we examined the feces of tertiary larvae of the herbivorous rhino beetle, Allomyrina dichotoma for presence of biocontrol-active microbes. The initial screen was performed to detect antifungal activity against two common fungal plant pathogens. The strain with strongest antifungal activity was identified as Bacillus amyloliquefaciens KB3. The inhibitory activity of this strain correlated with lipopeptide productions, including iturin A and surfactin. Production of these surfactants in the KB3 isolate varied with the culture phase and growth medium used. In planta biocontrol activities of cell-free culture filtrates of KB3 were similar to those of the commercial biocontrol agent, B. subtilis QST-713. These results support the presence of microbes with the potential to inhibit fungal growth, such as plant pathogens, in diverse ecological niches.
Collapse
Affiliation(s)
- Hyo-Song Nam
- Jeonnam Bioindustry Foundation, BioControl Research Center, Gokseong 57510,
Korea
| | - Hyun-Ju Yang
- Jeonnam Bioindustry Foundation, BioControl Research Center, Gokseong 57510,
Korea
| | - Byung Jun Oh
- Jeonnam Bioindustry Foundation, BioControl Research Center, Gokseong 57510,
Korea
| | - Anne J. Anderson
- Department of Biology, Utah State University, Logan, UT 843220-5305,
USA
| | - Young Cheol Kim
- Institute of Environmentally-Friendly Agriculture, Jeonnam National University, Gwangju 61186,
Korea
| |
Collapse
|