1
|
Negro S, Baggio C, Tonellato M, Stazi M, D’Este G, Megighian A, Montecucco C, Rigoni M. Hydrogen Peroxide Modulates the Timely Activation of Jun and Erk in Schwann Cells at the Injury Site and Is Required for Motor Axon Regeneration. Cells 2025; 14:671. [PMID: 40358195 PMCID: PMC12072069 DOI: 10.3390/cells14090671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/16/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
Peripheral nervous system (PNS) neurons, including motor neurons (MNs), possess a remarkable ability to regenerate and reinnervate target muscles following nerve injury. This process is orchestrated by a combination of intrinsic neuronal properties and extrinsic factors, with Schwann cells (SCs) playing a central role. Upon injury, SCs transition into a repair phenotype that allows axonal regeneration through molecular signaling and structural guidance. However, the identity of the SCs' reprogramming factors is only partially known. We previously identified hydrogen peroxide (H2O2) as an early and key driver of nerve repair, inducing gene expression rewiring in SCs to support nerve re-growth. In this study, we quantitatively assessed the role of H2O2 in the activation of key pro-regenerative signaling pathways in SCs following sciatic nerve compression, specifically the extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun, which are essential for functional nerve recovery. Notably, we found that H2O2 neutralization does not impact degeneration, but it significantly affects the regenerative response. Collectively, our findings establish H2O2 as a promising regulator of the Schwann cell injury response at the injury site, linking oxidative signaling to the molecular mechanisms governing nerve regeneration.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Chiara Baggio
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Marika Tonellato
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Marco Stazi
- Cancer Neuroscience Laboratory, Francis Crick Institute, London NW1 1ATK, UK
| | - Giorgia D’Este
- Neurobiology Lab, IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
- Padua Neuroscience Center, University of Padua, 35129 Padua, Italy
| | | | - Michela Rigoni
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
- Myology Center (CIR-Myo), University of Padua, 35131 Padua, Italy
| |
Collapse
|
2
|
Stenberg L, Jewett M, Dueñas Rey A, Swanberg M, Dahlin LB. DA. Vra1-congenic rats display increased gene expression and Schwann cell apoptosis but unaffected nerve regeneration compared to parental DA rats after sciatic nerve injury and repair. Front Cell Dev Biol 2025; 13:1536347. [PMID: 40356597 PMCID: PMC12066652 DOI: 10.3389/fcell.2025.1536347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/10/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction The rat Vra1 locus, containing glutathione S-transferase alpha 4 (Gsta4), regulates the degeneration of central nervous system (CNS) neurons in toxin-, protein-, and injury-based models. We hypothesize that Piebald Virol Glaxo.1AV1 (PVG) alleles in Vra1 confer protection and increased axonal outgrowth after peripheral nerve injury and repair. Methods DA rats (n = 14) and DA rats with PVG alleles in the Vra1 locus (DA.Vra1, n = 14) were subjected to sciatic nerve transection and immediate repair. After 6 days, axonal outgrowth and protein and gene expression were analyzed in injured and uninjured nerves and dorsal root ganglia (DRG). Results No differences in axonal outgrowth were observed between strains, but the number of apoptotic Schwann cells in the injured distal nerve end was higher in DA.Vra1 than in DA rats (p = 0.003). In both strains, gene- and protein expression of activating transcription factor 3 (ATF3) and 27-kDa heat shock protein (HSP27, i.e., Hspb1) were increased in injured vs. uninjured DRG. In DA.Vra1 rats, Gsta4 gene expression was lower in injured vs. uninjured DRG (p = 0.043) but higher than in DA rats in injured nerves (p = 0.008) and injured DRG (p = 0.008). DA.Vra1 had higher gene expression of Atf3 (p = 0.016) and caspase 3 (p = 0.032) in injured nerves than DA rats. Discussion Results highlight the complexity of nerve injury and repair, supporting further investigation of Gsta4 in nerve regeneration.
Collapse
Affiliation(s)
- Lena Stenberg
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
| | - Michael Jewett
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | | | - Maria Swanberg
- Department of Experimental Medicine, Lund University, Lund, Sweden
| | - Lars B. Dahlin
- Department of Translational Medicine – Hand Surgery, Lund University, Malmö, Sweden
- Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linkoping University, Linkoping, Sweden
| |
Collapse
|
3
|
Frostadottir D, Welinder C, Perez R, Dahlin LB. Refinement of Protein Extraction Protocols for Human Peripheral Nerve Tissue. ACS OMEGA 2025; 10:5111-5118. [PMID: 39959086 PMCID: PMC11822717 DOI: 10.1021/acsomega.4c11373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025]
Abstract
Our aim was to establish an effective method for protein extraction from freshly frozen human peripheral nerves, determine the minimum amount required for consistent protein extraction outcomes, and assess which method produced the highest number of protein identities. Five extraction methods were compared using 8 M urea and Ripa buffer using either the Bullet Blender or Bioruptor. Out of the total 2619 identified proteins, protein extraction using the Ripa buffer combined with either Bioruptor or Bullet Blender resulted in the identification of 1582 (60%) and 1615 (62%) proteins, respectively. In contrast, using 8 M urea and Bioruptor for protein extraction resulted in 1022 proteins (39%), whereas employing Bullet Blender yielded 1446 proteins (55%). Sample amounts, ranging from 0.6 to 10 mg, were prepared with consistent protein extraction outcome obtained for samples ≥1.2 mg. Combining Ripa and 8 M urea with Bullet Blender increased protein identification to 2126 (81%). Proteins were classified by their cell components, molecular functions, and biological processes. Furthermore, a subclassification of proteins involved in the extracellular matrix (ECM) was introduced. We recommend the use of Ripa buffer, in combination with 8 M urea and Bullet Blender for extracting proteins from fresh-frozen human nerves weighing ≥1.2 mg.
Collapse
Affiliation(s)
- Drifa Frostadottir
- Department
of Translational Medicine − Hand Surgery, Lund University, Malmö S-20502, Sweden
- Department
of Hand Surgery, Skane University Hospital, Malmö S-20502, Sweden
| | - Charlotte Welinder
- Faculty of
Medicine, Department of Clinical Sciences Lund, Mass Spectrometry, Lund University, Lund S-20502, Sweden
| | - Raquel Perez
- Department
of Translational Medicine − Hand Surgery, Lund University, Malmö S-20502, Sweden
- Unit for
Social Epidemiology, Department of Clinical Sciences Malmö, Lund University, Malmö S-20502, Sweden
| | - Lars B. Dahlin
- Department
of Translational Medicine − Hand Surgery, Lund University, Malmö S-20502, Sweden
- Department
of Hand Surgery, Skane University Hospital, Malmö S-20502, Sweden
- Department
of Biomedical and Clinical Sciences, Linköping
University, SE-581 83 Linköping, Sweden
| |
Collapse
|
4
|
Olsen TC, LaGuardia JS, Chen DR, Lebens RS, Huang KX, Milek D, Noble M, Leckenby JI. Influencing factors and repair advancements in rodent models of peripheral nerve regeneration. Regen Med 2024; 19:561-577. [PMID: 39469920 PMCID: PMC11633413 DOI: 10.1080/17460751.2024.2405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Peripheral nerve injuries lead to severe functional impairments, with rodent models essential for studying regeneration. This review examines key factors affecting outcomes. Age-related declines, like reduced nerve fiber density and impaired axonal transport of vesicles, hinder recovery. Hormonal differences influence regeneration, with BDNF/trkB critical for testosterone and nerve growth factor for estrogen signaling pathways. Species and strain selection impact outcomes, with C57BL/6 mice and Sprague-Dawley rats exhibiting varying regenerative capacities. Injury models - crush for early regeneration, chronic constriction for neuropathic pain, stretch for traumatic elongation and transection for severe lacerations - provide insights into clinically relevant scenarios. Repair techniques, such as nerve grafts and conduits, show that autografts are the gold standard for gaps over 3 cm, with success influenced by graft type and diameter. Time course analysis highlights crucial early degeneration and regeneration phases within the first month, with functional recovery stabilizing by three to six months. Early intervention optimizes regeneration by reducing scar tissue formation, while later interventions focus on remyelination. Understanding these factors is vital for designing robust preclinical studies and translating research into effective clinical treatments for peripheral nerve injuries.
Collapse
Affiliation(s)
- Timothy C Olsen
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - Jonnby S LaGuardia
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - David R Chen
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA90095, USA
| | - Ryan S Lebens
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA90095, USA
| | - Kelly X Huang
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA90095, USA
| | - David Milek
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| | - Jonathan I Leckenby
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY14642, USA
| |
Collapse
|
5
|
Xu X, Song L, Li Y, Guo J, Huang S, Du S, Li W, Cao R, Cui S. Neurotrophin-3 promotes peripheral nerve regeneration by maintaining a repair state of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway. J Transl Med 2023; 21:733. [PMID: 37848983 PMCID: PMC10583391 DOI: 10.1186/s12967-023-04609-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Maintaining the repair phenotype of denervated Schwann cells in the injured distal nerve is crucial for promoting peripheral nerve regeneration. However, when chronically denervated, the capacity of Schwann cells to support repair and regeneration deteriorates, leading to peripheral nerve regeneration and poor functional recovery. Herein, we investigated whether neurotrophin-3 (NT-3) could sustain the reparative phenotype of Schwann cells and promote peripheral nerve regeneration after chronic denervation and aimed to uncover its potential molecular mechanisms. METHODS Western blot was employed to investigate the relationship between the expression of c-Jun and the reparative phenotype of Schwann cells. The inducible expression of c-Jun by NT-3 was examined both in vitro and in vivo with western blot and immunofluorescence staining. A chronic denervation model was established to study the role of NT-3 in peripheral nerve regeneration. The number of regenerated distal axons, myelination of regenerated axons, reinnervation of neuromuscular junctions, and muscle fiber diameters of target muscles were used to evaluate peripheral nerve regeneration by immunofluorescence staining, transmission electron microscopy (TEM), and hematoxylin and eosin (H&E) staining. Adeno-associated virus (AAV) 2/9 carrying shRNA, small molecule inhibitors, and siRNA were employed to investigate whether NT-3 could signal through the TrkC/ERK pathway to maintain c-Jun expression and promote peripheral nerve regeneration after chronic denervation. RESULTS After peripheral nerve injury, c-Jun expression progressively increased until week 5 and then began to decrease in the distal nerve following denervation. NT-3 upregulated the expression of c-Jun in denervated Schwann cells, both in vitro and in vivo. NT-3 promoted peripheral nerve regeneration after chronic denervation, mainly by upregulating or maintaining a high level of c-Jun rather than NT-3 itself. The TrkC receptor was consistently presented on denervated Schwann cells and served as NT-3 receptors following chronic denervation. NT-3 mainly upregulated c-Jun through the TrkC/ERK pathway. CONCLUSION NT-3 promotes peripheral nerve regeneration by maintaining the repair phenotype of Schwann cells after chronic denervation via the TrkC/ERK/c-Jun pathway. It provides a potential target for the clinical treatment of peripheral nerve injury after chronic denervation.
Collapse
Affiliation(s)
- Xiong Xu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Lili Song
- Department of Hand & Microsurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yueying Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Jin Guo
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Shuo Huang
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Shuang Du
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China.
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, China.
| |
Collapse
|
6
|
Dahlin LB. The Dynamics of Nerve Degeneration and Regeneration in a Healthy Milieu and in Diabetes. Int J Mol Sci 2023; 24:15241. [PMID: 37894921 PMCID: PMC10607341 DOI: 10.3390/ijms242015241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Appropriate animal models, mimicking conditions of both health and disease, are needed to understand not only the biology and the physiology of neurons and other cells under normal conditions but also under stress conditions, like nerve injuries and neuropathy. In such conditions, understanding how genes and different factors are activated through the well-orchestrated programs in neurons and other related cells is crucial. Knowledge about key players associated with nerve regeneration intended for axonal outgrowth, migration of Schwann cells with respect to suitable substrates, invasion of macrophages, appropriate conditioning of extracellular matrix, activation of fibroblasts, formation of endothelial cells and blood vessels, and activation of other players in healthy and diabetic conditions is relevant. Appropriate physical and chemical attractions and repulsions are needed for an optimal and directed regeneration and are investigated in various nerve injury and repair/reconstruction models using healthy and diabetic rat models with relevant blood glucose levels. Understanding dynamic processes constantly occurring in neuropathies, like diabetic neuropathy, with concomitant degeneration and regeneration, requires advanced technology and bioinformatics for an integrated view of the behavior of different cell types based on genomics, transcriptomics, proteomics, and imaging at different visualization levels. Single-cell-transcriptional profile analysis of different cells may reveal any heterogeneity among key players in peripheral nerves in health and disease.
Collapse
Affiliation(s)
- Lars B. Dahlin
- Department of Translational Medicine—Hand Surgery, Lund University, SE-205 02 Malmö, Sweden; ; Tel.: +46-40-33-17-24
- Department of Hand Surgery, Skåne University Hospital, SE-205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| |
Collapse
|
7
|
Li WY, Li ZG, Fu XM, Wang XY, Lv ZX, Sun P, Zhu XF, Wang Y. Transgenic Schwann cells overexpressing POU6F1 promote sciatic nerve regeneration within acellular nerve allografts. J Neural Eng 2022; 19. [PMID: 36317259 DOI: 10.1088/1741-2552/ac9e1e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Objective.Acellular nerve allograft (ANA) is an effective surgical approach used to bridge the sciatic nerve gap. The molecular regulators of post-surgical recovery are not well-known. Here, we explored the effect of transgenic Schwann cells (SCs) overexpressing POU domain class 6, transcription factor 1 (POU6F1) on sciatic nerve regeneration within ANAs. We explored the functions of POU6F1 in nerve regeneration by using a cell model of H2O2-induced SCs injury and transplanting SCs overexpressing POU6F1 into ANA to repair sciatic nerve gaps.Approach.Using RNA-seq, Protein-Protein Interaction network analysis, gene ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes pathway analysis, we identified a highly and differentially expressed transcription factor, POU6F1, following ANA treatment of sciatic nerve gap. Expressing a high degree of connectivity, POU6F1 was predicted to play a role in peripheral nervous system myelination.Main results.To test the role of POU6F1 in nerve regeneration after ANA, we infected SCs with adeno-associated virus-POU6F1, demonstrating that POU6F1 overexpression promotes proliferation, anti-apoptosis, and migration of SCsin vitro. We also found that POU6F1 significantly upregulated JNK1/2 and c-Jun phosphorylation and that selective JNK1/2 inhibition attenuated the effects of POU6F1 on proliferation, survival, migration, and JNK1/2 and c-Jun phosphorylation. The direct interaction of POU6F1 and activated JNK1/2 was subsequently confirmed by co-immunoprecipitation. In rat sciatic nerve injury model with a 10 mm gap, we confirmed the pattern of POU6F1 upregulation and co-localization with transplanted SCs. ANAs loaded with POU6F1-overexpressing SCs demonstrated the enhanced survival of transplanted SCs, axonal regeneration, myelination, and functional motor recovery compared to the ANA group loaded by SCs-only in line within vitrofindings.Significance.This study identifies POU6F1 as a novel regulator of post-injury sciatic nerve repair, acting through JNK/c-Jun signaling in SCs to optimize therapeutic outcomes in the ANA surgical approach.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Zhi-Gang Li
- The Second Department of General Surgery, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Xiu-Mei Fu
- Department of Anatomy, College of Basic Medical Sciences, Chengde Medical College, Chengde 067000, People's Republic of China.,Hebei Key Laboratory of Nerve Injury and Repair, Chengde 067000, People's Republic of China
| | - Xiao-Yu Wang
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Zhong-Xiao Lv
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Ping Sun
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Xiao-Feng Zhu
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| | - Ying Wang
- Institute of Neural Tissue Engineering, Mudanjiang Medical University, Mudanjiang, Heilongjiang Province, People's Republic of China
| |
Collapse
|
8
|
Klymenko A, Lutz D. Melatonin signalling in Schwann cells during neuroregeneration. Front Cell Dev Biol 2022; 10:999322. [PMID: 36299487 PMCID: PMC9589221 DOI: 10.3389/fcell.2022.999322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
It has widely been thought that in the process of nerve regeneration Schwann cells populate the injury site with myelinating, non–myelinating, phagocytic, repair, and mesenchyme–like phenotypes. It is now clear that the Schwann cells modify their shape and basal lamina as to accommodate re–growing axons, at the same time clear myelin debris generated upon injury, and regulate expression of extracellular matrix proteins at and around the lesion site. Such a remarkable plasticity may follow an intrinsic functional rhythm or a systemic circadian clock matching the demands of accurate timing and precision of signalling cascades in the regenerating nervous system. Schwann cells react to changes in the external circadian clock clues and to the Zeitgeber hormone melatonin by altering their plasticity. This raises the question of whether melatonin regulates Schwann cell activity during neurorepair and if circadian control and rhythmicity of Schwann cell functions are vital aspects of neuroregeneration. Here, we have focused on different schools of thought and emerging concepts of melatonin–mediated signalling in Schwann cells underlying peripheral nerve regeneration and discuss circadian rhythmicity as a possible component of neurorepair.
Collapse
|
9
|
Li M, Min Q, Banton MC, Dun X. Single-Cell Regulatory Network Inference and Clustering Identifies Cell-Type Specific Expression Pattern of Transcription Factors in Mouse Sciatic Nerve. Front Cell Neurosci 2021; 15:676515. [PMID: 34955748 PMCID: PMC8693779 DOI: 10.3389/fncel.2021.676515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 10/28/2021] [Indexed: 02/05/2023] Open
Abstract
Advances in single-cell RNA sequencing technologies and bioinformatics methods allow for both the identification of cell types in a complex tissue and the large-scale gene expression profiling of various cell types in a mixture. In this report, we analyzed a single-cell RNA sequencing (scRNA-seq) dataset for the intact adult mouse sciatic nerve and examined cell-type specific transcription factor expression and activity during peripheral nerve homeostasis. In total, we identified 238 transcription factors expressed in nine different cell types of intact mouse sciatic nerve. Vascular smooth muscle cells have the lowest number of transcription factors expressed with 17 transcription factors identified. Myelinating Schwann cells (mSCs) have the highest number of transcription factors expressed, with 61 transcription factors identified. We created a cell-type specific expression map for the identified 238 transcription factors. Our results not only provide valuable information about the expression pattern of transcription factors in different cell types of adult peripheral nerves but also facilitate future studies to understand the function of key transcription factors in the peripheral nerve homeostasis and disease.
Collapse
Affiliation(s)
- Mingchao Li
- Department of Neurology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Matthew C Banton
- School of Biomedical Science, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Xinpeng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China.,The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
10
|
Li M, Banton MC, Min Q, Parkinson DB, Dun X. Meta-Analysis Reveals Transcription Factor Upregulation in Cells of Injured Mouse Sciatic Nerve. Front Cell Neurosci 2021; 15:688243. [PMID: 34744629 PMCID: PMC8567084 DOI: 10.3389/fncel.2021.688243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Following peripheral nerve injury, transcription factors upregulated in the distal nerve play essential roles in Schwann cell reprogramming, fibroblast activation and immune cell function to create a permissive distal nerve environment for axonal regrowth. In this report, we first analysed four microarray data sets to identify transcription factors that have at least twofold upregulation in the mouse distal nerve stump at day 3 and day 7 post-injury. Next, we compared their relative mRNA levels through the analysis of an available bulk mRNA sequencing data set at day 5 post-injury. We then investigated the expression of identified TFs in analysed single-cell RNA sequencing data sets for the distal nerve at day 3 and day 9 post-injury. These analyses identified 55 transcription factors that have at least twofold upregulation in the distal nerve following mouse sciatic nerve injury. Expression profile for the identified 55 transcription factors in cells of the distal nerve stump was further analysed on the scRNA-seq data. Transcription factor network and functional analysis were performed in Schwann cells. We also validated the expression pattern of Jun, Junb, Runx1, Runx2, and Sox2 in the mouse distal nerve stump by immunostaining. The findings from our study not only could be used to understand the function of key transcription factors in peripheral nerve regeneration but also could be used to facilitate experimental design for future studies to investigate the function of individual TFs in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Mingchao Li
- Department of Neurology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Matthew C Banton
- School of Biomedical Science, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Qing Min
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - David B Parkinson
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Xinpeng Dun
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China.,The Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
11
|
Stenberg L, Hazer Rosberg DB, Kohyama S, Suganuma S, Dahlin LB. Injury-Induced HSP27 Expression in Peripheral Nervous Tissue Is Not Associated with Any Alteration in Axonal Outgrowth after Immediate or Delayed Nerve Repair. Int J Mol Sci 2021; 22:ijms22168624. [PMID: 34445330 PMCID: PMC8395341 DOI: 10.3390/ijms22168624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022] Open
Abstract
We investigated injury-induced heat shock protein 27 (HSP27) expression and its association to axonal outgrowth after injury and different nerve repair models in healthy Wistar and diabetic Goto-Kakizaki rats. By immunohistochemistry, expression of HSP27 in sciatic nerves and DRG and axonal outgrowth (neurofilaments) in sciatic nerves were analyzed after no, immediate, and delayed (7-day delay) nerve repairs (7- or 14-day follow-up). An increased HSP27 expression in nerves and in DRG at the uninjured side was associated with diabetes. HSP27 expression in nerves and in DRG increased substantially after the nerve injuries, being higher at the site where axons and Schwann cells interacted. Regression analysis indicated a positive influence of immediate nerve repair compared to an unrepaired injury, but a shortly delayed nerve repair had no impact on axonal outgrowth. Diabetes was associated with a decreased axonal outgrowth. The increased expression of HSP27 in sciatic nerve and DRG did not influence axonal outgrowth. Injured sciatic nerves should appropriately be repaired in healthy and diabetic rats, but a short delay does not influence axonal outgrowth. HSP27 expression in sciatic nerve or DRG, despite an increase after nerve injury with or without a repair, is not associated with any alteration in axonal outgrowth.
Collapse
Affiliation(s)
- Lena Stenberg
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden; (D.B.H.R.); (L.B.D.)
- Correspondence: ; Tel.: +46-730-49-73-76
| | - Derya Burcu Hazer Rosberg
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden; (D.B.H.R.); (L.B.D.)
- Department of Neurosurgery, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla 48100, Turkey
| | - Sho Kohyama
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan;
| | - Seigo Suganuma
- Department of Orthopaedic Surgery, Ishikawa Prefectural Central Hospital, Kanazawa 920-8530, Japan;
| | - Lars B. Dahlin
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden; (D.B.H.R.); (L.B.D.)
- Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
12
|
Xu Z, Orkwis JA, Harris GM. Cell Shape and Matrix Stiffness Impact Schwann Cell Plasticity via YAP/TAZ and Rho GTPases. Int J Mol Sci 2021; 22:ijms22094821. [PMID: 34062912 PMCID: PMC8124465 DOI: 10.3390/ijms22094821] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/01/2023] Open
Abstract
Schwann cells (SCs) are a highly plastic cell type capable of undergoing phenotypic changes following injury or disease. SCs are able to upregulate genes associated with nerve regeneration and ultimately achieve functional recovery. During the regeneration process, the extracellular matrix (ECM) and cell morphology play a cooperative, critical role in regulating SCs, and therefore highly impact nerve regeneration outcomes. However, the roles of the ECM and mechanotransduction relating to SC phenotype are largely unknown. Here, we describe the role that matrix stiffness and cell morphology play in SC phenotype specification via known mechanotransducers YAP/TAZ and RhoA. Using engineered microenvironments to precisely control ECM stiffness, cell shape, and cell spreading, we show that ECM stiffness and SC spreading downregulated SC regenerative associated proteins by the activation of RhoA and YAP/TAZ. Additionally, cell elongation promoted a distinct SC regenerative capacity by the upregulation of Rac1/MKK7/JNK, both necessary for the ECM and morphology changes found during nerve regeneration. These results confirm the role of ECM signaling in peripheral nerve regeneration as well as provide insight to the design of future biomaterials and cellular therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhenyuan Xu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Jacob A. Orkwis
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
| | - Greg M. Harris
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA; (Z.X.); (J.A.O.)
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
- Neuroscience Graduate Program, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Correspondence: ; Tel.: +1-(513)-556-4167
| |
Collapse
|
13
|
Qu WR, Zhu Z, Liu J, Song DB, Tian H, Chen BP, Li R, Deng LX. Interaction between Schwann cells and other cells during repair of peripheral nerve injury. Neural Regen Res 2021; 16:93-98. [PMID: 32788452 PMCID: PMC7818858 DOI: 10.4103/1673-5374.286956] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peripheral nerve injury (PNI) is common and, unlike damage to the central nervous system injured nerves can effectively regenerate depending on the location and severity of injury. Peripheral myelinating glia, Schwann cells (SCs), interact with various cells in and around the injury site and are important for debris elimination, repair, and nerve regeneration. Following PNI, Wallerian degeneration of the distal stump is rapidly initiated by degeneration of damaged axons followed by morphologic changes in SCs and the recruitment of circulating macrophages. Interaction with fibroblasts from the injured nerve microenvironment also plays a role in nerve repair. The replication and migration of injury-induced dedifferentiated SCs are also important in repairing the nerve. In particular, SC migration stimulates axonal regeneration and subsequent myelination of regenerated nerve fibers. This mobility increases SC interactions with other cells in the nerve and the exogenous environment, which influence SC behavior post-injury. Following PNI, SCs directly and indirectly interact with other SCs, fibroblasts, and macrophages. In addition, the inter- and intracellular mechanisms that underlie morphological and functional changes in SCs following PNI still require further research to explain known phenomena and less understood cell-specific roles in the repair of the injured peripheral nerve. This review provides a basic assessment of SC function post-PNI, as well as a more comprehensive evaluation of the literature concerning the SC interactions with macrophages and fibroblasts that can influence SC behavior and, ultimately, repair of the injured nerve.
Collapse
Affiliation(s)
- Wen-Rui Qu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhe Zhu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Jun Liu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - De-Biao Song
- Department of Emergency and Critical Medicine, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bing-Peng Chen
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
14
|
Avraham O, Deng PY, Jones S, Kuruvilla R, Semenkovich CF, Klyachko VA, Cavalli V. Satellite glial cells promote regenerative growth in sensory neurons. Nat Commun 2020; 11:4891. [PMID: 32994417 PMCID: PMC7524726 DOI: 10.1038/s41467-020-18642-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/04/2020] [Indexed: 01/11/2023] Open
Abstract
Peripheral sensory neurons regenerate their axon after nerve injury to enable functional recovery. Intrinsic mechanisms operating in sensory neurons are known to regulate nerve repair, but whether satellite glial cells (SGC), which completely envelop the neuronal soma, contribute to nerve regeneration remains unexplored. Using a single cell RNAseq approach, we reveal that SGC are distinct from Schwann cells and share similarities with astrocytes. Nerve injury elicits changes in the expression of genes related to fatty acid synthesis and peroxisome proliferator-activated receptor (PPARα) signaling. Conditional deletion of fatty acid synthase (Fasn) in SGC impairs axon regeneration. The PPARα agonist fenofibrate rescues the impaired axon regeneration in mice lacking Fasn in SGC. These results indicate that PPARα activity downstream of FASN in SGC contributes to promote axon regeneration in adult peripheral nerves and highlight that the sensory neuron and its surrounding glial coat form a functional unit that orchestrates nerve repair. The contribution of satellite glia to peripheral nerve regeneration is unclear. Here, the authors show that satellite glia are transcriptionally distinct from Schwann cells, share similarities with astrocytes, and, upon injury, they contribute to axon regeneration via Fasn-PPARα signalling pathway.
Collapse
Affiliation(s)
- Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Pan-Yue Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Sara Jones
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Rejji Kuruvilla
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Clay F Semenkovich
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA.,Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Vitaly A Klyachko
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA. .,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Meyer Zu Reckendorf S, Brand C, Pedro MT, Hegler J, Schilling CS, Lerner R, Bindila L, Antoniadis G, Knöll B. Lipid metabolism adaptations are reduced in human compared to murine Schwann cells following injury. Nat Commun 2020; 11:2123. [PMID: 32358558 PMCID: PMC7195462 DOI: 10.1038/s41467-020-15915-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/03/2020] [Indexed: 11/10/2022] Open
Abstract
Mammals differ in their regeneration potential after traumatic injury, which might be caused by species-specific regeneration programs. Here, we compared murine and human Schwann cell (SC) response to injury and developed an ex vivo injury model employing surgery-derived human sural nerves. Transcriptomic and lipid metabolism analysis of murine SCs following injury of sural nerves revealed down-regulation of lipogenic genes and regulator of lipid metabolism, including Pparg (peroxisome proliferator-activated receptor gamma) and S1P (sphingosine-1-phosphate). Human SCs failed to induce similar adaptations following ex vivo nerve injury. Pharmacological PPARg and S1P stimulation in mice resulted in up-regulation of lipid gene expression, suggesting a role in SCs switching towards a myelinating state. Altogether, our results suggest that murine SC switching towards a repair state is accompanied by transcriptome and lipidome adaptations, which are reduced in humans.
Collapse
Affiliation(s)
| | - Christine Brand
- Department of Neurosurgery, Hospital Bogenhausen, 81925, Munich, Germany
| | - Maria T Pedro
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, Ulm University, District Hospital, 89312, Günzburg, Germany
| | - Jutta Hegler
- Institute of Physiological Chemistry, Ulm University, 89081, Ulm, Germany
| | | | - Raissa Lerner
- Institute of Physiological Chemistry, University Medical Centre of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Centre of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Gregor Antoniadis
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, Ulm University, District Hospital, 89312, Günzburg, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
16
|
Kim JE, Cho YH, Seo TB. Treadmill exercise activates ATF3 and ERK1/2 downstream molecules to facilitate axonal regrowth after sciatic nerve injury. J Exerc Rehabil 2020; 16:141-147. [PMID: 32509698 PMCID: PMC7248442 DOI: 10.12965/jer.2040188.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/27/2020] [Indexed: 01/22/2023] Open
Abstract
The purpose of this study was to investigate the effect of treadmill exer-cise on activating transcription factors such as activating transcription factor 3 (ATF3) and extracellular signal-regulated kinase (ERK1/2) sig-naling pathway to facilitate axonal regrowth after sciatic nerve injury (SNI). The experimental rats divided into the normal control (n=10), sedentary groups for 7 (n=10) and 14 days (n=10) post crush, exercise group for 7 (n=10) and 14 days (n=10) post crush (dpc). The rats in ex-ercise groups run on treadmill device at a speed of 8 m/min for 20 min once a day according to exercise duration. In order to evaluate specific regeneration markers and axonal elongation in injured sciatic nerve, we applied immunofluorescence staining and western blot techniques. Treadmill exercise further increased growth-associated protein (GAP-43) expression and axonal regrowth at 7 and 14 dpc than those in sed-entary group. Among mitogen-activated protein kinase downstream molecules, phospho-ERK1/2 (p-ERK1/2) was enhanced by treadmill ex-ercise at only 7 dpc and decreased to basal level 14 days later. But c-Jun N-terminal kinase, c-Jun, and phospho-cyclic adenosine mono-phosphate response element-binding protein showed a tendency to in-crease continuously until 14 dpc by exercise. ATF3 expression in exer-cise group was upregulated at both 7 and 14 dpc compared to the sed-entary group. These results indicate that treadmill exercise had benefi-cial effect on expression of regeneration-related proteins after SNI, suggesting that exercise might be one of various therapeutic strategies for sciatic nerve regeneration.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
17
|
Abstract
Peripheral nerves contain axons and their enwrapping glia cells named Schwann cells (SCs) that are either myelinating (mySCs) or nonmyelinating (nmSCs). Our understanding of other cells in the peripheral nervous system (PNS) remains limited. Here, we provide an unbiased single cell transcriptomic characterization of the nondiseased rodent PNS. We identified and independently confirmed markers of previously underappreciated nmSCs and nerve-associated fibroblasts. We also found and characterized two distinct populations of nerve-resident homeostatic myeloid cells that transcriptionally differed from central nervous system microglia. In a model of chronic autoimmune neuritis, homeostatic myeloid cells were outnumbered by infiltrating lymphocytes which modulated the local cell-cell interactome and induced a specific transcriptional response in glia cells. This response was partially shared between the peripheral and central nervous system glia, indicating common immunological features across different parts of the nervous system. Our study thus identifies subtypes and cell-type markers of PNS cells and a partially conserved autoimmunity module induced in glia cells.
Collapse
|
18
|
Maiuolo J, Gliozzi M, Musolino V, Carresi C, Nucera S, Macrì R, Scicchitano M, Bosco F, Scarano F, Ruga S, Zito MC, Oppedisano F, Mollace R, Paone S, Palma E, Muscoli C, Mollace V. The Role of Endothelial Dysfunction in Peripheral Blood Nerve Barrier: Molecular Mechanisms and Pathophysiological Implications. Int J Mol Sci 2019; 20:ijms20123022. [PMID: 31226852 PMCID: PMC6628074 DOI: 10.3390/ijms20123022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 02/06/2023] Open
Abstract
The exchange of solutes between the blood and the nerve tissue is mediated by specific and high selective barriers in order to ensure the integrity of the different compartments of the nervous system. At peripheral level, this function is maintained by the Blood Nerve Barrier (BNB) that, in the presence, of specific stressor stimuli can be damaged causing the onset of neurodegenerative processes. An essential component of BNB is represented by the endothelial cells surrounding the sub-structures of peripheral nerves and increasing evidence suggests that endothelial dysfunction can be considered a leading cause of the nerve degeneration. The purpose of this review is to highlight the main mechanisms involved in the impairment of endothelial cells in specific diseases associated with peripheral nerve damage, such as diabetic neuropathy, erectile dysfunction and inflammation of the sciatic nerve.
Collapse
Affiliation(s)
- Jessica Maiuolo
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
- Nutramed Societa' Consortile A Responsabilita' Limitata (S.c.a.r.l.), Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy.
| | - Micaela Gliozzi
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
- Nutramed Societa' Consortile A Responsabilita' Limitata (S.c.a.r.l.), Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy.
| | - Vincenzo Musolino
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
- Nutramed Societa' Consortile A Responsabilita' Limitata (S.c.a.r.l.), Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy.
| | - Cristina Carresi
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
- Nutramed Societa' Consortile A Responsabilita' Limitata (S.c.a.r.l.), Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy.
| | - Saverio Nucera
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
| | - Roberta Macrì
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
- Nutramed Societa' Consortile A Responsabilita' Limitata (S.c.a.r.l.), Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy.
| | - Miriam Scicchitano
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
| | - Francesca Bosco
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
- Nutramed Societa' Consortile A Responsabilita' Limitata (S.c.a.r.l.), Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy.
| | - Federica Scarano
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
| | - Stefano Ruga
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
| | - Maria Caterina Zito
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
| | - Francesca Oppedisano
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
- Nutramed Societa' Consortile A Responsabilita' Limitata (S.c.a.r.l.), Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy.
| | - Rocco Mollace
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
- Nutramed Societa' Consortile A Responsabilita' Limitata (S.c.a.r.l.), Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy.
| | - Sara Paone
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
- Nutramed Societa' Consortile A Responsabilita' Limitata (S.c.a.r.l.), Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy.
| | - Ernesto Palma
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
- Nutramed Societa' Consortile A Responsabilita' Limitata (S.c.a.r.l.), Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy.
| | - Carolina Muscoli
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
- Nutramed Societa' Consortile A Responsabilita' Limitata (S.c.a.r.l.), Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy.
| | - Vincenzo Mollace
- Interregional Research Center for Food Safety and Health (IRC-FSH), Department of Health Sciences, University "Magna Græcia" of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy.
- Nutramed Societa' Consortile A Responsabilita' Limitata (S.c.a.r.l.), Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy.
| |
Collapse
|
19
|
Caillaud M, Richard L, Vallat JM, Desmoulière A, Billet F. Peripheral nerve regeneration and intraneural revascularization. Neural Regen Res 2019; 14:24-33. [PMID: 30531065 PMCID: PMC6263011 DOI: 10.4103/1673-5374.243699] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Peripheral nerves are particularly vulnerable to injuries and are involved in numerous pathologies for which specific treatments are lacking. This review summarizes the pathophysiological features of the most common traumatic nerve injury in humans and the different animal models used in nerve regeneration studies. The current knowledge concerning Wallerian degeneration and nerve regrowth is then described. Finally, the involvement of intraneural vascularization in these processes is addressed. As intraneural vascularization has been poorly studied, histological experiments were carried out from rat sciatic nerves damaged by a glycerol injection. The results, taken together with the data from literature, suggest that revascularization plays an important role in peripheral nerve regeneration and must therefore be studied more carefully.
Collapse
Affiliation(s)
- Martial Caillaud
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, Limoges, France
| | - Laurence Richard
- University Hospital of Limoges, Department of Neurology, "Reference Center for Rare Peripheral Neuropathies", Department of Neurology, Limoges, France
| | - Jean-Michel Vallat
- University Hospital of Limoges, Department of Neurology, "Reference Center for Rare Peripheral Neuropathies", Department of Neurology, Limoges, France
| | - Alexis Desmoulière
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, Limoges, France
| | - Fabrice Billet
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies, Faculties of Medicine and Pharmacy, Limoges, France
| |
Collapse
|
20
|
Li YQ, Song FH, Zhong K, Yu GY, Zilundu PLM, Zhou YY, Fu R, Tang Y, Ling ZM, Xu X, Zhou LH. Pre-Injection of Small Interfering RNA (siRNA) Promotes c-Jun Gene Silencing and Decreases the Survival Rate of Axotomy-Injured Spinal Motoneurons in Adult Mice. J Mol Neurosci 2018; 65:400-410. [PMID: 29992498 DOI: 10.1007/s12031-018-1098-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022]
Abstract
Brachial plexus injury is a common clinical peripheral nerve trauma. A series of genes in motoneurons were activated in the corresponding segments of the spinal cord after brachial plexus roots axotomy. The spatial and temporal expression of these genes directly affects the speed of motoneuron axon regeneration and precise target organ reinnervation. In a previous study, we observed the overexpression of c-Jun in motoneurons of the spinal cord ventral horn after brachial plexus injury in rats. However, the relevance of c-Jun expression with respect to the fate of axotomy-induced branchial plexus injury in adult mice remains unknown. In the present study, we explored the function of c-Jun in motoneuron recovery after axotomy. We pre-injected small interfering RNA (siRNA) to knockdown c-Jun expression in mice and examined the effects of the overexpression of c-Jun in motoneurons after the axotomy of the brachial plexus in vivo. Axotomy induced c-Jun overexpression in the ventral horn motoneurons of adult mice from 3 to 14 days after injury. In addition, the pre-injection of siRNA transiently inhibited c-Jun expression and decreased the survival rate of axotomy-injured motoneurons. These findings indicate that the axotomy-induced overexpression of c-Jun plays an important role in the survival of ventral horn motoneurons in adult mice. In addition, the pre-injection of c-Jun siRNA through the brachial plexus stem effectively adjusts c-Jun gene expression at the ipsilateral side.
Collapse
Affiliation(s)
- Ying-Qin Li
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, No.52 Mei Hua East Road, Zhuhai, 519000, Guangdong Province, People's Republic of China
| | - Fa-Huan Song
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Ke Zhong
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Guang-Yin Yu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Prince Last Mudenda Zilundu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Ying-Ying Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Rao Fu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Ying Tang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Ze-Min Ling
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
| | - Xiaoying Xu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Li-Hua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan 2nd Road, Guangzhou, 510080, People's Republic of China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
21
|
Gey M, Wanner R, Schilling C, Pedro MT, Sinske D, Knöll B. Atf3 mutant mice show reduced axon regeneration and impaired regeneration-associated gene induction after peripheral nerve injury. Open Biol 2017; 6:rsob.160091. [PMID: 27581653 PMCID: PMC5008009 DOI: 10.1098/rsob.160091] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/01/2016] [Indexed: 12/27/2022] Open
Abstract
Axon injury in the peripheral nervous system (PNS) induces a regeneration-associated gene (RAG) response. Atf3 (activating transcription factor 3) is such a RAG and ATF3's transcriptional activity might induce ‘effector’ RAGs (e.g. small proline rich protein 1a (Sprr1a), Galanin (Gal), growth-associated protein 43 (Gap43)) facilitating peripheral axon regeneration. We provide a first analysis of Atf3 mouse mutants in peripheral nerve regeneration. In Atf3 mutant mice, facial nerve regeneration and neurite outgrowth of adult ATF3-deficient primary dorsal root ganglia neurons was decreased. Using genome-wide transcriptomics, we identified a neuropeptide-encoding RAG cluster (vasoactive intestinal peptide (Vip), Ngf, Grp, Gal, Pacap) regulated by ATF3. Exogenous administration of neuropeptides enhanced neurite growth of Atf3 mutant mice suggesting that these molecules might be effector RAGs of ATF3's pro-regenerative function. In addition to the induction of growth-promoting molecules, we present data that ATF3 suppresses growth-inhibiting molecules such as chemokine (C-C motif) ligand 2. In summary, we show a pro-regenerative ATF3 function during PNS nerve regeneration involving transcriptional activation of a neuropeptide-encoding RAG cluster. ATF3 is a general injury-inducible factor, therefore ATF3-mediated mechanisms identified herein might apply to other cell and injury types.
Collapse
Affiliation(s)
- Manuel Gey
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Renate Wanner
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Corinna Schilling
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Maria T Pedro
- Department of Neurosurgery, Bezirkskrankenhaus Günzburg, Ulm University, 89081 Ulm, Germany
| | - Daniela Sinske
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
22
|
Sharifi Pasandi M, Hosseini Shirazi F, Gholami MR, Salehi H, Najafzadeh N, Mazani M, Ghasemi Hamidabadi H, Niapour A. Epi/perineural and Schwann Cells as Well as Perineural Sheath Integrity are Affected Following 2,4-D Exposure. Neurotox Res 2017; 32:624-638. [PMID: 28699141 DOI: 10.1007/s12640-017-9777-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 06/24/2017] [Accepted: 06/28/2017] [Indexed: 01/18/2023]
Abstract
2,4-dicholorophenoxy acetic acid (2,4-D) is a worldwide-known hormone herbicide. However, there are increasing concerns about its exposure and risks of developing pathological conditions for the peripheral nervous system. The aim of this study was to investigate the mechanism(s) involved in the toxicity of 2,4-D on peripheral nerve's cellular components. The epi/perineural and Schwann cells and a total of three cell lines were treated with 2,4-D. The viability of cells at different doses of 2,4-D was measured by MTT assay. The cell cycle analyses, cumulative cell counting, fluorescent staining, antioxidant and caspase enzymes activity were examined on epi/perineural and Schwann cells. The epi/perineural cells were assessed as having biological macromolecular changes. Some tight junction-related genes and proteins were also tested on explants of 2,4-D treated epi/perineural tissue. The viability of 2,4-D treated cells was reduced in a dose-dependent manner. Reduced growth rate and G1 cell cycle arrest were verified in 2,4-D treated epi/perineural and Schwann cells. The use of staining methods (acridine orange/ethidium bromide and DAPI) and caspase 3/7 activity assay along with malondialdehyde, glutathione peroxidase, and superoxide dismutase activity assays indicated the apoptotic and oxidant effects of 2,4-D on epi/perineural and Schwann cells. Data obtained from FTIR revealed changes in epi/perineural proteins and cell membrane lipids. Additionally, claudin-1, occludin, and ZO-1 gene/protein expression profiles were significantly reduced in 2,4-D-treated epi/perineural pieces. Our data indicated that oxidative stress, apoptosis of epi/perineural and Schwann cell and impaired blood-nerve barrier may have contributed to nerve damage following 2,4-D exposure.
Collapse
Affiliation(s)
- Marzieh Sharifi Pasandi
- Student Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farshad Hosseini Shirazi
- Department of Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Gholami
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Mazani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hatef Ghasemi Hamidabadi
- Immunogenetic Research Center, Department of Anatomy and Cell Biology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Niapour
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
23
|
Tricaud N, Park HT. Wallerian demyelination: chronicle of a cellular cataclysm. Cell Mol Life Sci 2017; 74:4049-4057. [PMID: 28600652 PMCID: PMC5641270 DOI: 10.1007/s00018-017-2565-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/10/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
Abstract
Wallerian demyelination is characteristic of peripheral nerve degeneration after traumatic injury. After axonal degeneration, the myelinated Schwann cell undergoes a stereotypical cellular program that results in the disintegration of the myelin sheath, a process termed demyelination. In this review, we chronologically describe this program starting from the late and visible features of myelin destruction and going backward to the initial molecular steps that trigger the nuclear reprogramming few hours after injury. Wallerian demyelination is a wonderful model for myelin degeneration occurring in the diverse forms of demyelinating peripheral neuropathies that plague human beings.
Collapse
Affiliation(s)
- Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, Montpellier, France.
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Department of Physiology, College of Medicine, Dong-A University, Busan, South Korea
| |
Collapse
|
24
|
Mårtensson LB, Blom CL, Dahlin LB. Ca 2+ involvement in activation of extracellular-signal-regulated-kinase 1/2 and m-calpain after axotomy of the sciatic nerve. Neural Regen Res 2017; 12:623-628. [PMID: 28553344 PMCID: PMC5436362 DOI: 10.4103/1673-5374.205103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Detailed mechanisms behind regeneration after nerve injury, in particular signal transduction and the fate of Schwann cells (SCs), are poorly understood. Here, we investigated axotomy-induced activation of extracellular-signal-regulated kinase-1/2 (ERK1/2; important for proliferation) and m-calpain in vitro, and the relation to Ca2+ deletion and Schwann cell proliferation and death after rat sciatic nerve axotomy. Nerve segments were cultured for up to 72 hours with and without ethylene glycol-bis(β-aminoethyl ether)-N, N, N’, N’-tetraacetic acid (EGTA). In some experiments, 5-bromo-2’-deoxyuridine (BrdU) was added during the last 24 hours to detect proliferating cells and propidium iodide (PI) was added at the last hour to detect dead and/or dying cells. Immunohistochemistry of sections of the cultured nerve segments was performed to label m-calpain and the phosphorylated and activated form of ERK1/2. The experiments revealed that immunoreactivity for p-ERK1/2 increased with time in organotypically cultured SCs. p-ERK1/2 and m-calpain were also observed in axons. A significant increase in the number of dead or dying SCs was observed in nerve segments cultured for 24 hours. When deprived of Ca2+, activation of axonal m-calpain was reduced, whereas p-ERK1/2 was increased in SCs. Ca2+ deprivation also significantly reduced the number of proliferating SCs, and instead increased the number of dead or dying SCs. Ca2+ seems to play an important role in activation of ERK1/2 in SCs and in SC survival and proliferation. In addition, extracellular Ca2+ levels are also required for m-calpain activation and up-regulation in axons. Thus, regulation of Ca2+ levels is likely to be a useful method to promote SC proliferation.
Collapse
Affiliation(s)
- Lisa B Mårtensson
- Department of Translational Medicine - Hand Surgery, Lund University, Malmö, Sweden
| | | | - Lars B Dahlin
- Department of Translational Medicine - Hand Surgery, Lund University, Malmö, Sweden.,Department of Hand Surgery, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
25
|
Ma KH, Hung HA, Svaren J. Epigenomic Regulation of Schwann Cell Reprogramming in Peripheral Nerve Injury. J Neurosci 2016; 36:9135-47. [PMID: 27581455 PMCID: PMC5005723 DOI: 10.1523/jneurosci.1370-16.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The rapid and dynamic transcriptional changes of Schwann cells in response to injury are critical to peripheral nerve repair, yet the epigenomic reprograming that leads to the induction of injury-activated genes has not been characterized. Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3), which produces a transcriptionally repressive chromatin environment. We find that many promoters and/or gene bodies of injury-activated genes of mature rat nerves are occupied with H3K27me3. In contrast, the majority of distal enhancers that gain H3K27 acetylation after injury are not repressed by H3K27 methylation before injury, which is normally observed in developmentally poised enhancers. Injury induces demethylation of H3K27 in many genes, such as Sonic hedgehog (Shh), which is silenced throughout Schwann cell development before injury. In addition, experiments using a Schwann cell-specific mouse knock-out of the Eed subunit of PRC2 indicate that demethylation is a rate-limiting step in the activation of such genes. We also show that some transcription start sites of H3K27me3-repressed injury genes of uninjured nerves are bound with a mark of active promoters H3K4me3, for example, Shh and Gdnf, and the reduction of H3K27me3 results in increased trimethylation of H3K4. Our findings identify reversal of polycomb repression as a key step in gene activation after injury. SIGNIFICANCE STATEMENT Peripheral nerve regeneration after injury is dependent upon implementation of a novel genetic program in Schwann cells that supports axonal survival and regeneration. Identifying means to enhance Schwann cell reprogramming after nerve injury could be used to foster effective remyelination in the treatment of demyelinating disorders and in identifying pathways involved in regenerative process of myelination. Although recent progress has identified transcriptional determinants of successful reprogramming of the Schwann cell transcriptome after nerve injury, our results have highlighted a novel epigenomic pathway in which reversal of the Polycomb pathway of repressive histone methylation is required for activation of a significant number of injury-induced genes.
Collapse
Affiliation(s)
- Ki H Ma
- Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - Holly A Hung
- Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - John Svaren
- Waisman Center, Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
26
|
Loss of STAT1 protects hair cells from ototoxicity through modulation of STAT3, c-Jun, Akt, and autophagy factors. Cell Death Dis 2015; 6:e2019. [PMID: 26673664 PMCID: PMC4720895 DOI: 10.1038/cddis.2015.362] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 12/20/2022]
Abstract
Hair cell damage is a side effect of cisplatin and aminoglycoside use. The inhibition or attenuation of this process is a target of many investigations. There is growing evidence that STAT1 deficiency decreases cisplatin-mediated ototoxicity; however, the role of STAT function and the molecules that act in gentamicin-mediated toxicity have not been fully elucidated. We used mice lacking STAT1 to investigate the effect of STAT1 ablation in cultured organs treated with cisplatin and gentamicin. Here we show that ablation of STAT1 decreased cisplatin toxicity and attenuated gentamicin-mediated hair cell damage. More TUNEL-positive hair cells were observed in explants of wild-type mice than that of STAT1−/− mice. Although cisplatin increased serine phosphorylation of STAT1 in wild-type mice and diminished STAT3 expression in wild-type and STAT1−/− mice, gentamicin increased tyrosine phosphorylation of STAT3 in STAT1−/− mice. The early inflammatory response was manifested in the upregulation of TNF-α and IL-6 in cisplatin-treated explants of wild-type and STAT1−/− mice. Expression of the anti-inflammatory cytokine IL-10 was altered in cisplatin-treated explants, upregulated in wild-type explants, and downregulated in STAT1−/− explants. Cisplatin and gentamicin triggered the activation of c-Jun. Activation of Akt was observed in gentamicin-treated explants from STAT1−/− mice. Increased levels of the autophagy proteins Beclin-1 and LC3-II were observed in STAT1−/− explants. These data suggest that STAT1 is a central player in mediating ototoxicity. Gentamicin and cisplatin activate different downstream factors to trigger ototoxicity. Although cisplatin and gentamicin triggered inflammation and activated apoptotic factors, the absence of STAT1 allowed the cells to overcome the effects of these drugs.
Collapse
|
27
|
Freidin M, Asche-Godin S, Abrams CK. Gene expression profiling studies in regenerating nerves in a mouse model for CMT1X: uninjured Cx32-knockout peripheral nerves display expression profile of injured wild type nerves. Exp Neurol 2015; 263:339-49. [PMID: 25447941 PMCID: PMC4262134 DOI: 10.1016/j.expneurol.2014.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/13/2014] [Accepted: 10/18/2014] [Indexed: 11/20/2022]
Abstract
X-linked Charcot-Marie-Tooth disease (CMT1X) is an inherited peripheral neuropathy caused by mutations in GJB1, the human gene for Connexin32 (Cx32). This present study uses Ilumina Ref8-v2 BeadArray to examine the expression profiles of injured and uninjured sciatic nerves at 5, 7, and 14 days post-crush injury (dpi) from Wild Type (WT) and Cx32-knockout (Cx32KO) mice to identify the genes and signaling pathways that are dysregulated in the absence of Schwann cell Cx32. Given the assumption that loss of Schwann cell Cx32 disrupts the regeneration and maintenance of myelinated nerve leading to a demyelinating neuropathy in CMT1X, we initially hypothesized that nerve crush injury would result in significant increases in differential gene expression in Cx32KO mice relative to WT nerves. However, microarray analysis revealed a striking collapse in the number of differentially expressed genes at 5 and 7 dpi in Cx32KO nerves relative to WT, while uninjured and 14 dpi time points showed large numbers of differentially regulated genes. Further comparisons within each genotype showed limited changes in Cx32KO gene expression following crush injury when compared to uninjured Cx32KO nerves. By contrast, WT nerves exhibited robust changes in gene expression at 5 and 7 dpi with no significant differences in gene expression by 14dpi relative to uninjured WT nerve samples. Taken together, these data suggest that the gene expression profile in uninjured Cx32KO sciatic nerve strongly resembles that of a WT nerve following injury and that loss of Schwann cell Cx32 leads to a basal state of gene expression similar to that of an injured WT nerve. These findings support a role for Cx32 in non-myelinating and regenerating populations of Schwann cells in normal axonal maintenance in re-myelination, and regeneration of peripheral nerve following injury. Disruption of Schwann cell-axonal communication in CMT1X may cause dysregulation of signaling pathways that are essential for the maintenance of intact myelinated peripheral nerves and to establish the necessary conditions for successful regeneration and remyelination following nerve injury.
Collapse
Affiliation(s)
- Mona Freidin
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Samantha Asche-Godin
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Charles K Abrams
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|