1
|
Rafiq I, Reshi ZA, Bashir I. Diversity and Plant Growth-Promoting Activities of Culturable Seed Endophytes in Abies pindrow (Royle ex D. Don) Royle: Their Role in Seed Germination and Seedling Growth. Curr Microbiol 2025; 82:82. [PMID: 39804510 DOI: 10.1007/s00284-025-04062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
Abies pindrow, a vital conifer in the Kashmir Himalayan forests, faces threats from low regeneration rates, deforestation, grazing, and climate change, highlighting the urgency for restoration efforts. In this context, we investigated the diversity of potential culturable seed endophytes in A. pindrow, assessed their plant growth-promoting (PGP) activities, and their impact on seed germination and seedling growth. We cultured 729 microbial isolates that were resolved into 30 bacterial and 18 fungal species across various phyla. All 48 isolates exhibited various PGP activities. Specifically, all the cultured isolates showed IAA activity with concentrations ranging from 2.07 to 8.453 μg/ml, while ammonia production ranged from 0.936 to 3.436 mM/ml. Only 18 isolates, predominantly fungi, tested positive for phosphate solubilisation. Additionally, 20 isolates exhibited the ability to inhibit the growth of Fusarium oxysporum f.sp. pini. We selected four bacterial and six fungal isolates, which showed positive results for all PGP activities, to evaluate their effects on seed germination and seedling growth. Notably, seed germination rates increased by 750.9% under bacterial and consortium treatments and by 550.45% under fungal treatment. The consortium treatment also led to a 96% increase in needle count, while bacterial treatment enhanced stem length by 55.4%. Furthermore, shoot biomass also showed a significant increase with both bacterial and fungal treatments, underscoring the potential of harnessing seed endophytes to boost A. pindrow seedling health and resilience. This study underscores the crucial role of seed endophytic diversity in enhancing seed germination, seedling growth, and forest restoration efforts.
Collapse
Affiliation(s)
- Iflah Rafiq
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Zafar Ahmad Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Iqra Bashir
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| |
Collapse
|
2
|
Bashir I, War AF, Rafiq I, Reshi ZA, Rashid I, Shouche YS. Uncovering the secret weapons of an invasive plant: The endophytic microbes of Anthemis cotula. Heliyon 2024; 10:e29778. [PMID: 38694109 PMCID: PMC11058297 DOI: 10.1016/j.heliyon.2024.e29778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
Understanding plant-microbe interaction can be useful in identifying the microbial drivers of plant invasions. It is in this context that we explored the diversity of endophytic microbes from leaves of Anthemis cotula, an annual plant that is highly invasive in Kashmir Himalaya. We also tried to establish the role of endophytes in the invasiveness of this alien species. We collected and processed leaf samples from three populations at three different sites. A total of 902 endophytic isolates belonging to 4 bacterial and 2 fungal phyla were recovered that belonged to 27 bacterial and 14 fungal genera. Firmicutes (29.1%), Proteobacteria (24.1%), Ascomycota (22.8%) and Actinobacteria (19%) were dominant across all samples. Plant growth promoting traits, such as Ammonia production, Indole Acetic Acid (IAA) production, Phosphate solubilization and biocontrol activity of these endophytes were also studied and most of the isolates (74.68%) were positive for ammonia production. IAA production, phosphate solubilization and biocontrol activity was present in 39.24%, 36.70% and 20.26% isolates, respectively. Furthermore, Botrytis cinerea, a pathogen of A. cotula in its native range, though present in Kashmir Himalaya does not affect A. cotula probably due to the presence of leaf endophytic microbial antagonists. Our results highlight that the beneficial plant growth promoting interactions and enemy suppression by leaf endophytes of A. cotula, may be contributing to its survival and invasion in the Kashmir Himalaya.
Collapse
Affiliation(s)
- Iqra Bashir
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Aadil Farooq War
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Iflah Rafiq
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Zafar A. Reshi
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Irfan Rashid
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | | |
Collapse
|
3
|
Dasila K, Pandey A, Sharma A, Samant SS, Singh M. Endophytic fungi from Himalayan silver birch as potential source of plant growth enhancement and secondary metabolite production. Braz J Microbiol 2024; 55:557-570. [PMID: 38265571 PMCID: PMC10920537 DOI: 10.1007/s42770-024-01259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024] Open
Abstract
Mountain biodiversity is under unparalleled pressure due to climate change, necessitating in-depth research on high-altitude plant's microbial associations which are crucial for plant survival under stress conditions. Realizing that high-altitude tree line species of Himalaya are completely unexplored with respect to the microbial association, the present study aimed to elucidate plant growth promoting and secondary metabolite producing potential of culturable endophytic fungi of Himalayan silver birch (Betula utilis D. Don). ITS region sequencing revealed that the fungal isolates belong to Penicillium species, Pezicula radicicola, and Paraconiothyrium archidendri. These endophytes were psychrotolerant in nature with the potential to produce extracellular lytic activities. The endophytes showed plant growth promoting (PGP) traits like phosphorus solubilization and production of siderophore, indole acetic acid (IAA), and ACC deaminase. The fungal extracts also exhibited antagonistic potential against bacterial pathogens. Furthermore, the fungal extracts were found to be a potential source of bioactive compounds including the host-specific compound-betulin. Inoculation with fungal suspension improved seed germination and biomass of soybean and maize crops under net house conditions. In vitro PGP traits of the endophytes, supported by net house experiments, indicated that fungal association may support the growth and survival of the host in extreme cold conditions.
Collapse
Affiliation(s)
- Khashti Dasila
- Center for Environmental Assessment and Climate Change, G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, Uttarakhand, India
| | - Anita Pandey
- Center for Environmental Assessment and Climate Change, G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, Uttarakhand, India.
- Department of Biotechnology, Graphic Era (Deemed to Be University), Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India.
| | - Avinash Sharma
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, 41107, Maharashtra, India
- School of Agriculture, Graphic Era Hill University, Dehradun, 248002, India
| | - Sher S Samant
- Himalayan Forest Research Institute, Conifer Campus, Panthaghati, Shimla, 171013, Himachal Pradesh, India
| | - Mithilesh Singh
- Center for Environmental Assessment and Climate Change, G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, 263643, Uttarakhand, India.
| |
Collapse
|
4
|
Vashishth A, Tehri N, Tehri P, Sharma A, Sharma AK, Kumar V. Unraveling the potential of bacterial phytases for sustainable management of phosphorous. Biotechnol Appl Biochem 2023; 70:1690-1706. [PMID: 37042496 DOI: 10.1002/bab.2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023]
Abstract
Phosphorous actively participates in numerous metabolic and regulatory activities of almost all living organisms including animals and humans. Therefore, it is considered as an essential macronutrient required supporting their proper growth. On contrary, phytic acid (PA), an antinutritional substance, is widely known for its strong affinity to chelate essential mineral ions including PO4 3- , Ca2+ , Fe2+ , Mg2+ , and Zn2+ . Being one the major reservoir of PO4 3- ions, PA has great potential to bind PO4 3- ions in diverse range of foods. Once combined with P, PA transforms into an undigested and insoluble complex namely phytate. Produced phytate leads to a notable reduction in the bioavailability of P due to negligible activity of phytases in monogastric animals and humans. This highlights the importance and consequent need of enhancement of phytase level in these life forms. Interestingly, phytases, catalyzing the breakdown of phytate complex and recycling the phosphate into ecosystem to its available form, have naturally been reported in a variety of plants and microorganisms over past few decades. In pursuit of a reliable solution, the focus of this review is to explore the keynote potential of bacterial phytases for sustainable management of phosphorous via efficient utilization of soil phytate. The core of the review covers detailed discussion on bacterial phytases along with their widely reported applications viz. biofertilizers, phosphorus acquisition, and plant growth promotion. Moreover, meticulous description on fermentation-based strategies and future trends on bacterial phytases have also been included.
Collapse
Affiliation(s)
- Amit Vashishth
- Department of Science and Humanities, SRM Institute of Science & Technology, Ghaziabad, Uttar Pradesh, India
| | - Nimisha Tehri
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Piyush Tehri
- Department of Applied Sciences, MIET, Meerut, Uttar Pradesh, India
| | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, Arunachal Pradesh, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Vineet Kumar
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan, India
| |
Collapse
|
5
|
García-Latorre C, Rodrigo S, Marin-Felix Y, Stadler M, Santamaria O. Plant-growth promoting activity of three fungal endophytes isolated from plants living in dehesas and their effect on Lolium multiflorum. Sci Rep 2023; 13:7354. [PMID: 37147372 PMCID: PMC10162971 DOI: 10.1038/s41598-023-34036-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/22/2023] [Indexed: 05/07/2023] Open
Abstract
Endophytic fungi have been demonstrated to produce bioactive secondary metabolites, some of which promote plant growth. Three endophytic fungi isolated from healthy plants living in dehesas of Extremadura (Spain) were identified and evaluated for their ability to produce phytohormone-like substances, antioxidant activity, total polyphenol content, phosphate solubilization ability and siderophore and ammonia production. The filtrates and extracts produced by the three endophytes were applied to Lolium multiflorum seeds and seedlings under both in vitro and greenhouse conditions, to analyse their influence on plant growth traits such as germination, vigour index, chlorophyll data, number and length of leaves and roots, and dry weight. All three endophytes, which were identified as Fusarium avenaceum, Sarocladium terricola and Xylariaceae sp., increased the germination of L. multiflorum seeds by more than 70%. Shoot and root length, plant dry weight and the number of roots were positively affected by the application of fungal filtrates and/or extracts, compared with controls. The tentative HPLC-MS identification of phytohormone-like substances, such as gibberellin A2 and zeatin, or the antioxidant acetyl eugenol, may partially explain the mechanisms of L. multiflorum plant growth promotion after the application of fungal filtrates and/or extracts.
Collapse
Affiliation(s)
- C García-Latorre
- School of Agricultural Engineering, University of Extremadura, Avda. Adolfo Suárez s/n, 06007, Badajoz, Spain
| | - S Rodrigo
- Institute of Dehesa Research (INDEHESA), University of Extremadura, Avda. de Elvas s/n, 06006, Badajoz, Spain
| | - Y Marin-Felix
- Department of Microbial Drugs, Helmholtz-Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - M Stadler
- Department of Microbial Drugs, Helmholtz-Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - O Santamaria
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), University of Valladolid, Avda. de Madrid 57, 34004, Palencia, Spain.
| |
Collapse
|
6
|
Chopra A, Mongad D, Satpute S, Mazumder PB, Rahi P. Quorum sensing activities and genomic insights of plant growth-promoting rhizobacteria isolated from Assam tea. World J Microbiol Biotechnol 2023; 39:160. [PMID: 37067647 DOI: 10.1007/s11274-023-03608-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
Secretion of quorum sensing (QS) molecules is important for the effective colonization of host plants by plant growth-promoting rhizobacteria. The current study aims at the isolation and characterization of tea rhizo bacteria, which produce the QS molecules, acyl homoserine lactone (AHLs), along with multiple plant growth-promoting (PGP) activities. Thirty-one isolates were isolated from the tea rhizosphere, and screening for PGP activities resulted in the selection of isolates RTE1 and RTE4 with multiple PGP traits, inhibiting the growth of tea fungal pathogens. Both isolates also showed production of AHL molecules when screened using two biosensor strains, Chromobacterium violaceum CV026 and Escherichia coli MT 102(jb132). The isolates identified as Burkholderia cepacia RTE1 and Pseudomonas aeruginosa RTE4 based on genome-based analysis like phylogeny, dDDH, and fastANI calculation. Detailed characterization of AHLs produced by the isolates using reverse-phase TLC, fluorometry, and LC-MS indicated that the isolate RTE1 produced a short chain, C8, and a long chain C12 AHL, while RTE4 produced short-chain AHLs C4 and C6. Confocal microscopy revealed the formation of thick biofilm by RTE1 and RTE4 (18 and 23 μm, respectively). Additionally, we found several genes involved in QS, and PGP, inducing systemic resistance (ISR) activities such as lasI/R, qscR, pqq, pvd, aldH, acdS, phz, Sod, rml, and Pch, and biosynthetic gene clusters like N-acyl homoserine lactone synthase, terpenes, pyochelin, and pyocyanin. Based on the functional traits like PGP, biofilm formation and production of AHL molecules, and genetic potential of the isolates B. cepacia RTE1 and P. aeruginosa RTE4 appear promising candidates to improve the health and growth of tea plantations.
Collapse
Affiliation(s)
- Ankita Chopra
- Department of Biotechnology, Assam University, Silchar, India
| | - Dattatray Mongad
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Surekha Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | | | - Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India.
- Institut Pasteur, Université Paris Cité, Biological Resource Center of Institut Pasteur (CRBIP), Paris, France.
| |
Collapse
|
7
|
García-Latorre C, Rodrigo S, Santamaría O. Potential of Fungal Endophytes Isolated from Pasture Species in Spanish Dehesas to Produce Enzymes under Salt Conditions. Microorganisms 2023; 11:microorganisms11040908. [PMID: 37110331 PMCID: PMC10141469 DOI: 10.3390/microorganisms11040908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Endophytic fungi have been found to produce a wide range of extracellular enzymes, which are increasingly in demand for their industrial applications. Different by-products from the agrifood industry could be used as fungal growth substrates for the massive production of these enzymes, specifically as a way to revalorize them. However, such by-products often present unfavorable conditions for the microorganism’s growth, such as high salt concentrations. Therefore, the objective of the present study was to evaluate the potential of eleven endophytic fungi—which were isolated from plants growing in a harsh environment, specifically, from the Spanish dehesas—for the purposes of the in vitro production of six enzymes (i.e., amylase, lipase, protease, cellulase, pectinase and laccase) under both standard and salt-amended conditions. Under standard conditions, the studied endophytes produced between two and four of the six enzymes evaluated. In most of the producer fungal species, this enzymatic activity was relatively maintained when NaCl was added to the medium. Among the isolates evaluated, Sarocladium terricola (E025), Acremonium implicatum (E178), Microdiplodia hawaiiensis (E198), and an unidentified species (E586) were the most suitable candidates for the massive production of enzymes by using growth substrates with saline properties (such as those found in the many by-products from the agrifood industry). This study should be considered an initial approach by which to further study the identification of these compounds as well as to develop the optimization of their production by directly using those residues.
Collapse
Affiliation(s)
- Carlos García-Latorre
- School of Agricultural Engineering, University of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain;
| | - Sara Rodrigo
- Indehesa Research Institute, Campus de Badajoz, University of Extremadura, Avda. de Elvas s/n, 06006 Badajoz, Spain;
| | - Oscar Santamaría
- Department of Plant Production and Forest Resources, University Institute for Research in Sustainable Forest Management (iuFOR), University of Valladolid, Avda. Madrid 57, 34004 Palencia, Spain
- Correspondence:
| |
Collapse
|
8
|
Rizwanuddin S, Kumar V, Singh P, Naik B, Mishra S, Chauhan M, Saris PEJ, Verma A, Kumar V. Insight into phytase-producing microorganisms for phytate solubilization and soil sustainability. Front Microbiol 2023; 14:1127249. [PMID: 37113239 PMCID: PMC10128089 DOI: 10.3389/fmicb.2023.1127249] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/10/2023] [Indexed: 04/29/2023] Open
Abstract
The increasing demand for food has increased dependence on chemical fertilizers that promote rapid growth and yield as well as produce toxicity and negatively affect nutritional value. Therefore, researchers are focusing on alternatives that are safe for consumption, non-toxic, cost-effective production process, and high yielding, and that require readily available substrates for mass production. The potential industrial applications of microbial enzymes have grown significantly and are still rising in the 21st century to fulfill the needs of a population that is expanding quickly and to deal with the depletion of natural resources. Due to the high demand for such enzymes, phytases have undergone extensive research to lower the amount of phytate in human food and animal feed. They constitute efficient enzymatic groups that can solubilize phytate and thus provide plants with an enriched environment. Phytases can be extracted from a variety of sources such as plants, animals, and microorganisms. Compared to plant and animal-based phytases, microbial phytases have been identified as competent, stable, and promising bioinoculants. Many reports suggest that microbial phytase can undergo mass production procedures with the use of readily available substrates. Phytases neither involve the use of any toxic chemicals during the extraction nor release any such chemicals; thus, they qualify as bioinoculants and support soil sustainability. In addition, phytase genes are now inserted into new plants/crops to enhance transgenic plants reducing the need for supplemental inorganic phosphates and phosphate accumulation in the environment. The current review covers the significance of phytase in the agriculture system, emphasizing its source, action mechanism, and vast applications.
Collapse
Affiliation(s)
- Sheikh Rizwanuddin
- Department Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Pallavi Singh
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Bindu Naik
- Department Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, India
- *Correspondence: Bindu Naik,
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Per Erik Joakim Saris,
| | - Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India
| |
Collapse
|
9
|
Suriyachadkun C, Chunhachart O, Srithaworn M, Tangchitcharoenkhul R, Tangjitjareonkun J. Zinc-Solubilizing Streptomyces spp. as Bioinoculants for Promoting the Growth of Soybean ( Glycine max (L.) Merrill). J Microbiol Biotechnol 2022; 32:1435-1446. [PMID: 36330749 PMCID: PMC9720072 DOI: 10.4014/jmb.2206.06058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Zinc-solubilizing bacteria can convert the insoluble form of zinc into soluble forms available to plants. This study was conducted to isolate and screen zinc-solubilizing actinobacteria from rhizosphere soils and to assess their effect on vegetable soybean growth. In total, 200 actinobacteria strains belonging to 10 genera were isolated from rhizosphere soil samples. Among these isolates, four showed zinc solubilization with solubilizing index values ranging from 3.11 to 3.78 on Bunt and Rovira agar supplemented with 0.1% zinc oxide. For the quantitative assay, in broth culture, strains CME34 and EX51 solubilized maximum available zinc contents of 529.71 and 243.58 μg/ml. Furthermore, indole-3-acetic acid (IAA) and ammonia were produced by these two strains, the strain CME34 produced the highest amount of IAA 4.62 μg/ml and the strain EX51 produced the highest amount of ammonia 361.04 μg/ml. In addition, the phosphate-solubilizing abilities in Pikovskaya's medium of CME34 and EX51 were 64.67 and 115.67 μg/ml. Based on morphological and biochemical characterization and 16S rDNA sequencing, the strains CME34 and EX51 were closely related to the genus Streptomyces. In a greenhouse experiment, single-strain inoculation of Streptomyces sp. CME34 or EX51 significantly increased the shoot length, root length, plant dry weight, number of pods per plant and number of seeds per plant of vegetable soybean plants compared to the uninoculated control. These findings facilitated the conclusion that the two Streptomyces strains have potential as zinc solubilizers and can be suggested as bioinoculants to promote the growth and yield of soybean.
Collapse
Affiliation(s)
- Chanwit Suriyachadkun
- Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Orawan Chunhachart
- Division of Microbiology, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakorn Pathom, 73140, Thailand
| | - Moltira Srithaworn
- Division of Microbiology, Department of Science, Faculty of Liberal Arts and Science, Kasetsart University Kamphaeng Saen Campus, Nakorn Pathom, 73140, Thailand
| | | | - Janpen Tangjitjareonkun
- Department of Resources and Environment, Faculty of Science at Sriracha, Kasetsart University, Sriracha Campus, Chonburi, 20230, Thailand,Corresponding author Phone: +66-38-352813 Fax: +66-38-354587 E-mail:
| |
Collapse
|
10
|
Hazarika SN, Saikia K, Thakur D. Characterization and selection of endophytic actinobacteria for growth and disease management of Tea ( Camellia sinensis L.). FRONTIERS IN PLANT SCIENCE 2022; 13:989794. [PMID: 36438109 PMCID: PMC9681920 DOI: 10.3389/fpls.2022.989794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/24/2022] [Indexed: 06/13/2023]
Abstract
Endophytic microbes are vital for nutrient solubilization and uptake, growth, and survival of plants. Here, 88 endophytic actinobacteria (EnA) associated with five tea clones were isolated, assessed for their diversity, plant growth promoting (PGP), and biocontrol traits, and then used as an inoculant for PGP and disease control in host and non-host plants. Polyphasic methods, including phenotypic and genotypic characteristics led to their identification as Streptomyces, Microbacterium, Curtobacterium, Janibacter, Rhodococcus, Nocardia, Gordonia, Nocardiopsis, and Kribbella. Out of 88 isolates, 35 (39.77%) showed antagonistic activity in vitro against major fungal pathogens, viz. Fusarium oxysporum, Rhizoctonia solani, Exobasidium vexans, Poria hypobrunnea, Phellinus lamaensis, and Nigrospora sphaerica. Regarding PGP activities, the percentage of isolates that produced indole acetic acid, siderophore, and ammonia, as well as P-solubilisation and nitrogen fixation, were 67.05, 75, 80.68, 27.27, 57.95, respectively. A total of 51 and 42 isolates showed chitinase and 1-aminocyclopropane-1-carboxylic acid deaminase activity, respectively. Further, two potent Streptomyces strains KA12 and MA34, selected based on the bonitur scale, were screened for biofilm formation ability and tested in vivo under nursery conditions. Confocal laser scanning microscopy and the crystal violet staining technique revealed that these Streptomyces strains can form biofilms, indicating the potential for plant colonization. In the nursery experiment, they significantly enhanced the shoot and root biomass, shoot and root length, and leaf number in host tea plants. Additionally, treatment of tomato seeds by KA12 suppressed the growth of fungal pathogen Fusarium oxysporum, increased seed germination, and improved root architecture, demonstrating its ability to be used as a seed biopriming agent. Our results confirm the potential of tea endophytic actinobacterial strains with multifarious beneficial traits to enhance plant growth and suppress fungal pathogens, which may be used as bioinoculant for sustainable agriculture.
Collapse
Affiliation(s)
- Shabiha Nudrat Hazarika
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Kangkon Saikia
- Bioinformatics Infrastructure Facility, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
11
|
Huang X, Zeng Z, Chen Z, Tong X, Jiang J, He C, Xiang T. Deciphering the potential of a plant growth promoting endophyte Rhizobium sp. WYJ-E13, and functional annotation of the genes involved in the metabolic pathway. Front Microbiol 2022; 13:1035167. [PMID: 36406393 PMCID: PMC9671153 DOI: 10.3389/fmicb.2022.1035167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/17/2022] [Indexed: 09/24/2023] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are well-acknowledged root endophytic bacteria used for plant growth promotion. However, which metabolites produced by PGPR could promote plant growth remains unclear. Additionally, which genes are responsible for plant growth-promoting traits is also not elucidated. Thus, as comprehensive understanding of the mechanism of endophyte in growth promotion is limited, this study aimed to determine the metabolites and genes involved in plant growth-promotion. We isolated an endophytic Rhizobium sp. WYJ-E13 strain from the roots of Curcuma wenyujin Y.H. Chen et C. Ling, a perennial herb and medicinal plant. The tissue culture experiment showed its plant growth-promoting ability. The bacterium colonization in the root was confirmed by scanning electron microscopy and paraffin sectioning. Furthermore, it was noted that the WYJ-E13 strain produced cytokinin, anthranilic acid, and L-phenylalanine by metabolome analysis. Whole-genome analysis of the strain showed that it consists of a circular chromosome of 4,350,227 bp with an overall GC content of 60.34%, of a 2,149,667 bp plasmid1 with 59.86% GC, and of a 406,180 bp plasmid2 with 58.05% GC. Genome annotation identified 4,349 putative protein-coding genes, 51 tRNAs, and 9 rRNAs. The CDSs number allocated to the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and Clusters of Orthologous Genes databases were 2027, 3,175 and 3,849, respectively. Comparative genome analysis displayed that Rhizobium sp. WYJ-E13 possesses the collinear region among three species: Rhizobium acidisoli FH23, Rhizobium gallicum R602 and Rhizobium phaseoli R650. We recognized a total set of genes that are possibly related to plant growth promotion, including genes involved in nitrogen metabolism (nifU, gltA, gltB, gltD, glnA, glnD), hormone production (trp ABCDEFS), sulfur metabolism (cysD, cysE, cysK, cysN), phosphate metabolism (pstA, pstC, phoB, phoH, phoU), and root colonization. Collectively, these findings revealed the roles of WYJ-E13 strain in plant growth-promotion. To the best of our knowledge, this was the first study using whole-genome sequencing for Rhizobium sp. WYJ-E13 associated with C. wenyujin. WYJ-E13 strain has a high potential to be used as Curcuma biofertilizer for sustainable agriculture.
Collapse
Affiliation(s)
- Xiaoping Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, China
| | - Zhanghui Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, China
| | - Zhehao Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, China
| | - Xiaxiu Tong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jie Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chenjing He
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Taihe Xiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou, China
| |
Collapse
|
12
|
Adebayo AA, Faleye TOC, Adeosun OM, Alhaji IA, Egbe NE. Plant growth promoting potentials of novel phosphate-solubilizing bacteria isolated from rumen content of White Fulani cattle, indigenous to Nigeria. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Kaur R, Kaur S. Exploration of phytate-mineralizing bacteria with multifarious plant growth-promoting traits. BIOTECHNOLOGIA 2022; 103:99-112. [PMID: 36606074 PMCID: PMC9642947 DOI: 10.5114/bta.2022.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 01/07/2023] Open
Abstract
Phytate-mineralizing bacteria (PMB) with plant growth-promoting activity can be considered as a potential biofertilizer for plant nutrition. PMB catalyzes the conversion of insoluble sugar phosphates, inositols, nucleic acids, phospholipids, nucleotides, phytate, and phytin into soluble forms that can be assimilated by plants. The present study aimed to isolate potential PMB from rhizospheric soils and to study their plant growth-promoting potential for the possible development of a potential phosphobacterium biofertilizer. For this purpose, 34 PMB isolates were isolated that showed potent phytate-mineralizing potential. These isolates were tested for their potential to solubilize tricalcium phosphate (TCP) and for various other plant growth-promoting activities. Significant differences were found among the isolates with regard to phytate mineralization and other plant growth-promoting characteristics. The bacterial isolates biochemically identified as Bacillus, Paenibacillus, Arthrobacter, and Burkholderia exhibited high/medium P solubilization, medium/high phytohormone production, and medium/low siderophore and ammonia production. Among all these isolates, isolate A14 (Burkholderia cenocepacia strain FDAARGOS_7) was the promising isolate with high TCP solubilization, medium phytate mineralization, high enzyme production, medium/high phytohormone production, and medium ammonia production. This strain also showed nitrogen fixation activity, zinc solubilizing potential, potassium solubilization, ACC deaminase production, and catalase production. Hence, it can be concluded that B. cenocepacia can be the potential candidate for biofertilizer development. Future studies are planned for exploring the role of PMB in biofertilizer formulations.
Collapse
|
14
|
Ilyas N, Akhtar N, Naseem A, Qureshi R, Majeed A, Al-Ansari MM, Al-Humaid L, Sayyed RZ, Pajerowska-Mukhtar KM. The potential of Bacillus subtilis and phosphorus in improving the growth of wheat under chromium stress. J Appl Microbiol 2022; 133:3307-3321. [PMID: 35722974 DOI: 10.1111/jam.15676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 12/01/2022]
Abstract
AIM Hexavalent chromium (Cr+6 ) is one of the most toxic heavy metals that have deteriorating effects on the growth and quality of the end product of wheat. Consequently, this research was designed to evaluate the role of Bacillus subtilis and phosphorus fertilizer on wheat facing Cr+6 stress. METHODS AND RESULTS The soil was incubated with Bacillus subtilis and phosphorus fertilizer before sowing. The statistical analysis of the data showed that the co-application of B. subtilis and phosphorus yielded considerably more significant (p < 0.05) results compared with an individual application of the respective treatments. The co-treatment improved the morphological, physiological and biochemical parameters of plants compared with untreated controls. The increase in shoot length, root length, shoot fresh weight and root fresh weight was 38.17%, 29.31%, 47.89% and 45.85%, respectively, compared with untreated stress-facing plants. The application of B. subtilis and phosphorus enhanced osmolytes content (proline 39.98% and sugar 41.30%), relative water content and stability maintenance of proteins (86.65%) and cell membranes (66.66%). Furthermore, augmented production of antioxidants by 67.71% (superoxide dismutase), 95.39% (ascorbate peroxidase) and 60.88% (catalase), respectively, were observed in the Cr+6 - stressed plants after co-application of B. subtilis and phosphorus. CONCLUSION It was observed that the accumulation of Cr+6 was reduced by 54.24%, 59.19% and 90.26% in the shoot, root and wheat grains, respectively. Thus, the combined application of B. subtilis and phosphorus has the potential to reduce the heavy metal toxicity in crops. SIGNIFICANCE AND IMPACT OF THE STUDY This study explored the usefulness of Bacillus subtilis and phosphorus application on wheat in heavy metal stress. It is a step toward the combinatorial use of plant growth-promoting rhizobacteria with nutrients to improve the ecosystems' health.
Collapse
Affiliation(s)
- Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Nosheen Akhtar
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Aqsa Naseem
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Rahmatullah Qureshi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Abid Majeed
- Rice Research Program, Crop Sciences Institute (CSI), National Agricultural Research Center (NARC), Islamabad, Pakistan
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Latifah Al-Humaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - R Z Sayyed
- Department of Microbiology, P.S.G.V.P. Mandal's, S. I. Patil Arts, G B Patel Science, and STKV Sangh Commerce College, Shahada, India
| | | |
Collapse
|
15
|
Kuzmina LY, Gilvanova EA, Galimzyanova NF, Arkhipova TN, Ryabova AS, Aktuganov GE, Sidorova LV, Kudoyarova GR, Melent’ev AI. Characterization of the Novel Plant Growth-Stimulating Strain Advenella kashmirensis IB-K1 and Evaluation of Its Efficiency in Saline Soil. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Jin J, Krohn C, Franks AE, Wang X, Wood JL, Petrovski S, McCaskill M, Batinovic S, Xie Z, Tang C. Elevated atmospheric CO 2 alters the microbial community composition and metabolic potential to mineralize organic phosphorus in the rhizosphere of wheat. MICROBIOME 2022; 10:12. [PMID: 35074003 PMCID: PMC8785599 DOI: 10.1186/s40168-021-01203-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Understanding how elevated atmospheric CO2 (eCO2) impacts on phosphorus (P) transformation in plant rhizosphere is critical for maintaining ecological sustainability in response to climate change, especially in agricultural systems where soil P availability is low. METHODS This study used rhizoboxes to physically separate rhizosphere regions (plant root-soil interface) into 1.5-mm segments. Wheat plants were grown in rhizoboxes under eCO2 (800 ppm) and ambient CO2 (400 ppm) in two farming soils, Chromosol and Vertosol, supplemented with phytate (organic P). Photosynthetic carbon flow in the plant-soil continuum was traced with 13CO2 labeling. Amplicon sequencing was performed on the rhizosphere-associated microbial community in the root-growth zone, and 1.5 mm and 3 mm away from the root. RESULTS Elevated CO2 accelerated the mineralization of phytate in the rhizosphere zones, which corresponded with increases in plant-derived 13C enrichment and the relative abundances of discreet phylogenetic clades containing Bacteroidetes and Gemmatimonadetes in the bacterial community, and Funneliformis affiliated to arbuscular mycorrhizas in the fungal community. Although the amplicon sequence variants (ASVs) associated the stimulation of phytate mineralization under eCO2 differed between the two soils, these ASVs belonged to the same phyla associated with phytase and phosphatase production. The symbiotic mycorrhizas in the rhizosphere of wheat under eCO2 benefited from increased plant C supply and increased P access from soil. Further supportive evidence was the eCO2-induced increase in the genetic pool expressing the pentose phosphate pathway, which is the central pathway for biosynthesis of RNA/DNA precursors. CONCLUSIONS The results suggested that an increased belowground carbon flow under eCO2 stimulated bacterial growth, changing community composition in favor of phylotypes capable of degrading aromatic P compounds. It is proposed that energy investments by bacteria into anabolic processes increase under eCO2 to level microbial P-use efficiencies and that synergies with symbiotic mycorrhizas further enhance the competition for and mineralization of organic P. Video Abstract.
Collapse
Affiliation(s)
- Jian Jin
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia.
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Christian Krohn
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
- Centre for Future Landscapes, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Xiaojuan Wang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Jennifer L Wood
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
- Centre for Future Landscapes, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Malcolm McCaskill
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Victoria, 3300, Hamilton, Australia
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia
| | - Zhihuang Xie
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
17
|
Production of Extracellular Enzymes, Antimicrobial and other Agriculturally Important Metabolites by Fungal Endophytes of Litsea glutinosa (Lour.) C.B.Rob. a Medicinal Plant. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.4.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present paper deals with the endophytic fungi of Litsea glutinosa, a medicinal plant highly valued in Ayurvedic system. A total of 21 fungal endophytes were extracted from different parts of the plant. The following eight species viz, Aspergillus oryzae, A. terreus, Curvularia sp, Fusarium oxysporum, Gliocladium solani, Penicillium citrinum, Trichoderma viride and Verticillium dahliae were selected for testing the production of secondary metabolites including hydrolytic enzymes. All the eight endophytic fungal species produced amylase, cellulase, protease and lipase. Except for Curvularia species, others did not elaborate laccase. All the test fungi produced antibacterial and antifungal metabolites; however, the crude extracts exhibited poor antimicrobial activity. The present endophytic fungi also produced IAA, ammonia and phosphate solubilizing substances. They were also capable to produce IAA with or without adding the tryptophan. An affect was also made to assess the influence of crude extracts on the root growth of maize seedlings. These studies revealed the enhancement effect of extracts on root growth. Based on these observations, discussions and conclusions were made.
Collapse
|
18
|
Rizvi A, Ahmed B, Khan MS, Umar S, Lee J. Psychrophilic Bacterial Phosphate-Biofertilizers: A Novel Extremophile for Sustainable Crop Production under Cold Environment. Microorganisms 2021; 9:2451. [PMID: 34946053 PMCID: PMC8704983 DOI: 10.3390/microorganisms9122451] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Abiotic stresses, including low-temperature environments, adversely affect the structure, composition, and physiological activities of soil microbiomes. Also, low temperatures disturb physiological and metabolic processes, leading to major crop losses worldwide. Extreme cold temperature habitats are, however, an interesting source of psychrophilic and psychrotolerant phosphate solubilizing bacteria (PSB) that can ameliorate the low-temperature conditions while maintaining their physiological activities. The production of antifreeze proteins and expression of stress-induced genes at low temperatures favors the survival of such organisms during cold stress. The ability to facilitate plant growth by supplying a major plant nutrient, phosphorus, in P-deficient soil is one of the novel functional properties of cold-tolerant PSB. By contrast, plants growing under stress conditions require cold-tolerant rhizosphere bacteria to enhance their performance. To this end, the use of psychrophilic PSB formulations has been found effective in yield optimization under temperature-stressed conditions. Most of the research has been done on microbial P biofertilizers impacting plant growth under normal cultivation practices but little attention has been paid to the plant growth-promoting activities of cold-tolerant PSB on crops growing in low-temperature environments. This scientific gap formed the basis of the present manuscript and explains the rationale for the introduction of cold-tolerant PSB in competitive agronomic practices, including the mechanism of solubilization/mineralization, release of biosensor active biomolecules, molecular engineering of PSB for increasing both P solubilizing/mineralizing efficiency, and host range. The impact of extreme cold on the physiological activities of plants and how plants overcome such stresses is discussed briefly. It is time to enlarge the prospects of psychrophilic/psychrotolerant phosphate biofertilizers and take advantage of their precious, fundamental, and economical but enormous plant growth augmenting potential to ameliorate stress and facilitate crop production to satisfy the food demands of frighteningly growing human populations. The production and application of cold-tolerant P-biofertilizers will recuperate sustainable agriculture in cold adaptive agrosystems.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India;
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India; (A.R.); (S.U.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
19
|
Hazarika SN, Saikia K, Borah A, Thakur D. Prospecting Endophytic Bacteria Endowed With Plant Growth Promoting Potential Isolated From Camellia sinensis. Front Microbiol 2021; 12:738058. [PMID: 34659169 PMCID: PMC8515050 DOI: 10.3389/fmicb.2021.738058] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023] Open
Abstract
Endophytes are well-acknowledged inoculants to promote plant growth, and extensive research has been done in different plants. However, there is a lacuna about the endophytes associated with tea clones and their benefit to promote plant growth. The present study focuses on isolating and characterizing the beneficial endophytic bacteria (EnB) prevalent in commercially important tea clones cultivated in North Eastern India as plant growth promoters. Diversity of culturable EnB microbiome, in vitro traits for plant growth promotion (PGP), and applicability of potent isolates as bioinoculant for in vivo PGP abilities have been assessed in the present study. A total of 106 EnB identified as members of phyla Proteobacteria, Firmicutes, and Actinobacteria were related to 22 different genera and six major clusters. Regarding PGP traits, the percentage of isolates positive for the production of indole acetic acid, phosphate solubilization, nitrogen fixation siderophore, ammonia, and 1-aminocyclopropane-1-carboxylic acid deaminase production were 86.8, 28.3, 78.3, 30.2, 95.3, and 87.7, respectively. In total, 34.0, 52.8, and 17.0% of EnB showed notable production of hydrolytic enzymes like cellulase, protease, and amylase, respectively. Additionally, based on the bonitur score, the top two isolates K96 identified as Stenotrophomonas sp. and M45 identified as Pseudomonas sp. were evaluated for biofilm formation, motility, and in vivo plant growth promoting activity. Results suggested strong biofilm formation and motility in K96 and M45 which may attribute to the colonization of the strains in the plants. Further in vivo plant growth promotion experiment suggested sturdy efficacy of the K96 and M45 as plant growth promoters in nursery condition in commercial tea clones Tocklai vegetative (TV) TV22 and TV26. Thus, this study emphasizes the opportunity of commercialization of the selected isolates for sustainable development of tea and other crops.
Collapse
Affiliation(s)
- Shabiha Nudrat Hazarika
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India.,Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Kangkon Saikia
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Atlanta Borah
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| | - Debajit Thakur
- Microbial Biotechnology Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
| |
Collapse
|
20
|
Bargaz A, Elhaissoufi W, Khourchi S, Benmrid B, Borden KA, Rchiad Z. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiol Res 2021; 252:126842. [PMID: 34438221 DOI: 10.1016/j.micres.2021.126842] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Although research on plant growth promoting bacteria began in the 1950s, basic and applied research on bacteria improving use of phosphorus (P) continues to be a priority among many agricultural research institutions. Ultimately, identifying agriculturally beneficial microbes, notably P solubilizing bacteria (PSB), that enhance the efficient use of P supports more sustainable cropping systems and the judicious use of mineral nutrients. In parallel, there is more attention on improving crop root P acquisition of existing soil P pools as well as by increasing the proportion of fertilizer P that is taken up by crops. Today, new lines of research are emerging to investigate the co-optimization of PSB-fertilizer-crop root processes for improved P efficiency and agricultural performance. In this review, we compile and summarize available findings on the beneficial effects of PSB on crop production with a focus on crop P acquisition via root system responses at the structural, functional and transcriptional levels. We discuss the current state of knowledge on the mechanisms of PSB-mediated P availability, both soil- and root-associated, as well as crop uptake via P solubilization, mineralization and mobilization, mainly through the production of organic acids and P-hydrolyzing enzymes, and effects on phytohormone signaling for crop root developement. The systematic changes caused by PSB on crop roots are discussed and contextualized within promising functional trait-based frameworks. We also detail agronomic profitability of P (mineral and organic) and PSB co-application, in amended soils and inoculated crops, establishing the connection between the influence of PSB on agroecosystem production and the impact of P fertilization on microbial diversity and crop functional traits for P acquisition.
Collapse
Affiliation(s)
- Adnane Bargaz
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco.
| | - Wissal Elhaissoufi
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco; Cadi Ayyad University, Faculty of Sciences and Techniques, Biology Dep., Marrakech, Morocco
| | - Said Khourchi
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco; University of Liège, Gembloux Agro-Bio Tech, Liège, Belgium
| | - Bouchra Benmrid
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco
| | - Kira A Borden
- University of British Columbia, Faculty of Land and Food Systems, Vancouver, V6T 1Z4, Canada
| | - Zineb Rchiad
- Mohammed VI Polytechnic University, Agrobiosciences Program, Plant & Soil Microbiome Subprogram, Bengurir, 43150, Morocco
| |
Collapse
|
21
|
Ibáñez A, Diez-Galán A, Cobos R, Calvo-Peña C, Barreiro C, Medina-Turienzo J, Sánchez-García M, Coque JJR. Using Rhizosphere Phosphate Solubilizing Bacteria to Improve Barley ( Hordeum vulgare) Plant Productivity. Microorganisms 2021; 9:microorganisms9081619. [PMID: 34442698 PMCID: PMC8401182 DOI: 10.3390/microorganisms9081619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
On average less than 1% of the total phosphorous present in soils is available to plants, making phosphorous one of the most limiting macronutrients for crop productivity worldwide. The aim of this work was to isolate and select phosphate solubilizing bacteria (PSB) from the barley rhizosphere, which has other growth promoting traits and can increase crop productivity. A total of 104 different bacterial isolates were extracted from the barley plant rhizosphere. In this case, 64 strains were able to solubilize phosphate in agar plates. The 24 strains exhibiting the highest solubilizing index belonged to 16 different species, of which 7 isolates were discarded since they were identified as putative phytopathogens. The remaining nine strains were tested for their ability to solubilize phosphate in liquid medium and in pot trials performed in a greenhouse. Several of the isolated strains (Advenella mimigardefordensis, Bacillus cereus, Bacillus megaterium and Burkholderia fungorum) were able to significantly improve levels of assimilated phosphate, dry weight of ears and total starch accumulated on ears compared to non-inoculated plants. Since these strains were able to increase the growth and productivity of barley crops, they could be potentially used as microbial inoculants (biofertilizers).
Collapse
Affiliation(s)
- Ana Ibáñez
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
| | - Alba Diez-Galán
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
| | - Rebeca Cobos
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
| | - Carla Calvo-Peña
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
| | - Carlos Barreiro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1—Parque Científico de León, 24006 León, Spain;
- Área de Bioquímica, Departamento de Biología Molecular, Universidad de León, 24071 León, Spain
| | - Jesús Medina-Turienzo
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
| | - Mario Sánchez-García
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
| | - Juan José R. Coque
- Instituto de Investigación de la Viña y el Vino, Escuela de Ingeniería Agraria, Universidad de León, 24009 León, Spain; (A.I.); (A.D.-G.); (R.C.); (C.C.-P.); (J.M.-T.); (M.S.-G.)
- Correspondence:
| |
Collapse
|
22
|
Plant growth-promoting potential of 'Myroides gitamensis' isolated from virgin soils of Punjab. Arch Microbiol 2021; 203:2551-2561. [PMID: 33683396 DOI: 10.1007/s00203-021-02231-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/11/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Phosphate-solubilizing (PS) and phosphate-mineralizing (PM) bacteria are considered vital for augmenting the plant growth through phosphorus mobilization and plant growth-promoting attributes. In the present study, a rhizospheric bacterium was isolated from the virgin land of Punjab, India and identified as 'Myroides gitamensis' BSH-3 through 16S rRNA sequencing. 'M. gitamensis' showed potential halo zone on Pikovskaya agar. The novelty of the study lies in the fact that plant growth-promoting potential of 'M. gitamensis' has not been studied earlier. It was able to solubilize 17.53-106.66 µg/mL of tricalcium phosphate and demonstrated a promising potential of mineralizing sodium phytate corresponding to 44.6-94.70 µg/mL at 28 °C. Variable PS and PM activity was observed at temperature range of 15-42 °C with the maximum activity observed at 28 °C after 96 h of incubation. The nitrogen fixation ability, hydrogen sulfide production, cellulose hydrolysis test and chitin degradation was found to be negative. High indole acetic acid (42.82 µg/mL), gibberellic acid (72.93 µg/mL), ammonia (22.58 µg/mL) production, phytase activity (0.49 pi/mL/min) and comparable amount of siderophore (28.55%) and acid phosphate activity (0.606 µM p-nitrophenol/ml/min) was shown by 'M. gitamensis'. Inoculation of wheat with 'M. gitamensis' in pot experiment showed increased shoot and root length by 30.58% and 38.32%. Fresh weight and dry weight was increased by 45.74% and 67.81%, respectively, compared to uninoculated control. These results demonstrate that 'M. gitamensis' has promising PS, PM and plant growth-promoting attributes to be used as a bio-inoculant to enhance plant growth and soil fertility.
Collapse
|
23
|
Montes-Osuna N, Gómez-Lama Cabanás C, Valverde-Corredor A, Berendsen RL, Prieto P, Mercado-Blanco J. Assessing the Involvement of Selected Phenotypes of Pseudomonas simiae PICF7 in Olive Root Colonization and Biological Control of Verticillium dahliae. PLANTS 2021; 10:plants10020412. [PMID: 33672351 PMCID: PMC7926765 DOI: 10.3390/plants10020412] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Pseudomonas simiae PICF7 is an indigenous inhabitant of the olive (Olea europaea L.) rhizosphere/root endosphere and an effective biocontrol agent against Verticillium wilt of olive (VWO), caused by the soil-borne fungus Verticillium dahliae. This study aimed to evaluate the potential involvement of selected phenotypes of strain PICF7 in root colonization ability and VWO biocontrol. Therefore, a random transposon-insertion mutant bank of P. simiae PICF7 was screened for the loss of phenotypes likely involved in rhizosphere/soil persistence (copper resistance), root colonization (biofilm formation) and plant growth promotion (phytase activity). Transposon insertions in genes putatively coding for the transcriptional regulator CusR or the chemotaxis protein CheV were found to affect copper resistance, whereas an insertion in fleQ gene putatively encoding a flagellar regulatory protein hampered the ability to form a biofilm. However, these mutants displayed the same antagonistic effect against V. dahliae as the parental strain. Remarkably, two mutants impaired in biofilm formation were never found inside olive roots, whereas their ability to colonize the root exterior and to control VWO remained unaffected. Endophytic colonization of olive roots was unaltered in mutants impaired in copper resistance and phytase production. Results demonstrated that the phenotypes studied were irrelevant for VWO biocontrol.
Collapse
Affiliation(s)
- Nuria Montes-Osuna
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, Campus “Alameda del Obispo”, 14004 Córdoba, Spain; (N.M.-O.); (C.G.-L.C.); (A.V.-C.)
| | - Carmen Gómez-Lama Cabanás
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, Campus “Alameda del Obispo”, 14004 Córdoba, Spain; (N.M.-O.); (C.G.-L.C.); (A.V.-C.)
| | - Antonio Valverde-Corredor
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, Campus “Alameda del Obispo”, 14004 Córdoba, Spain; (N.M.-O.); (C.G.-L.C.); (A.V.-C.)
| | - Roeland L. Berendsen
- Plant–Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands;
| | - Pilar Prieto
- Departamento de Mejora Genética Vegetal, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, Campus “Alameda del Obispo”, 14004 Córdoba, Spain;
| | - Jesús Mercado-Blanco
- Departamento de Protección de Cultivos, Instituto de Agricultura Sostenible, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Avenida Menéndez Pidal s/n, Campus “Alameda del Obispo”, 14004 Córdoba, Spain; (N.M.-O.); (C.G.-L.C.); (A.V.-C.)
- Correspondence:
| |
Collapse
|
24
|
Fouda A, Eid AM, Elsaied A, El-Belely EF, Barghoth MG, Azab E, Gobouri AA, Hassan SED. Plant Growth-Promoting Endophytic Bacterial Community Inhabiting the Leaves of Pulicaria incisa (Lam.) DC Inherent to Arid Regions. PLANTS (BASEL, SWITZERLAND) 2021; 10:E76. [PMID: 33401438 PMCID: PMC7824221 DOI: 10.3390/plants10010076] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
In this study, 15 bacterial endophytes linked with the leaves of the native medicinal plant Pulicaria incisa were isolated and identified as Agrobacterium fabrum, Acinetobacter radioresistant, Brevibacillus brevis, Bacillus cereus, Bacillus subtilis, Paenibacillus barengoltzii, and Burkholderia cepacia. These isolates exhibited variant tolerances to salt stress and showed high efficacy in indole-3-acetic acid (IAA) production in the absence/presence of tryptophan. The maximum productivity of IAA was recorded for B. cereus BI-8 and B. subtilis BI-10 with values of 117 ± 6 and 108 ± 4.6 μg mL-1, respectively, in the presence of 5 mg mL-1 tryptophan after 10 days. These two isolates had a high potential in phosphate solubilization and ammonia production, and they showed enzymatic activities for amylase, protease, xylanase, cellulase, chitinase, and catalase. In vitro antagonistic investigation showed their high efficacy against the three phytopathogens Fusarium oxysporum, Alternaria alternata, and Pythium ultimum, with inhibition percentages ranging from 20% ± 0.2% to 52.6% ± 0.2% (p ≤ 0.05). Therefore, these two endophytic bacteria were used as bio-inoculants for maize seeds, and the results showed that bacterial inoculations significantly increased the root length as well as the fresh and dry weights of the roots compared to the control plants. The Zea mays plant inoculated with the two endophytic strains BI-8 and BI-10 significantly improved (p ≤ 0.05) the growth performance as well as the nutrient uptake compared with an un-inoculated plant.
Collapse
Affiliation(s)
- Amr Fouda
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Ahmed M. Eid
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Albaraa Elsaied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Ehab F. El-Belely
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Mohammed G. Barghoth
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| | - Ehab Azab
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Sharkia, Egypt
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Saad El-Din Hassan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt; (A.M.E.); (A.E.); (E.F.E.-B.); (M.G.B.); or (S.E.-D.H.)
| |
Collapse
|
25
|
Chand K, Shah S, Sharma J, Paudel MR, Pant B. Isolation, characterization, and plant growth-promoting activities of endophytic fungi from a wild orchid Vanda cristata. PLANT SIGNALING & BEHAVIOR 2020; 15:1744294. [PMID: 32208892 PMCID: PMC7238887 DOI: 10.1080/15592324.2020.1744294] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Endophytism is one of the widely explored phenomena related to orchids and fungi. Endophytic fungi assist plants by supplementing nutrient acquisition, and synthesis of plant growth regulators. Vanda cristata is an epiphytic orchid that has a great diversity of endophytic fungi. Endophytic fungi were isolated from roots, stems, and leaves of V.cristata and identified by both morphological and molecular study. Furthermore, the isolated endophytic fungi were subjected to auxin synthesis, phosphate solubilization, ammonia synthesis, and elicitor growth test for understanding their growth-promoting effect in a qualitative and quantitative manner. Altogether, 12 different endophytic fungi were isolated from roots, stems, and leaves of V. cristata of which most species belonged to Ascomycota. Unidentified II fungi were found to be most effective for auxin synthesis and phosphate solubilization while Agaricus bisporous and Mycolepto discus were most effective for ammonia synthesis. We have tested the plant growth-promoting activity of the twelve isolated endophytic fungi on Cymbidium aloifolium protocorms (12 weeks old). All the endophytic fungi showed growth-promoting activity. Plant growth of Cymbidium aloifolium was found higher on the MS medium supplemented with all fungal elicitors. Fungal elicitor CVS4, however, showed the highest plant growth-promoting activity toward C. aloifolium.
Collapse
Affiliation(s)
- Krishna Chand
- Central Department of Botany, Tribhuvan University, Kritipur, Nepal
| | - Sujit Shah
- Central Department of Botany, Tribhuvan University, Kritipur, Nepal
| | - Jyotsna Sharma
- Department of Plant Science, Texas Tech University, Lubbock, USA
| | - Mukti Ram Paudel
- Central Department of Botany, Tribhuvan University, Kritipur, Nepal
| | - Bijaya Pant
- Central Department of Botany, Tribhuvan University, Kritipur, Nepal
- CONTACT Bijaya Pant Central Department of Botany, Tribhuvan University, Kritipur, Nepal
| |
Collapse
|
26
|
Rasul M, Yasmin S, Suleman M, Zaheer A, Reitz T, Tarkka MT, Islam E, Mirza MS. Glucose dehydrogenase gene containing phosphobacteria for biofortification of Phosphorus with growth promotion of rice. Microbiol Res 2019; 223-225:1-12. [PMID: 31178042 DOI: 10.1016/j.micres.2019.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/07/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022]
Abstract
Phosphorus (P) is an essential plant nutrient, but often limited in soils for plant uptake. A major economic constraint in the rice production is excessive use of chemical fertilizers to meet the P requirement. Bioaugmentation of phosphate solubilizing rhizobacteria (PSB) can be used as promising alternative. In the present study 11 mineral PSB were isolated from Basmati rice growing areas of Pakistan. In broth medium, PSB solubilized tricalcium phosphate (27-354 μg mL-1) with concomitant decrease in pH up to 3.6 due to the production of different organic acids, predominantly gluconic acid. Of these, 4 strains also have ability to mineralize phytate (245-412 μg mL-1). Principle component analysis showed that the gluconic acid producing PSB strains (Acinetobacter sp. MR5 and Pseudomonas sp. MR7) have pronounced effect on grain yield (up to 55%), plant P (up to 67%) and soil available P (up to 67%), with 20% reduced fertilization. For simultaneous validation of gluconic acid production by MR5 and MR7 through PCR, new specific primers were designed to amplify gcd, pqqE, pqqC genes responsible for glucose dehydrogenase (gcd) mediated phosphate solubilization. These findings for the first time demonstrated Acinetobacter soli as potent P solubilizer for rice and expands our knowledge about genus specific pqq and gcd primers. These two gcd containing PSB Acinetobacter sp. MR5 (DSM 106631) and Pseudomonas sp. MR7 (DSM 106634) submitted to German culture collection (DSMZ), serve as global valuable pool to significantly increase the P uptake, growth and yield of Basmati rice with decreased dependence on chemical fertilizer in P deficit agricultural soils.
Collapse
Affiliation(s)
- Maria Rasul
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Sumera Yasmin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| | - M Suleman
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan; Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Ahmad Zaheer
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defence Road, Lahore, Pakistan
| | - Thomas Reitz
- UFZ - Helmholtz-Centre for Environmental Research, Soil Ecology Department, Theodor-Lieser-Straße 4, 06120 Halle, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Mika T Tarkka
- UFZ - Helmholtz-Centre for Environmental Research, Soil Ecology Department, Theodor-Lieser-Straße 4, 06120 Halle, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Ejazul Islam
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - M Sajjad Mirza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
27
|
EL ENSHASY H, DAİLİN DJ, ABD MANAS NH, WAN AZLEE Nİ, EYAHMALAY ,J, YAHAYA ,SA, ABD MALEK R, SİWAPİRAGAM V, SUKMAWATİ D. Current and Future Applications of Phytases in Poultry Industry: A Critical Review. JOURNAL OF ADVANCES IN VETBIO SCIENCE AND TECHNIQUES 2018; 3:65-74. [DOI: 10.31797/vetbio.455687] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Phytases
are enzymes that initiate the removal of phosphate from phytate. This enzyme
has been widely utilized in animal feeding especially in the poultry industry
to enhance phosphorus intake and minimize environmental pollution. Phytases are
widely distributed in microbial, plants and animals. Supplementations of
phytase into the diets of poultry have great impact to the improvement of
poultry immune systems and increase bird weight. In addition to that, phytase
are able to improve both quantity and quality of eggs, egg mass and egg shell
quality. This review covers the classifications and distribution of phytases in
different biofactoris. In addition, it shed more light on the recent trends of
application and beneficial impact in poultry farming.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dalia SUKMAWATİ
- Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta
| |
Collapse
|
28
|
Irshad U, Yergeau E. Bacterial Subspecies Variation and Nematode Grazing Change P Dynamics in the Wheat Rhizosphere. Front Microbiol 2018; 9:1990. [PMID: 30233510 PMCID: PMC6134019 DOI: 10.3389/fmicb.2018.01990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/07/2018] [Indexed: 12/24/2022] Open
Abstract
Low phosphorus soils are thought to constitute the majority of soils worldwide and cannot support intensive agriculture without high fertilizer inputs. Rhizobacteria are well-known to modify P dynamics and an increased bacterial diversity normally has a positive impact on various process rates. However, it is not known how variation in bacterial diversity at the subspecies level could influence trophic interactions in the rhizosphere and its consequences on plant P nutrition. We therefore hypothesized that the interactions between closely related P solubilizing bacteria and their grazing nematodes could improve plant P dynamics from an unavailable P source. We isolated four Pseudomonas poae strains and extracted nematodes from a Saskatchewan wheat field soil sample. The potential of all bacterial isolates with and without nematodes for increasing P availability in the wheat rhizosphere was tested in controlled microcosms with Ca3(PO4)2 as sole P source. Liberated P, phosphatase activity, plant P and bacterial abundance based on phnX gene copies were determined. Phosphorus solubilization efficiency of isolates varied between isolates whereas phosphatase enzyme activity was only detected under nematodes grazing and during the first 15 days of the experiment. Nematodes grazing upon individual Pseudomonas poae increased phosphatase enzyme activity, bacterial abundance, but decreased plant P concentration compared to non-grazed system. In contrast, the treatment combining all Pseudomonas poae isolates together with nematodes resulted in significant increases in P availability and plant P concentration. Diverse P-solubilizing efficiency and interaction with nematodes within the same bacterial "species" suggest that P dynamics might be linked to micro variation in soil diversity that would not accurately be picked up using common tools such as 16S rRNA gene sequencing.
Collapse
Affiliation(s)
- Usman Irshad
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada.,Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Etienne Yergeau
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada
| |
Collapse
|
29
|
Pramanik K, Kundu S, Banerjee S, Ghosh PK, Maiti TK. Computational-based structural, functional and phylogenetic analysis of Enterobacter phytases. 3 Biotech 2018; 8:262. [PMID: 29805952 PMCID: PMC5960462 DOI: 10.1007/s13205-018-1287-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 05/08/2018] [Indexed: 12/23/2022] Open
Abstract
Myo-inositol hexakisphosphate phosphohydrolases (i.e., phytases) are known to be a very important enzyme responsible for solubilization of insoluble phosphates. In the present study, Enterobacter phytases have characterized by different phylogenetic, structural and functional parameters using some standard bio-computational tools. Results showed that majority of the Enterobacter phytases are acidic in nature as most of the isoelectric points were under 7.0. The aliphatic indices predicted for the selected proteins were below 40 indicating their thermostable nature. The average molecular weight of the proteins was 48 kDa. The lower values of GRAVY of the said proteins implied that they have better interactions with water. Secondary structure prediction revealed that alpha-helical content was highest among the other forms such as sheets, coils, etc. Moreover, the predicted 3D structure of Enterobacter phytases divulged that the proteins consisted of four monomeric polypeptide chains i.e., it was a tetrameric protein. The predicted tertiary model of E. aerogenes (A0A0M3HCJ2) was deposited in Protein Model Database (Acc. No.: PM0080561) for further utilization after a thorough quality check from QMEAN and SAVES server. Functional analysis supported their classification as histidine acid phosphatases. Besides, multiple sequence alignment revealed that "DG-DP-LG" was the most highly conserved residues within the Enterobacter phytases. Thus, the present study will be useful in selecting suitable phytase-producing microbe exclusively for using in the animal food industry as a food additive.
Collapse
Affiliation(s)
- Krishnendu Pramanik
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| | - Shreyasi Kundu
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| | - Sandipan Banerjee
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| | - Pallab Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Purba Bardhaman, West Bengal 713104 India
| |
Collapse
|
30
|
Gómez-Lama Cabanás C, Legarda G, Ruano-Rosa D, Pizarro-Tobías P, Valverde-Corredor A, Niqui JL, Triviño JC, Roca A, Mercado-Blanco J. Indigenous Pseudomonas spp. Strains from the Olive ( Olea europaea L.) Rhizosphere as Effective Biocontrol Agents against Verticillium dahliae: From the Host Roots to the Bacterial Genomes. Front Microbiol 2018. [PMID: 29527195 PMCID: PMC5829093 DOI: 10.3389/fmicb.2018.00277] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The use of biological control agents (BCA), alone or in combination with other management measures, has gained attention over the past decades, driven by the need to seek for sustainable and eco-friendly alternatives to confront plant pathogens. The rhizosphere of olive (Olea europaea L.) plants is a source of bacteria with potential as biocontrol tools against Verticillium wilt of olive (VWO) caused by Verticillium dahliae Kleb. A collection of bacterial isolates from healthy nursery-produced olive (cultivar Picual, susceptible to VWO) plants was generated based on morphological, biochemical and metabolic characteristics, chemical sensitivities, and on their in vitro antagonistic activity against several olive pathogens. Three strains (PIC25, PIC105, and PICF141) showing high in vitro inhibition ability of pathogens' growth, particularly against V. dahliae, were eventually selected. Their effectiveness against VWO caused by the defoliating pathotype of V. dahliae was also demonstrated, strain PICF141 being the rhizobacteria showing the best performance as BCA. Genotypic and phenotypic traits traditionally associated with plant growth promotion and/or biocontrol abilities were evaluated as well (e.g., phytase, xylanase, catalase, cellulase, chitinase, glucanase activities, and siderophore and HCN production). Multi-locus sequence analyses of conserved genes enabled the identification of these strains as Pseudomonas spp. Strain PICF141 was affiliated to the “Pseudomonas mandelii subgroup,” within the “Pseudomonas fluorescens group,” Pseudomonas lini being the closest species. Strains PIC25 and PIC105 were affiliated to the “Pseudomonas aeruginosa group,” Pseudomonas indica being the closest relative. Moreover, we identified P. indica (PIC105) for the first time as a BCA. Genome sequencing and in silico analyses allowed the identification of traits commonly associated with plant-bacteria interactions. Finally, the root colonization ability of these olive rhizobacteria was assessed, providing valuable information for the future development of formulations based on these strains. A set of actions, from rhizosphere isolation to genome analysis, is proposed and discussed for selecting indigenous rhizobacteria as effective BCAs.
Collapse
Affiliation(s)
| | | | - David Ruano-Rosa
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain
| | - Paloma Pizarro-Tobías
- Bio-Ilíberis Research and Development SL, Polígono Industrial Juncaril, Granada, Spain
| | | | - José L Niqui
- Bio-Ilíberis Research and Development SL, Polígono Industrial Juncaril, Granada, Spain
| | - Juan C Triviño
- Bioinformatics Department, Sistemas Genómicos S.L., Valencia, Spain
| | - Amalia Roca
- Bio-Ilíberis Research and Development SL, Polígono Industrial Juncaril, Granada, Spain
| | - Jesús Mercado-Blanco
- Department of Crop Protection, Institute for Sustainable Agriculture (CSIC), Córdoba, Spain
| |
Collapse
|
31
|
Jalili Tabaii M, Chatraei N, Emtiazi G. Immobilisation of phytase producing Gluconacetobacter with bacterial cellulose nano‐fibres and promotion of enzyme activities by magnetite nanoparticles. IET Nanobiotechnol 2018; 12:223-229. [PMCID: PMC8676266 DOI: 10.1049/iet-nbt.2017.0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/03/2017] [Indexed: 08/08/2023] Open
Abstract
The isolated Gluconacetobacter sp. with accession number: KY996741 was assayed for evaluation of phytase activity. It could solubilise sodium phytate in the absence of soluble phosphate with the cells; however, the enzyme was not seen in cell free extract, to the best of their knowledge the intracellular phytase activities of Gluconacetobacter sp. was not reported previously. Also, the potential of in situ immobilisation of cells produced enzyme (/phytase producing bacteria) in bacterial cellulose was investigated and was studied by SEM and AFM. The results showed that the immobilised probiotic cells had the best activity of 1229 U/ml. The optimum temperature of the immobilised enzyme activity was at 45°C (5969 U/ml) and the immobilised phytase maintained 64% of its activities after two repeated cycles. The enzyme needs mild conditions for its activity and has a short life time and low stability and lost activities from 1229 to 500 U/ml during 30 days. However, it was showed that the addition of 1 ppm nano‐ferric oxide particles could promote the phytase activities of immobilised cell from 500 U/ml to >1500 U/ml. This immobilised phytase producing cells on bacterial cellulose can be useful as food and/feed supplement for phytin removal.
Collapse
Affiliation(s)
| | - Narges Chatraei
- Department of BiologyFaculty of ScienceUniversity of IsfahanIsfahanIran
| | - Giti Emtiazi
- Department of BiologyFaculty of ScienceUniversity of IsfahanIsfahanIran
| |
Collapse
|
32
|
Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 2017; 8:687-695. [PMID: 28951786 PMCID: PMC5607146 DOI: 10.1016/j.jare.2017.09.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/23/2017] [Accepted: 09/09/2017] [Indexed: 11/24/2022] Open
Abstract
Bacterial and fungal endophytes are widespread inhabitants inside plant tissues and have been shown to assist plant growth and health. However, little is known about plant growth-promoting endophytes (PGPE) of medicinal plants. Therefore, the aims of this study were to identify bacterial and fungal endophytes of Teucrium polium and to characterize plant growth-promoting (PGP) properties of these endophytes. Seven bacterial endophytes were isolated and identified as Bacillus cereus and Bacillus subtilis, where five endophytic fungi were obtained and assigned to Penicillium chrysogenum and Penicillium crustosum. The isolated endophytes differentially produced indole acetic acid (IAA) and ammonia, and in addition to their enzymatic and antimicrobial activities, they exhibited variable capacity for phosphate solubilization. In order to investigate the effect of endophytes on plant growth, four representative endophytes and their consortiums were selected concerning to their potential ability to promote plant growth. The results indicated that microbial endophytes isolated from medicinal plants possessing a vital role to improve plant growth and could be used as inoculants to establish a sustainable crop production system.
Collapse
|
33
|
Balaban NP, Suleimanova AD, Valeeva LR, Chastukhina IB, Rudakova NL, Sharipova MR, V. Shakirov E. Microbial Phytases and Phytate: Exploring Opportunities for Sustainable Phosphorus Management in Agriculture. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/ajmb.2017.71002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Regulation of Soluble Phosphate on the Ability of Phytate Mineralization and β-Propeller Phytase Gene Expression of Pseudomonas fluorescens JZ-DZ1, a Phytate-Mineralizing Rhizobacterium. Curr Microbiol 2016; 73:915-923. [DOI: 10.1007/s00284-016-1139-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
|
35
|
Melo J, Carolino M, Carvalho L, Correia P, Tenreiro R, Chaves S, Meleiro AI, de Souza SB, Dias T, Cruz C, Ramos AC. Crop management as a driving force of plant growth promoting rhizobacteria physiology. SPRINGERPLUS 2016; 5:1574. [PMID: 27652147 PMCID: PMC5025401 DOI: 10.1186/s40064-016-3232-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 09/06/2016] [Indexed: 11/30/2022]
Abstract
Crop management systems influence plant productivity and nutrient use efficiency, as well as plant growth-promoting rhizobacteria (PGPR), which are known to influence the growth of plants via phytohormone production, phosphate solubilization, nitrogen (N) fixation and antimicrobial activity. The objective of this study was to compare the influence of two crop management system on microbial PGPR features. PGPR isolated from the rhizospheres of Carica papaya L. grown under two distinct management systems (conventional and organic) were identified and characterized. The 12 strains most efficient in solubilizing inorganic phosphate belonged to the genera Burkholderia, Klebsiella, and Leclercia. N fixation was observed in the strains B. vietnamiensis from the conventional farming system and B. vietnamiensis, B. cepacia and Leclercia sp. from the organic farming system. The B. vietnamiensis, B. cepacia, Klebsiella sp. and Klebsiella sp. isolates showed antifungal activity, while Leclercia sp. did not. The strains B. vietnamiensis and Enterobcter sp. (isolated from the conventional farming system) and Klebsiella sp. (isolated from the organic farming system) were efficient at solubilizing phosphate, producing phytohormones and siderophores, and inhibiting the mycelial growth of various phytopathogenic fungi (Botrytis cinerea, Pestalotia sp., Alternaria sp., Phoma sp., Fusarium culmorum, Geotrichum candidum). Physiological differences between the isolates from the two crop management regimes were distinguishable after 10 years of distinct management.
Collapse
Affiliation(s)
- Juliana Melo
- Ecosystems Ecology Unit, Universidade Vila Velha (UVV), Vila Velha, ES 29102-920 Brazil
- Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Manuela Carolino
- Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Luís Carvalho
- Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Patrícia Correia
- Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Rogério Tenreiro
- Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Sandra Chaves
- Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Ana I. Meleiro
- Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Sávio B. de Souza
- Physiology and Biochemistry of Microorganisms Lab., Center of Biosciences and Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, 28013-620 Brazil
| | - Teresa Dias
- Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Cristina Cruz
- Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1649-004 Lisbon, Portugal
| | - Alessandro C. Ramos
- Physiology and Biochemistry of Microorganisms Lab., Center of Biosciences and Biotechnology, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Rio de Janeiro, 28013-620 Brazil
| |
Collapse
|
36
|
de Souza R, Ambrosini A, Passaglia LM. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 2015; 38:401-19. [PMID: 26537605 PMCID: PMC4763327 DOI: 10.1590/s1415-475738420150053] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.
Collapse
Affiliation(s)
- Rocheli de Souza
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Ambrosini
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciane M.P. Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
37
|
Increased Biomass of Nursery-Grown Douglas-Fir Seedlings upon Inoculation with Diazotrophic Endophytic Consortia. FORESTS 2015. [DOI: 10.3390/f6103582] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|