1
|
Banerjee S, Bose D, Johnson S, Liu J, Virgin H, Robertson ES. Novel small non-coding RNAs of Epstein-Barr virus upregulated upon lytic reactivation aid in viral genomic replication and virion production. mBio 2025; 16:e0406024. [PMID: 40197026 PMCID: PMC12077129 DOI: 10.1128/mbio.04060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Epstein-Barr virus (EBV) employs various strategies for long-term survival, including the expression of non-coding RNAs (ncRNAs). This study uncovers and characterizes two novel EBV-encoded ncRNAs, p7 and p8, which are upregulated during lytic reactivation and interact with both viral and host genomes. These ncRNAs bind to cellular RNA transcripts, significantly reducing ARMCX3 mRNA levels, while p8 also influences PTPN6 and RPL24 expressions. Although p7 does not directly bind to LMP1 RNA but both ncRNAs found to downregulate LMP1 expression. Furthermore, these ncRNAs interact with the OriLyt region of EBV genome, promoting viral DNA replication. Functional assays indicate that p7 and p8 enhance cell proliferation and inhibit apoptosis by modulating the p53 pathway and suppressing pro-apoptotic proteins. These findings highlight the role of p7 and p8 in supporting EBV persistence by regulating viral replication, cell survival, and immune evasion, making them promising targets for therapeutic strategies in EBV-related diseases.IMPORTANCEEpstein-Barr virus (EBV) employs diverse strategies for long-term persistence in the host, including the expression of viral non-coding RNAs (ncRNAs) that manipulate key cellular pathways to promote viral replication and immune evasion. This study identifies two novel EBV-encoded ncRNAs, p7 and p8, which are upregulated during lytic reactivation and interact with both viral and host genes to regulate viral DNA replication and promote host cellular survival. By modulating apoptotic and proliferative pathways, p7 and p8 facilitate viral reactivation while promoting host cell survival, highlighting their potential as critical regulators in EBV-driven oncogenesis. This discovery expands our understanding of EBV-host interactions, suggesting p7 and p8 as targets for novel therapeutic strategies in EBV-associated malignancies.
Collapse
Affiliation(s)
- Sagarika Banerjee
- Departments of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dipayan Bose
- Departments of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steve Johnson
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Jie Liu
- Departments of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Herbert Virgin
- Department of Pathology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Lin Z, Wang X, Hua G, Zhong F, Cheng W, Qiu Y, Chi Z, Zeng H, Wang X. Identification of mitochondrial permeability transition-related lncRNAs as quantitative biomarkers for the prognosis and therapy of breast cancer. Front Genet 2025; 16:1510154. [PMID: 40206506 PMCID: PMC11979797 DOI: 10.3389/fgene.2025.1510154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
Breast cancer (BC) continues to pose a global health threat and presents challenges for treatment due to its high heterogeneity. Recent advancements in the understanding of mitochondrial permeability transition (MPT) and the regulatory roles of long non-coding RNAs (lncRNAs) offer potential insights for the stratification and personalized treatment of BC. Although the association between MPT and lncRNAs has not been widely studied, a few research studies have indicated a regulatory impact of lncRNAs on MPT, further deepening the understanding of the tumor. To identify reliable biomarkers associated with MPT for managing BC, bulk RNA-seq data of MPT-related lncRNAs acquired from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project were utilized to assess BC patients. A scoring system, termed the MPT-related score (MPTRscore), was developed using LASSO-Cox regression on data from 1,029 BC patients from TCGA-BRCA. Meanwhile, the superior prognostic accuracy of the MPTRscore was demonstrated by comparing it with biomarkers, including PAM50 subtyping for standardization. Subsequently, a clinical prediction model was created by incorporating the MPTRscore and clinical variables. This analysis revealed two distinct MPTRscore groups characterized by different biomolecular processes, tumor microenvironment (TME) patterns, and clinical outcomes. The MPTRscore was further investigated through unsupervised consensus clustering of TCGA-BRCA based on MPTRscore-related prognostic genes. Additionally, the MPTRscore was identified as an independent prognostic factor for BC and showed guiding utility in immunotherapy and chemotherapy response. Specifically, patients with a low MPTRscore exhibited better prognosis and treatment responses compared to those with a high MPTRscore. Significantly, the relevance of clustering results and MPTRscore was found to be mediated by lncRNA transcript RP11-573D15.8-018. In conclusion, MPTRscore-related clusters were identified in BC, and an integrative score was developed as a biomarker for predicting BC prognosis and therapeutic response. Additionally, molecular interactions underlying the relationship between MPTRscore-related clusters and MPTRscore were uncovered, proving insights for BC stratification. These findings may aid in prognosis determination and therapeutic decision-making for BC patients.
Collapse
Affiliation(s)
- Zhongshu Lin
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- School of Biological and Behavioural Science, Queen Mary University of London, London, United Kingdom
- Queen Mary College, Nanchang University, Nanchang, China
| | - Xinlu Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Guanxiang Hua
- School of Biological and Behavioural Science, Queen Mary University of London, London, United Kingdom
- Queen Mary College, Nanchang University, Nanchang, China
| | - Fangmin Zhong
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wangxinjun Cheng
- School of Biological and Behavioural Science, Queen Mary University of London, London, United Kingdom
- Queen Mary College, Nanchang University, Nanchang, China
| | - Yuxiang Qiu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Zhe Chi
- School of Biological and Behavioural Science, Queen Mary University of London, London, United Kingdom
- Queen Mary College, Nanchang University, Nanchang, China
| | - Huan Zeng
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Suliman M, Saleh RO, Chandra M, Rasool KH, Jabir M, Jawad SF, Hasan TF, Singh M, Singh M, Singh A. Macrophage-derived lncRNAs in cancer: regulators of tumor progression and therapeutic targets. Med Oncol 2025; 42:91. [PMID: 40048034 DOI: 10.1007/s12032-025-02643-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
Macrophages are key tumor microenvironment (TME) regulators, exhibiting remarkable plasticity that enables them to either suppress or promote cancer progression. Emerging evidence highlights the critical role of macrophage-derived long non-coding RNAs (lncRNAs) in shaping tumor immunity, influencing macrophage polarization, immune evasion, angiogenesis, metastasis, and therapy resistance. This review comprehensively elucidates the functional roles of M1- and M2-associated lncRNAs, detailing their molecular mechanisms and impact on cancer pathogenesis. In summary, elucidating the roles of lncRNAs derived from macrophages in cancer progression offers new avenues for therapeutic strategies, significantly improving patient outcomes in the fight against the disease. Further research into the functional significance of these lncRNAs and the development of targeted therapies is essential to harness their potential fully in clinical applications. We further explore their potential as biomarkers for cancer prognosis and therapeutic targets for modulating macrophage activity to enhance anti-cancer immunity. Targeting macrophage-derived lncRNAs represents a promising avenue for precision oncology, offering novel strategies to reshape the TME and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Raed Obaid Saleh
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al Maarif, Anbar, Iraq.
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat, 360003, India
| | | | - Majid Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Sabrean F Jawad
- Department of Pharmacy, Al-Mustaqbal University College, 51001, Hillah, Babylon, Iraq
| | - Thikra F Hasan
- College of Health & Medical Technology, Uruk University, Baghdad, Iraq
| | - Mithilesh Singh
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Manmeet Singh
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| |
Collapse
|
4
|
Ma L, Liu X, Roopashree R, Kazmi SW, Jasim SA, Phaninder Vinay K, Fateh A, Yang F, Rajabivahid M, Dehghani-Ghorbi M, Akhavan R. Long non-coding RNAs (lncRNAs) in cancer development: new insight from STAT3 signaling pathway to immune evasion. Clin Exp Med 2025; 25:53. [PMID: 39932585 PMCID: PMC11813976 DOI: 10.1007/s10238-024-01532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/26/2024] [Indexed: 02/14/2025]
Abstract
Overcoming cancer and enhancing patient survival are becoming increasingly challenging due to the uncontrolled growth and metastasis of colorectal cancer cells. In order to provide effective cancer treatment and minimize the malignancy of cancer cells, it is necessary to understand how complex signaling networks contribute to their invasion and proliferation. The signal transducer and activator of transcription 3 (STAT3) is a promising target due to its involvement in various cellular functions, including apoptosis, immunosuppression, cell invasion, migration, and proliferation. Dysregulation of STAT3 signaling is associated with diseases, particularly colorectal cancer. Long non-coding RNAs (lncRNAs), a subset of non-coding RNAs, are essential for the progression, apoptosis, and metastasis of CRC as they regulate key signaling pathways such as STAT3 signaling and contribute to gene regulation at the epigenetic, transcriptional, and post-transcriptional levels. Moreover, lncRNAs have a key function in regulating immune cells function through STAT3. In this study, we comprehensively reviewed the regulatory roles of different lncRNAs on STAT3 and the mutual effects of this pathway in various aspects of carcinogenesis, including proliferation, apoptosis, metastasis, drug resistance, and angiogenesis. Moreover, we investigate the effects of lncRNA/STAT3 axis on the function of different immune cells that play critical role in the tumor microenvironment.
Collapse
Affiliation(s)
- Lie Ma
- Department of Pulmonary and Critical Care Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 110000, China
| | - XuQing Liu
- Special Service Department, 923rd Hospital of The Joint Logistic Support Force of the Chinese Peoples Liberation Army (Geriatric Disease Area 2), Nanning, 530020, Guangxi, China
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Syeda Wajida Kazmi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, 140307, India
| | | | - K Phaninder Vinay
- Department of ECE, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Ata Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fang Yang
- Department of Emergency, The Eighth Medical Center of PLA General Hospital, Beijing, 10091, China
| | - Mansour Rajabivahid
- Hematology Oncology Subspecialist, Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan
- Department of Neurosurgery, University Medical Center Tuebingen, Tübingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Ghahramani Almanghadim H, Karimi B, Valizadeh S, Ghaedi K. Biological functions and affected signaling pathways by Long Non-Coding RNAs in the immune system. Noncoding RNA Res 2025; 10:70-90. [PMID: 39315339 PMCID: PMC11417496 DOI: 10.1016/j.ncrna.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, the various regulative functions of long non-coding RNAs (LncRNAs) have been well determined. Recently, the vital role of LncRNAs as gene regulators has been identified in the immune system, especially in the inflammatory response. All cells of the immune system are governed by a complex and ever-changing gene expression program that is regulated through both transcriptional and post-transcriptional processes. LncRNAs regulate gene expression within the cell nucleus by influencing transcription or through post-transcriptional processes that affect the splicing, stability, or translation of messenger RNAs (mRNAs). Recent studies in immunology have revealed substantial alterations in the expression of lncRNAs during the activation of the innate immune system as well as the development, differentiation, and activation of T cells. These lncRNAs regulate key aspects of immune function, including the manufacturing of inflammatory molecules, cellular distinction, and cell movement. They do this by modulating protein-protein interactions or through base pairing with RNA and DNA. Here we review the current understanding of the mechanism of action of lncRNAs as novel immune-related regulators and their impact on physiological and pathological processes related to the immune system, including autoimmune diseases. We also highlight the emerging pattern of gene expression control in important research areas at the intersection between immunology and lncRNA biology.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sepehr Valizadeh
- Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
6
|
Wei Y, Hu X, Yuan S, Zhao Y, Zhu C, Guo M, Cui H. Identification of plasma exosomal lncRNA as a biomarker for early diagnosis of gastric cancer. Front Genet 2024; 15:1425591. [PMID: 39440243 PMCID: PMC11493672 DOI: 10.3389/fgene.2024.1425591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background There were about 1,090,000 gastric cancer (GC) cases in 2020 in China. The incidence and mortality rates ranked the fifth and third among all kinds of cancers in China. Early diagnosis plays an important role in the treatment and prognosis of gastric cancer. In recent years, noninvasive diagnosis, especially plasma exosome lncRNAs, has become a promissing biomarkers with high specificity and sensitivity for early diagnosis of cancers. Methods In this study, plasma exosomes of patients with early gastric cancer were extracted efficiently by affinity membrane separation technology, including affinity adsorption, elution, affinity membrane regeneration and other steps. After identified by electron microscopy observation, particle size analysis and Western blot verification, the lncRNAs in the exosomes were extracted and were analysized by high-throughput RNA sequencing (RNA-Seq). The differentially expressed lncRNAs were verified by RT-qPCR in 93 patients with early gastric cancer and 49 normal controls. Results Electron microscopy, particle size analysis and Western blot showed that exosomes were successfully isolated from plasma. RNA-Seq results show that 76 lncRNAs were upregulated and 260 lncRNAs were downregulated in plasma exosomes of early gastric cancer patients compared with normal controls. RT-qPCR analysis indicated that a total of 6 lncRNAs were significantly and differentially expressed in gastric cancer patients compared to normal controls, with 2 (lncmstrg. 1319590, Lncmstrg. 2312697) highly expressed and 4 lowly expressed (lncmstr-g.1004024.1, lncmstrg. 2441832.8, lncmstrg. 315376.1, lncmstrg.907985.2,) (p < 0.05). The survival curve analysis indicated that lncmstrg.2441832.8 and lncmstrg.2312697 had higher sensitivity and specificity for the diagnosis of gastric cancer, respectively and AUC curve areas were 0.6211 and 0.631, p < 0.05, respectively, which were greater than the traditional clinical detection indexes CEA (0.61) and AFP (0.57). When combined lncmstrg.2441832.8 and lncmstrg.2312697 in gastric cancer diagnosis, AUC curve area reached 0.73, which was greater than CA199 (0.71). Conclusion Lncmstrg.2441832.8 and lncmstrg.2312697 may be a potential and promissing biomarkers for early diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Ye Wei
- College of Medicine, Yangzhou University, Yangzhou, China
| | - Xuming Hu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shuai Yuan
- Yangzhou center for disease control and prevention, Yangzhou, China
| | - Yue Zhao
- Department of Medical Affaires, Yangzhou Maternity and Child Health Hospital, Yangzhou, China
| | - Chunhui Zhu
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing, China
| | - Hengmi Cui
- College of Medicine, Yangzhou University, Yangzhou, China
- Institute of Epigenetics and Epigenomics and College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
López-Royo T, Moreno-Martínez L, Zaragoza P, García-Redondo A, Manzano R, Osta R. Differentially expressed lncRNAs in SOD1 G93A mice skeletal muscle: H19, Myhas and Neat1 as potential biomarkers in amyotrophic lateral sclerosis. Open Biol 2024; 14:240015. [PMID: 39406341 PMCID: PMC11479763 DOI: 10.1098/rsob.240015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 10/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease characterized by progressive motor function and muscle mass loss. Despite extensive research in the field, the underlying causes of ALS remain incompletely understood, contributing to the absence of specific diagnostic and prognostic biomarkers and effective therapies. This study investigates the expression of long-non-coding RNAs (lncRNAs) in skeletal muscle as a potential source of biomarkers and therapeutic targets for the disease. The expression profiles of 12 lncRNAs, selected from the literature, were evaluated across different disease stages in tissue and muscle biopsies from the SOD1G93A transgenic mouse model of ALS. Nine out of the 12 lncRNAs were differentially expressed, with Pvt1, H19 and Neat1 showing notable increases in the symptomatic stages of the disease, and suggesting their potential as candidate biomarkers to support diagnosis and key players in muscle pathophysiology in ALS. Furthermore, the progression of Myhas and H19 RNA levels across disease stages correlated with longevity in the SOD1G93A animal model, effectively discriminating between long- and short-term survival individuals, thereby highlighting their potential as prognostic indicators. These findings underscore the involvement of lncRNAs, especially H19 and Myhas, in ALS pathophysiology, offering novel insights for diagnostic, prognostic and therapeutic targets.
Collapse
Affiliation(s)
- Tresa López-Royo
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Laura Moreno-Martínez
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Pilar Zaragoza
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Alberto García-Redondo
- Neurology Department, ALS Unit, Hospital 12 de Octubre Health Research Institute (i+12), CIBERER U-723 (Instituto de Salud Carlos III), Avenida Córdoba, s/n, 28041 Madrid, Spain
| | - Raquel Manzano
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Agroalimentary Institute of Aragon (IA2), Institute of Health Research of Aragon (IIS), University of Zaragoza, Calle Miguel Servet 177, 50013 Zaragoza, Spain
| |
Collapse
|
8
|
Hamdy NM, Zaki MB, Rizk NI, Abdelmaksoud NM, Abd-Elmawla MA, Ismail RA, Abulsoud AI. Unraveling the ncRNA landscape that governs colorectal cancer: A roadmap to personalized therapeutics. Life Sci 2024; 354:122946. [PMID: 39122108 DOI: 10.1016/j.lfs.2024.122946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Colorectal cancer (CRC) being one of the most common malignancies, has a significant death rate, especially when detected at an advanced stage. In most cases, the fundamental aetiology of CRC remains unclear despite the identification of several environmental and intrinsic risk factors. Numerous investigations, particularly in the last ten years, have indicated the involvement of epigenetic variables in this type of cancer. The development, progression, and metastasis of CRC are influenced by long non-coding RNAs (lncRNAs), which are significant players in the epigenetic pathways. LncRNAs are implicated in diverse pathological processes in CRC, such as liver metastasis, epithelial to mesenchymal transition (EMT), inflammation, and chemo-/radioresistance. It has recently been determined that CRC cells and tissues exhibit dysregulation of tens of oncogenic and tumor suppressor lncRNAs. Serum samples from CRC patients exhibit dysregulated expressions of several of these transcripts, offering a non-invasive method of detecting this kind of cancer. In this review, we outlined the typical paradigms of the deregulated lncRNA which exert significant role in the underlying molecular mechanisms of CRC initiation and progression. We comprehensively discuss the role of lncRNAs as innovative targets for CRC prognosis and treatment.
Collapse
Affiliation(s)
- Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abbasia Cairo, 11566, Egypt.
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr Al Ainy, Cairo, 11562, Egypt
| | - Rehab A Ismail
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
9
|
Hofman B, Szyda J, Frąszczak M, Mielczarek M. Long non-coding RNA variability in porcine skeletal muscle. J Appl Genet 2024; 65:565-573. [PMID: 38539022 DOI: 10.1007/s13353-024-00860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 03/21/2024] [Indexed: 08/09/2024]
Abstract
Recently, numerous studies including various tissues have been carried out on long non-coding RNAs (lncRNAs), but still, its variability has not yet been fully understood. In this study, we characterised the inter-individual variability of lncRNAs in pigs, in the context of number, length and expression. Transcriptomes collected from muscle tissue belonging to six Polish Landrace boars (PL1-PL6), including half-brothers (PL1-PL3), were investigated using bioinformatics (lncRNA identification and functional analysis) and statistical (lncRNA variability) methods. The number of lncRNA ranged from 1289 to 3500 per animal, and the total number of common lncRNAs among all boars was 232. The number, length and expression of lncRNAs significantly varied between individuals, and no consistent pattern has been found between pairs of half-brothers. In detail, PL5 exhibits lower expression than the others, while PL4 has significantly higher expression than PL2-PL3 and PL5-PL6. Noteworthy, comparing the inter-individual variability of lncRNA and mRNA expression, they exhibited concordant patterns. The enrichment analysis for common lncRNA target genes determined a variety of biological processes that play fundamental roles in cell biology, and they were mostly related to whole-body homeostasis maintenance, energy and protein synthesis as well as dynamics of multiple nucleoprotein complexes. The high variability of lncRNA landscape in the porcine genome has been revealed in this study. The inter-individual differences have been found in the context of three aspects: the number, length and expression of lncRNAs, which contribute to a better understanding of its complex nature.
Collapse
Affiliation(s)
- Bartłomiej Hofman
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Joanna Szyda
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Magdalena Frąszczak
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Magda Mielczarek
- Biostatistics Group, Department of Genetics, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland.
| |
Collapse
|
10
|
Rossi MN, Fiorucci C, Mariottini P, Cervelli M. Unveiling the hidden players: noncoding RNAs orchestrating polyamine metabolism in disease. Cell Biosci 2024; 14:84. [PMID: 38918813 PMCID: PMC11202255 DOI: 10.1186/s13578-024-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/19/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PA) are polycations with pleiotropic functions in cellular physiology and pathology. In particular, PA have been involved in the regulation of cell homeostasis and proliferation participating in the control of fundamental processes like DNA transcription, RNA translation, protein hypusination, autophagy and modulation of ion channels. Indeed, their dysregulation has been associated to inflammation, oxidative stress, neurodegeneration and cancer progression. Accordingly, PA intracellular levels, derived from the balance between uptake, biosynthesis, and catabolism, need to be tightly regulated. Among the mechanisms that fine-tune PA metabolic enzymes, emerging findings highlight the importance of noncoding RNAs (ncRNAs). Among the ncRNAs, microRNA, long noncoding RNA and circRNA are the most studied as regulators of gene expression and mRNA metabolism and their alteration have been frequently reported in pathological conditions, such as cancer progression and brain diseases. In this review, we will discuss the role of ncRNAs in the regulation of PA genes, with a particular emphasis on the changes of this modulation observed in health disorders.
Collapse
Affiliation(s)
| | | | - Paolo Mariottini
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
| | - Manuela Cervelli
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
| |
Collapse
|
11
|
Angom RS, Joshi A, Patowary A, Sivadas A, Ramasamy S, K. V. S, Kaushik K, Sabharwal A, Lalwani MK, K. S, Singh N, Scaria V, Sivasubbu S. Forward genetic screen using a gene-breaking trap approach identifies a novel role of grin2bb-associated RNA transcript ( grin2bbART) in zebrafish heart function. Front Cell Dev Biol 2024; 12:1339292. [PMID: 38533084 PMCID: PMC10964321 DOI: 10.3389/fcell.2024.1339292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
LncRNA-based control affects cardiac pathophysiologies like myocardial infarction, coronary artery disease, hypertrophy, and myotonic muscular dystrophy. This study used a gene-break transposon (GBT) to screen zebrafish (Danio rerio) for insertional mutagenesis. We identified three insertional mutants where the GBT captured a cardiac gene. One of the adult viable GBT mutants had bradycardia (heart arrhythmia) and enlarged cardiac chambers or hypertrophy; we named it "bigheart." Bigheart mutant insertion maps to grin2bb or N-methyl D-aspartate receptor (NMDAR2B) gene intron 2 in reverse orientation. Rapid amplification of adjacent cDNA ends analysis suggested a new insertion site transcript in the intron 2 of grin2bb. Analysis of the RNA sequencing of wild-type zebrafish heart chambers revealed a possible new transcript at the insertion site. As this putative lncRNA transcript satisfies the canonical signatures, we called this transcript grin2bb associated RNA transcript (grin2bbART). Using in situ hybridization, we confirmed localized grin2bbART expression in the heart, central nervous system, and muscles in the developing embryos and wild-type adult zebrafish atrium and bulbus arteriosus. The bigheart mutant had reduced Grin2bbART expression. We showed that bigheart gene trap insertion excision reversed cardiac-specific arrhythmia and atrial hypertrophy and restored grin2bbART expression. Morpholino-mediated antisense downregulation of grin2bbART in wild-type zebrafish embryos mimicked bigheart mutants; this suggests grin2bbART is linked to bigheart. Cardiovascular tissues use Grin2bb as a calcium-permeable ion channel. Calcium imaging experiments performed on bigheart mutants indicated calcium mishandling in the heart. The bigheart cardiac transcriptome showed differential expression of calcium homeostasis, cardiac remodeling, and contraction genes. Western blot analysis highlighted Camk2d1 and Hdac1 overexpression. We propose that altered calcium activity due to disruption of grin2bbART, a putative lncRNA in bigheart, altered the Camk2d-Hdac pathway, causing heart arrhythmia and hypertrophy in zebrafish.
Collapse
Affiliation(s)
- Ramcharan Singh Angom
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Adita Joshi
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Ashok Patowary
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Ambily Sivadas
- GN Ramachandran Knowledge Center for Genome Informatics, Council of Scientific and Industrial Research, Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Soundhar Ramasamy
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Shamsudheen K. V.
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- GN Ramachandran Knowledge Center for Genome Informatics, Council of Scientific and Industrial Research, Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Kriti Kaushik
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ankit Sabharwal
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Mukesh Kumar Lalwani
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Subburaj K.
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Naresh Singh
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
| | - Vinod Scaria
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- GN Ramachandran Knowledge Center for Genome Informatics, Council of Scientific and Industrial Research, Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine, CSIR Institute of Genomics and Integrative Biology, Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
12
|
Teixeira LCR, Mamede I, Luizon MR, Gomes KB. Role of long non-coding RNAs in the pathophysiology of Alzheimer's disease and other dementias. Mol Biol Rep 2024; 51:270. [PMID: 38302810 DOI: 10.1007/s11033-023-09178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024]
Abstract
Dementia is the term used to describe a group of cognitive disorders characterized by a decline in memory, thinking, and reasoning abilities that interfere with daily life activities. Examples of dementia include Alzheimer's Disease (AD), Frontotemporal dementia (FTD), Amyotrophic lateral sclerosis (ALS), Vascular dementia (VaD) and Progressive supranuclear palsy (PSP). AD is the most common form of dementia. The hallmark pathology of AD includes formation of β-amyloid (Aβ) oligomers and tau hyperphosphorylation in the brain, which induces neuroinflammation, oxidative stress, synaptic dysfunction, and neuronal apoptosis. Emerging studies have associated long non-coding RNAs (lncRNAs) with the pathogenesis and progression of the neurodegenerative diseases. LncRNAs are defined as RNAs longer than 200 nucleotides that lack the ability to encode functional proteins. LncRNAs play crucial roles in numerous biological functions for their ability to interact with different molecules, such as proteins and microRNAs, and subsequently regulate the expression of their target genes at transcriptional and post-transcriptional levels. In this narrative review, we report the function and mechanisms of action of lncRNAs found to be deregulated in different types of dementia, with the focus on AD. Finally, we discuss the emerging role of lncRNAs as biomarkers of dementias.
Collapse
Affiliation(s)
- Lívia Cristina Ribeiro Teixeira
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Izabela Mamede
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Rizzatti Luizon
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte, Minas Gerais, 31270-901, Brazil.
| |
Collapse
|
13
|
Tripathi S, Sengar S, Shree B, Mohapatra S, Basu A, Sharma V. An RBM10 and NF-κB interacting host lncRNA promotes JEV replication and neuronal cell death. J Virol 2023; 97:e0118323. [PMID: 37991381 PMCID: PMC10734533 DOI: 10.1128/jvi.01183-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Central nervous system infection by flaviviruses such as Japanese encephalitis virus, Dengue virus, and West Nile virus results in neuroinflammation and neuronal damage. However, little is known about the role of long non-coding RNAs (lncRNAs) in flavivirus-induced neuroinflammation and neuronal cell death. Here, we characterized the role of a flavivirus-induced lncRNA named JINR1 during the infection of neuronal cells. Depletion of JINR1 during virus infection reduces viral replication and cell death. An increase in GRP78 expression by JINR1 is responsible for promoting virus replication. Flavivirus infection induces the expression of a cellular protein RBM10, which interacts with JINR1. RBM10 and JINR1 promote the proinflammatory transcription factor NF-κB activity, which is detrimental to cell survival.
Collapse
Affiliation(s)
- Shraddha Tripathi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| | - Suryansh Sengar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| | - Bakhya Shree
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| | | | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana, India
| |
Collapse
|
14
|
Lu Q, Liang Y, Meng X, Zhao Y, Fan H, Hou S. The Role of Long Noncoding RNAs in Intestinal Health and Diseases: A Focus on the Intestinal Barrier. Biomolecules 2023; 13:1674. [PMID: 38002356 PMCID: PMC10669616 DOI: 10.3390/biom13111674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The gut is the body's largest immune organ, and the intestinal barrier prevents harmful substances such as bacteria and toxins from passing through the gastrointestinal mucosa. Intestinal barrier dysfunction is closely associated with various diseases. However, there are currently no FDA-approved therapies targeting the intestinal epithelial barriers. Long noncoding RNAs (lncRNAs), a class of RNA transcripts with a length of more than 200 nucleotides and no coding capacity, are essential for the development and regulation of a variety of biological processes and diseases. lncRNAs are involved in the intestinal barrier function and homeostasis maintenance. This article reviews the emerging role of lncRNAs in the intestinal barrier and highlights the potential applications of lncRNAs in the treatment of various intestinal diseases by reviewing the literature on cells, animal models, and clinical patients. The aim is to explore potential lncRNAs involved in the intestinal barrier and provide new ideas for the diagnosis and treatment of intestinal barrier damage-associated diseases in the clinical setting.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (X.M.); (S.H.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
15
|
Al-Masri A. Apoptosis and long non-coding RNAs: Focus on their roles in Heart diseases. Pathol Res Pract 2023; 251:154889. [PMID: 38238070 DOI: 10.1016/j.prp.2023.154889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 01/23/2024]
Abstract
Heart disease is one of the principal death reasons around the world and there is a growing requirement to discover novel healing targets that have the potential to avert or manage these illnesses. On the other hand, apoptosis is a strongly controlled, cell removal procedure that has a crucial part in numerous cardiac problems, such as reperfusion injury, MI (myocardial infarction), consecutive heart failure, and inflammation of myocardium. Completely comprehending the managing procedures of cell death signaling is critical as it is the primary factor that influences patient mortality and morbidity, owing to cardiomyocyte damage. Indeed, the prevention of heart cell death appears to be a viable treatment approach for heart illnesses. According to current researches, a number of long non-coding RNAs cause the heart cells death via different methods that are embroiled in controlling the activity of transcription elements, the pathways that signals transmission within cells, small miRNAs, and the constancy of proteins. When there is too much cell death in the heart, it can cause problems like reduced blood flow, heart damage after restoring blood flow, heart disease in diabetics, and changes in the heart after reduced blood flow. Therefore, studying how lncRNAs control apoptosis could help us find new treatments for heart diseases. In this review, we present recent discoveries about how lncRNAs are involved in causing cell death in different cardiovascular diseases.
Collapse
Affiliation(s)
- Abeer Al-Masri
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
16
|
Nguyen PK, Son Y, Petereit J, Khlystov A, Panella R. Modeling Human Lung Cells Exposure to Wildfire Uncovers Aberrant lncRNAs Signature. Biomolecules 2023; 13:155. [PMID: 36671540 PMCID: PMC9855943 DOI: 10.3390/biom13010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Emissions generated by wildfires are a growing threat to human health and are characterized by a unique chemical composition that is tightly dependent on geographic factors such as fuel type. Long noncoding RNAs (lncRNAs) are a class of RNA molecules proven to be critical to many biological processes, and their condition-specific expression patterns are emerging as prominent prognostic and diagnostic biomarkers for human disease. We utilized a new air-liquid interface (ALI) direct exposure system that we designed and validated in house to expose immortalized human tracheobronchial epithelial cells (AALE) to two unique wildfire smokes representative of geographic regions (Sierra Forest and Great Basin). We conducted an RNAseq analysis on the exposed cell cultures and proved through both principal component and differential expression analysis that each smoke has a unique effect on the LncRNA expression profiles of the exposed cells when compared to the control samples. Our study proves that there is a link between the geographic origin of wildfire smoke and the resulting LncRNA expression profile in exposed lung cells and also serves as a proof of concept for the in-house designed ALI exposure system. Our study serves as an introduction to the scientific community of how unique expression patterns of LncRNAs in patients with wildfire smoke-related disease can be utilized as prognostic and diagnostic tools, as the current roles of LncRNA expression profiles in wildfire smoke-related disease, other than this study, are completely uncharted.
Collapse
Affiliation(s)
- Piercen K. Nguyen
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
| | - Yeongkwon Son
- Organic Analytical Laboratory, Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA
| | - Juli Petereit
- Nevada Bioinformatics Center, University of Nevada Reno, Reno, NV 89557, USA
| | - Andrey Khlystov
- Organic Analytical Laboratory, Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA
| | - Riccardo Panella
- Center for Genomic Medicine, Desert Research Institute, Reno, NV 89512, USA
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark
| |
Collapse
|
17
|
Dutta S, Zhu Y, Han Y, Almuntashiri S, Wang X, Zhang D. Long Noncoding RNA: A Novel Insight into the Pathogenesis of Acute Lung Injury. J Clin Med 2023; 12:604. [PMID: 36675533 PMCID: PMC9861694 DOI: 10.3390/jcm12020604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), represent an acute stage of lung inflammation where the alveolar epithelium loses its functionality. ALI has a devastating impact on the population as it not only has a high rate of incidence, but also has high rates of morbidity and mortality. Due to the involvement of multiple factors, the pathogenesis of ALI is complex and is not fully understood yet. Long noncoding RNAs (lncRNAs) are a group of non-protein-coding transcripts longer than 200 nucleotides. Growing evidence has shown that lncRNAs have a decisive role in the pathogenesis of ALI. LncRNAs can either promote or hinder the development of ALI in various cell types in the lungs. Mechanistically, current studies have found that lncRNAs play crucial roles in the pathogenesis of ALI via the regulation of small RNAs (e.g., microRNAs) or downstream proteins. Undoubtedly, lncRNAs not only have the potential to reveal the underlying mechanisms of ALI pathogenesis but also serve as diagnostic and therapeutic targets for the therapy of ALI.
Collapse
Affiliation(s)
- Saugata Dutta
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Yin Zhu
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Yohan Han
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Sultan Almuntashiri
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Department of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia
| | - Xiaoyun Wang
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
| | - Duo Zhang
- Clinical and Experimental Therapeutics, Charlie Norwood VA Medical Center, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
18
|
Siri G, Yazdani O, Esbati R, Akhavanfar R, Asadi F, Adili A, Ebrahimzadeh F, Hosseini SME. A comprehensive review of the role of lncRNAs in gastric cancer (GC) pathogenesis, immune regulation, and their clinical applications. Pathol Res Pract 2023; 241:154221. [PMID: 36563559 DOI: 10.1016/j.prp.2022.154221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022]
Abstract
Gastric cancer (GC) is the fifth most common malignant tumor and the third leading cause of cancer-related deaths worldwide. Although numerous studies have been conducted on advanced GC, the molecular mechanisms behind it remain obscure. Long non-coding RNAs (lncRNAs) are a family of RNA transcripts capable of regulating target genes at transcriptional, post-transcriptional, and translational stages. They do this by modifying mRNAs, miRNAs, and proteins. These RNAs are critical regulators of many biological processes, including gene epigenetics, transcription, and post-transcriptional levels. This article highlights recent results on lncRNAs involved in drug resistance, proliferation, migration, angiogenesis, apoptosis, autophagy, and immune response in GC. The potential clinical implications of lncRNAs as biomarkers and therapeutic targets in GC are also discussed.
Collapse
Affiliation(s)
- Goli Siri
- Department of Internal Medicine, Amir Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Yazdani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Romina Esbati
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roozbeh Akhavanfar
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Asadi
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, FL, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | |
Collapse
|
19
|
Abstract
Recent studies have identified long non-coding RNAs (lncRNAs) as potential regulators of adipogenesis. In this study, we have characterized a lncRNA, LIPE-AS1, that spans genes CEACAM1 to LIPE in man with conservation of genomic organization and tissue expression between mouse and man. Tissue-specific expression of isoforms of the murine lncRNA were found in liver and adipose tissue, one of which, designated mLas-V3, overlapped the Lipe gene encoding hormone-sensitive lipase in both mouse and man suggesting that it may have a functional role in adipose tissue. Knock down of expression of mLas-V3 using anti-sense oligos (ASOs) led to a significant decrease in the differentiation of the OP9 pre-adipocyte cell line through the down regulation of the major adipogenic transcription factors Pparg and Cebpa. Knock down of mLas-V3 induced apoptosis during the differentiation of OP9 cells as shown by expression of active caspase-3, a change in the localization of LIP/LAP isoforms of C/EBPβ, and expression of the cellular stress induced factors CHOP, p53, PUMA, and NOXA. We conclude that mLas-V3 may play a role in protecting against stress associated with adipogenesis, and its absence leads to apoptosis.
Collapse
Affiliation(s)
- Alyssa Thunen
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Deirdre La Placa
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Zhifang Zhang
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - John E. Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
20
|
Lnc Tmem235 promotes repair of early steroid-induced osteonecrosis of the femoral head by inhibiting hypoxia-induced apoptosis of BMSCs. Exp Mol Med 2022; 54:1991-2006. [PMID: 36380019 PMCID: PMC9723185 DOI: 10.1038/s12276-022-00875-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/24/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have been used in the treatment of early steroid-induced osteonecrosis of the femoral head (SONFH). However, the hypoxic microenvironment in the osteonecrotic area leads to hypoxia-induced apoptosis of transplanted BMSCs, which limits their efficacy. Therefore, approaches that inhibit hypoxia-induced apoptosis of BMSCs are promising for augmenting the efficacy of BMSC transplantation. Our present study found that under hypoxia, the expression of the long noncoding RNA (Lnc) transmembrane protein 235 (Tmem235) was downregulated, the expression of Bcl-2-associated X protein was upregulated, the expression of B-cell lymphoma-2 protein was downregulated, and the apoptotic rate of BMSCs was over 70%. However, overexpression of Lnc Tmem235 reversed hypoxia-induced apoptosis of BMSCs and promoted their survival. These results demonstrated that Lnc Tmem235 effectively inhibited hypoxia-induced apoptosis of BMSCs. Mechanistically, we found that Lnc Tmem235 exhibited competitive binding to miR-34a-3p compared with BIRC5 mRNA, which is an inhibitor of apoptosis; this competitive binding relieved the silencing effect of miR-34a-3p on BIRC5 mRNA to ultimately inhibit hypoxia-induced apoptosis of BMSCs by promoting the expression of BIRC5. Furthermore, we cocultured BMSCs overexpressing Lnc Tmem235 with xenogeneic antigen-extracted cancellous bone to construct tissue-engineered bone to repair a model of early SONFH in vivo. The results showed that overexpression of Lnc Tmem235 effectively reduced apoptosis of BMSCs in the hypoxic microenvironment of osteonecrosis and improved the effect of BMSC transplantation. Taken together, our findings show that Lnc Tmem235 inhibited hypoxia-induced apoptosis of BMSCs by regulating the miR-34a-3p/BIRC5 axis, thus improving the transplantation efficacy of BMSCs for treating early SONFH.
Collapse
|
21
|
Ma X, Yan W, Xu P, Ma L, Zan Y, Huang L, Wang G, Liu L, Hui W. LncRNA-p21 suppresses cell proliferation and induces apoptosis in gastric cancer by sponging miR-514b-3p and up-regulating ARHGEF9 expression. Biol Chem 2022; 403:945-958. [PMID: 35947460 DOI: 10.1515/hsz-2022-0153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022]
Abstract
The long non-coding RNA p21 (lncRNA-p21) was a tumor suppressor gene in most cancer types including gastric cancer (GC). We aimed to identify a specific lncRNA-p21-involved pathway in regulating the proliferation and apoptosis of GC cells. A lower lncRNA-p21 expression in tumors was associated with advanced disease stage and predicted worse survival of GC patients. LncRNA-p21 overexpression in GC cell line somatic gastric cancer (SGC)-7901 and human gastric cancer (HGC)-27 suppressed cell proliferation and enhanced apoptosis, while lncRNA-p21 knockdown caused the opposite effects. Through bioinformatics analysis and luciferase-based reporter assays, we identified miR-514b-3p as a sponge target of lncRNA-p21. Cdc42 guanine nucleotide exchange factor 9 (ARHGEF9), functioned as a tumor suppress factor in GC, was found as the downstream target of miR-514-3p, and their expressions were negatively correlated in GC tumor tissues. In addition, like lncRNA-p21 overexpression alone, miR-514-3p inactivation alone also led to decreased proliferation and increased apoptosis in SGC-7901 and HGC-27 cells, which were markedly attenuated by additional ARHGEF9 knockdown. Xenograft SGC-7901 cells with more lncRNA-p21 or ARHGEF9 expressions or with less miR-514-3p expression exhibited obviously slower in vivo growth than the control SGC-7901 cells in nude mice. Our study reveals a novel lncRNA-p21/miR-514b-3p/ARHGEF9 pathway that can be targeted for GC therapy.
Collapse
Affiliation(s)
- Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Wenyu Yan
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Peng Xu
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Ying Zan
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Lanxuan Huang
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Guanying Wang
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Lili Liu
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| | - Wentao Hui
- Department of Oncology, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, No. 157 Xiwu Road, Xi'an 710004, Shaanxi, China
| |
Collapse
|
22
|
Karimi B, Dehghani Firoozabadi A, Peymani M, Ghaedi K. Circulating long noncoding RNAs as novel bio-tools: Focus on autoimmune diseases. Hum Immunol 2022; 83:618-627. [PMID: 35717260 DOI: 10.1016/j.humimm.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/04/2022]
Abstract
Long non-coding RNAs (lncRNAs) are an emerging class of non-coding RNAs that do not encode proteins. These RNAs have various essential regulatory functions. Irregular expression of lncRNAs has been related to the pathological process of varied diseases, and are considered promising diagnostic biomarkers. LncRNAs can release into the circulation and be stable in body fluids as circulating lncRNAs. A subset of circulating lncRNAs that exist in exosomes are referred to as exosomal lncRNA molecules. These lncRNAs are highly stable and resist RNases. Exosomes have captured a great deal of attention due to their involvement in regulating communications between cells. In conditions of autoimmune disease, exosomes play critical roles in the pathological processes. In this context, circulating lncRNAs have been shown to modulate the immune response and indicated as prognosis and diagnostic biomarkers for autoimmune diseases. This review highlights the role of circulating lncRNAs (particularly exosomal) as diagnostic biomarkers for autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, psoriasis, and Sjögren's syndrome.
Collapse
Affiliation(s)
- Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Kamran Ghaedi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
23
|
Ebrahimi N, Parkhideh S, Samizade S, Esfahani AN, Samsami S, Yazdani E, Adelian S, Chaleshtori SR, Shah-Amiri K, Ahmadi A, Aref AR. Crosstalk between lncRNAs in the apoptotic pathway and therapeutic targets in cancer. Cytokine Growth Factor Rev 2022; 65:61-74. [PMID: 35597701 DOI: 10.1016/j.cytogfr.2022.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
The assertion that a significant portion of the mammalian genome has not been translated and that non-coding RNA accounts for over half of polyadenylate RNA have received much attention. In recent years, increasing evidence proposes non-coding RNAs (ncRNAs) as new regulators of various cellular processes, including cancer progression and nerve damage. Apoptosis is a type of programmed cell death critical for homeostasis and tissue development. Cancer cells often have inhibited apoptotic pathways. It has recently been demonstrated that up/down-regulation of various lncRNAs in certain types of tumors shapes cancer cells' response to apoptotic stimuli. This review discusses the most recent studies on lncRNAs and apoptosis in healthy and cancer cells. In addition, the role of lncRNAs as novel targets for cancer therapy is reviewed here. Finally, since it has been shown that lncRNA expression is associated with specific types of cancer, the potential for using lncRNAs as biomarkers is also discussed.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Iran
| | - Sahar Parkhideh
- Research Institute for Oncology, Hematology and Cell Therapy, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Setare Samizade
- Department of Cellular and molecular, School of Biological Sciences, Islamic Azad University of Falavarjan, Iran
| | - Alireza Nasr Esfahani
- Department of Cellular and molecular, School of Biological Sciences, Islamic Azad University of Falavarjan, Iran
| | - Sahar Samsami
- Biotechnology department of Fasa University of medical science, Fasa, Iran
| | - Elnaz Yazdani
- Department of Biology, Faculty of Science, University Of Isfahan, Isfahan, Iran; Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Samaneh Adelian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Kamal Shah-Amiri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75169, Iran.
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Sasa GBK, Xuan C, Chen M, Jiang Z, Ding X. Clinicopathological implications of lncRNAs, immunotherapy and DNA methylation in lung squamous cell carcinoma: a narrative review. Transl Cancer Res 2022; 10:5406-5429. [PMID: 35116387 PMCID: PMC8799054 DOI: 10.21037/tcr-21-1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/16/2021] [Indexed: 11/06/2022]
Abstract
Objective To explore the clinicopathological impact of lncRNAs, immunotherapy, and DNA methylation in lung squamous cell carcinoma (LUSC), emphasizing their exact roles in carcinogenesis and modes of action. Background LUSC is the second most prevalent form, accounting for around 30% of non-small cell lung cancer (NSCLC). To date, molecular-targeted treatments have significantly improved overall survival in lung adenocarcinoma patients but have had little effect on LUSC therapy. As a result, there is an urgent need to discover new treatments for LUSC that are based on existing genomic methods. Methods In this review, we summarized and analyzed recent research on the biological activities and processes of lncRNA, immunotherapy, and DNA methylation in the formation of LUSC. The relevant studies were retrieved using a thorough search of Pubmed, Web of Science, Science Direct, Google Scholar, and the university's online library, among other sources. Conclusions LncRNAs are the primary components of the mammalian transcriptome and are emerging as master regulators of a number of cellular processes, including the cell cycle, differentiation, apoptosis, and growth, and are implicated in the pathogenesis of a variety of cancers, including LUSC. Understanding their role in LUSC in detail may help develop innovative treatment methods and tactics for LUSC. Meanwhile, immunotherapy has transformed the LUSC treatment and is now considered the new standard of care. To get a better knowledge of LUSC biology, it is critical to develop superior modeling systems. Preclinical models, particularly those that resemble human illness by preserving the tumor immune environment, are essential for studying cancer progression and evaluating novel treatment targets. DNA methylation, similarly, is a component of epigenetic alterations that regulate cellular function and contribute to cancer development. By methylating the promoter regions of tumor suppressor genes, abnormal DNA methylation silences their expression. DNA methylation indicators are critical in the early detection of lung cancer, predicting therapy efficacy, and tracking treatment resistance. As such, this review seeks to explore the clinicopathological impact of lncRNAs, immunotherapy, and DNA methylation in LUSC, emphasizing their exact roles in carcinogenesis and modes of action.
Collapse
Affiliation(s)
- Gabriel B K Sasa
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Cheng Xuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meiyue Chen
- The fourth affiliated hospital, Zhejiang University of Medicine, Hangzhou, China
| | - Zhenggang Jiang
- Department of Science Research and Information Management, Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, China
| | - Xianfeng Ding
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
25
|
Heydarnezhad Asl M, Pasban Khelejani F, Bahojb Mahdavi SZ, Emrahi L, Jebelli A, Mokhtarzadeh A. The various regulatory functions of long noncoding RNAs in apoptosis, cell cycle, and cellular senescence. J Cell Biochem 2022; 123:995-1024. [PMID: 35106829 DOI: 10.1002/jcb.30221] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/28/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) are a group of noncoding cellular RNAs involved in significant biological phenomena such as differentiation, cell development, genomic imprinting, adjusting the enzymatic activity, regulating chromosome conformation, apoptosis, cell cycle, and cellular senescence. The misregulation of lncRNAs interrupting normal biological processes has been implicated in tumor formation and metastasis, resulting in cancer. Apoptosis and cell cycle, two main biological phenomena, are highly conserved and intimately coupled mechanisms. Hence, some cell cycle regulators can influence both programmed cell death and cell division. Apoptosis eliminates defective and unwanted cells, and the cell cycle enables cells to replicate themselves. The improper regulation of apoptosis and cell cycle contributes to numerous disorders such as neurodegenerative and autoimmune diseases, viral infection, anemia, and mainly cancer. Cellular senescence is a tumor-suppressing response initiated by environmental and internal stress factors. This phenomenon has recently attained more attention due to its therapeutic implications in the field of senotherapy. In this review, the regulatory roles of lncRNAs on apoptosis, cell cycle, and senescence will be discussed. First, the role of lncRNAs in mitochondrial dynamics and apoptosis is addressed. Next, the interaction between lncRNAs and caspases, pro/antiapoptotic proteins, and also EGFR/PI3K/PTEN/AKT/mTORC1 signaling pathway will be investigated. Furthermore, the effect of lncRNAs in the cell cycle is surveyed through interaction with cyclins, cdks, p21, and wnt/β-catenin/c-myc pathway. Finally, the function of essential lncRNAs in cellular senescence is mentioned.
Collapse
Affiliation(s)
| | - Faezeh Pasban Khelejani
- Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | | | - Leila Emrahi
- Department of Medical Genetics, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Rostami M, kharajo RS, Parsa-kondelaji M, Ayatollahi H, Sheikhi M, Keramati MR. Altered expression of NEAT1 variants and P53, PTEN, and BCL2 genes in Patients with Acute Myeloid Leukemia. Leuk Res 2022; 115:106807. [DOI: 10.1016/j.leukres.2022.106807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
|
27
|
KRAS-related long noncoding RNAs in human cancers. Cancer Gene Ther 2022; 29:418-427. [PMID: 34489556 PMCID: PMC9113938 DOI: 10.1038/s41417-021-00381-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/29/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
KRAS is one of the most widely prevalent proto-oncogenes in human cancers. The constitutively active KRAS oncoprotein contributes to both tumor onset and cancer development by promoting cell proliferation and anchorage-independent growth in a MAPK pathway-dependent manner. The expression of microRNAs (miRNAs) and the KRAS oncogene are known to be dysregulated in various cancers, while long noncoding RNAs (lncRNAs) can act as regulators of the miRNAs targeting KRAS oncogene in different cancers and have gradually become a focus of research in recent years. In this review article, we summarize recent advances in the research on lncRNAs that have sponging effects on KRAS-targeting miRNAs as crucial mediators of KRAS expression in different cell types and organs. A deeper understanding of lncRNA function in KRAS-driven cancers is of major fundamental importance and will provide a valuable clinical tool for the diagnosis, prognosis, and eventual treatment of cancers.
Collapse
|
28
|
Eftekhari A, Maleki Dizaj S, Sharifi S, Salatin S, Khalilov R, Samiei M, Zununi Vahed S, Ahmadian E. Salivary biomarkers in cancer. Adv Clin Chem 2022; 110:171-192. [PMID: 36210075 DOI: 10.1016/bs.acc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Ghildiyal R, Sawant M, Renganathan A, Mahajan K, Kim EH, Luo J, Dang HX, Maher CA, Feng FY, Mahajan NP. Loss of long non-coding RNA NXTAR in prostate cancer augments androgen receptor expression and enzalutamide resistance. Cancer Res 2021; 82:155-168. [PMID: 34740892 DOI: 10.1158/0008-5472.can-20-3845] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/19/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) signaling continues to play a dominant role in all stages of prostate cancer (PC), including castration-resistant prostate cancers (CRPC) that have developed resistance to second-generation AR antagonists such as enzalutamide. In this study, we identified a long non-coding RNA (lncRNA), NXTAR (LOC105373241), that is located convergent with the AR gene and is repressed in human prostate tumors and cell lines. NXTAR bound upstream of the AR promoter and promoted EZH2 recruitment, causing significant loss of AR (and AR-V7) expression. Paradoxically, AR bound the NXTAR promoter, and inhibition of AR by the ACK1/TNK2 small molecule inhibitor (R)-9b excluded AR from the NXTAR promoter. The histone acetyltransferase GCN5 bound and deposited H3K14 acetylation marks, enhancing NXTAR expression. Application of an oligonucleotide derived from NXTAR exon 5 (NXTAR-N5) suppressed AR/AR-V7 expression and prostate cancer cell proliferation, indicating the translational relevance of the negative regulation of AR. In addition, pharmacological restoration of NXTAR using (R)-9b abrogated enzalutamide-resistant prostate xenograft tumor growth. Overall, this study uncovers a positive feedback loop, wherein NXTAR acts as a novel prostate tumor-suppressing lncRNA by inhibiting AR/AR-V7 expression, which in turn upregulates NXTAR levels, compromising enzalutamide-resistant prostate cancer. The restoration of NXTAR could serve as a new therapeutic modality for patients who have acquired resistance to second-generation AR antagonists.
Collapse
Affiliation(s)
| | | | | | | | - Eric H Kim
- Siteman Cancer Center, Moffitt Cancer Center
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis School of Medicine
| | - Ha X Dang
- Internal Medicine, Washington University in St. Louis
| | | | - Felix Y Feng
- Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco
| | | |
Collapse
|
30
|
Zheng L, Guan Z, Xue M. A crucial role for the long non-coding RNA CASC11 in the pathogenesis of human cancers. Am J Transl Res 2021; 13:10922-10932. [PMID: 34650773 PMCID: PMC8507062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs more than 200 nucleotides in length. Although they do not encode proteins, lncRNAs can regulate gene expression at the transcriptional, post-transcriptional, and epigenetic levels. Emerging data show that lncRNAs are important for tumorigenesis and cancer progression. Cancer susceptibility candidate 11 (CASC11) is a prominent lncRNA that is upregulated in various types of cancers. Moreover, its overexpression correlates with larger tumor size, more advanced cancer stages, cancer metastasis, and poor overall survival for most types of cancer. Functionally, the knockdown of CASC11 can inhibit cell proliferation, invasion, and migration, while enhancing apoptosis through its regulation of gene expression and signaling pathways and its interactions with functional proteins. Here, we discuss the identification, expression, and function of CASC11. Additionally, we discuss the potential roles of CASC11 as a diagnostic biomarker, prognostic biomarker, and therapeutic target in various cancers.
Collapse
Affiliation(s)
- Lian Zheng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
| | - Zhenjie Guan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
| | - Miaomiao Xue
- Department of General Dentistry, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, P. R. China
| |
Collapse
|
31
|
Liu P, Huang X, Wu H, Yin G, Shen L. LncRNA-H19 gene plays a significant role in regulating glioma cell function. Mol Genet Genomic Med 2021; 9:e1480. [PMID: 34477331 PMCID: PMC8580082 DOI: 10.1002/mgg3.1480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background Glioma is an aggressive adult primary cancer, and is characterized by low cure rate, poor prognosis, and high recurrence. The present study aimed to investigate the effect of lncRNA‐H19 gene silencing on glioma cell function. Methods lncRNA‐H19 interference vector (LV3‐si‐H19) and negative control vector (LV3‐NC) were stably transfected into U251 and U87‐MG cells, respectively. Quantitative real‐time PCR (qRT‐PCR) was performed to investigate the expression of lncRNA‐H19. Cell proliferation capacity was tested by adopting cell counting kit (CCK8), and propidium iodide (PI) was used for cell cycle analysis. Meanwhile, flow cytometry (FCM) method was used to investigate cell apoptosis, cell migration capacity was detected via wound healing and transwell experiments, and sphere‐forming ability was examined in serum‐free suspension culture. Additionally, glioma animal models were conducted through injecting U251 cells to estimate the effects of lncRNA‐H19 on glioma growth in vivo. Results Knocking down lncRNA‐H19 gene could effectively suppress the proliferation of U251 and U87‐MG cells. The knockdown of lncRNA‐H19 remarkably inhibited the migration and blocked cycle progressions of U251 and U87‐MG cells, yet, no obvious changes were observed in cell apoptosis. Besides, inhibiting lncRNA‐H19 expression could attenuate sphere‐forming function of U251 and U87‐MG cells. Additionally, tumor volume and weight were significantly reduced in rats injected with U251 LV‐si‐H19 cell line compared to untransfected and negative controls, when survival time was obviously prolonged in U251 LV‐si‐H19 injection groups. Conclusion LncRNA‐H19 gene plays a carcinogenic role in glioma progression via enhancing aggressive behavior of glioma cells.
Collapse
Affiliation(s)
- Ping Liu
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xinqiong Huang
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Haijun Wu
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Guoling Yin
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Liangfang Shen
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| |
Collapse
|
32
|
Dehghan MH, Hedayati M, Shivaee S, Shakib H, Rajabi S. Tamoxifen triggers apoptosis of papillary thyroid cancer cells by two different mechanisms. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Hosseini MS, Samaei NM, Ghaderian SMH, Dastmalchi R, Rajabi S. The oncogenic role of both lncRNA PANDA and BCL2 gene in glioblastoma. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Zheng J, Zhou Z, Qiu Y, Wang M, Yu H, Wu Z, Wang X, Jiang X. A Prognostic Ferroptosis-Related lncRNAs Signature Associated With Immune Landscape and Radiotherapy Response in Glioma. Front Cell Dev Biol 2021; 9:675555. [PMID: 34095147 PMCID: PMC8170051 DOI: 10.3389/fcell.2021.675555] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are implicated in the regulation of tumor cell ferroptosis. However, the prognostic value of ferroptosis-related lncRNAs has never been comprehensively explored in glioma. In this study, the transcriptomic data and clinical information of glioma patients were downloaded from TCGA, CGGA and Rembrandt databases. We identified 24 prognostic ferroptosis-related lncRNAs, 15 of which (SNAI3-AS1, GDNF-AS1, WDFY3-AS2, CPB2-AS1, WAC-AS1, SLC25A21-AS1, ARHGEF26-AS1, LINC00641, LINC00844, MIR155HG, MIR22HG, PVT1, SNHG18, PAXIP1-AS2, and SBF2-AS1) were used to construct a ferroptosis-related lncRNAs signature (FRLS) according to the least absolute shrinkage and selection operator (LASSO) regression. The validity of this FRLS was verified in training (TCGA) and validation (CGGA and Rembrandt) cohorts, respectively. The Kaplan-Meier curves revealed a significant distinction of overall survival (OS) between the high- and low-risk groups. The receiver operating characteristic (ROC) curves exhibited robust prognostic capacity of this FRLS. A nomogram with improved accuracy for predicting OS was established based on independent prognostic factors (FRLS, age, and WHO grade). Besides, patients in the high-risk group had higher immune, stroma, and ESTIMATE scores, lower tumor purity, higher infiltration of immunosuppressive cells, and higher expression of immune checkpoints. Patients in the low-risk group benefited significantly from radiotherapy, while no survival benefit of radiotherapy was observed for those in the high-risk group. In conclusion, we identified the prognostic ferroptosis-related lncRNAs in glioma, and constructed a prognostic signature which was associated with the immune landscape of glioma microenvironment and radiotherapy response.
Collapse
Affiliation(s)
- Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijie Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Qiu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minjie Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Yu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Comprehensive analysis of long noncoding RNA and mRNA in five colorectal cancer tissues and five normal tissues. Biosci Rep 2021; 40:222043. [PMID: 32016349 PMCID: PMC7028436 DOI: 10.1042/bsr20191139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 01/08/2020] [Accepted: 01/24/2020] [Indexed: 12/30/2022] Open
Abstract
The present study investigated the role of abnormally expressed mRNA and long noncoding RNA (lncRNA) in the development of colorectal cancer (CRC). We used lncRNA sequencing to analyze the transcriptome (mRNA and lncRNA) of five pairs of CRC tissues and adjacent normal tissues. The total expression of mRNAs and lncRNAs in each sample was determined using the R package and the gene expression was calculated using normalized FPKM. The structural features and expression of all detected lncRNAs were compared with those of mRNAs. Differentially expressed mRNAs were selected to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The functional analysis of differentially expressed lncRNAs was performed by analyzing the GO and KEGG enrichment of predicted cis-regulated target genes. A total of 18.2 × 108 reads were obtained by sequencing, in which the clean reads reached ≥ 94.67%, with a total of 245.2 G bases. The number of mRNAs and lncRNAs differentially expressed in CRC tissues and normal tissues were 113 and 6, respectively. Further predictive analysis of target genes of lncRNAs revealed that six lncRNA genes had potential cis-regulatory effects on 13 differentially expressed mRNA genes and co-expressed with 53 mRNAs. Up-regulated CTD-2256P15.4 and RP11-229P13.23 were the most important lncRNAs in these CRC tissues and involved in cell proliferation and pathway in cancer. In conclusion, our study provides evidence regarding the mRNA and lncRNA transcription in CRC tissues, as well as new insights into the lncRNAs and mRNAs involved in the development of CRC.
Collapse
|
36
|
Dong M, Xu T, Li H, Li X. LINC00052 promotes breast cancer cell progression and metastasis by sponging miR-145-5p to modulate TGFBR2 expression. Oncol Lett 2021; 21:368. [PMID: 33777194 PMCID: PMC7988718 DOI: 10.3892/ol.2021.12629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) may participate in biological regulatory mechanisms of tumors. The aim of the present study was to uncover the molecular mechanism of the lncRNA LINC00052 in the tumorigenesis of breast cancer (BC). LINC00052 expression in BC tissues and cell lines was detected by reverse transcription-quantitative PCR analysis. The Cell Counting Kit-8, proliferation, Transwell and wound healing assays were employed to confirm the effect of LINC00052 on cell proliferation, migration and invasion. The cell localization of LINC00052 was estimated by cytoplasmic nuclear separation assay. Finally, the potential regulatory mechanism of LINC00052 in BC was detected by western blot analysis. The expression levels of LINC00052 were found to be significantly higher in BC tissues compared with those in the adjacent normal tissues. Downregulation of LINC00052 expression in vitro significantly suppressed the proliferation, migration and invasion of BC cells. LINC00052 was mainly expressed in the cytoplasm and was considered to bind with microRNA (miR)-145-5p based on various databases. Notably, the high expression levels of LINC00052 led to the low expression levels of miR-145-5p and high expression levels of TGF-β receptor II (TGFBR2). In conclusion, the findings of the present study demonstrated that LINC00052 may sponge miR-145-5p to upregulate TGFBR2 expression in order to promote the proliferation and metastasis of BC cells. Therefore, LINC00052 may be an effective potential target for the diagnosis and treatment of BC.
Collapse
Affiliation(s)
- Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
37
|
Abstract
A type of evolutionarily conserved, noncoding, small, endogenous, single-stranded RNA, miRNAs are widely distributed in eukaryotes, where they participate in various biological processes as critical regulatory molecules. miR-1299 has mainly been investigated in cancers. miR-1299 is a tumor suppressor that regulates the expression of its target genes, activating or inhibiting the transcription of genes regulating biological activities including cell proliferation, migration, survival and programmed cell death. miR-1299 has become a hotspot in research of disease mechanisms and biomarkers; elucidation of the regulatory roles of miR-1299 in tumorigenesis, proliferation, apoptosis, invasion, migration and angiogenesis may provide a new perspective for understanding its biological functions as a tumor suppressor. As key regulatory molecules, microRNAs participate in various biological processes and have become a widespread research focus. This article discusses how the microRNA miR-1299 plays a role as a tumor suppressor and participates in the regulation of tumor pathogenesis. We provide an overview of the role of miR-1299 in tumor diseases and discuss the pathogenesis and regulation mechanisms of miR-1299 in different specific cancers.
Collapse
Affiliation(s)
- Deng Kaiyuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Huang Lijuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Sun Xueyuan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| | - Zang Yunhui
- Department of Laboratory Medicine, The Second Affiliated Hospital of Harbin Medical University, 150086, China
| |
Collapse
|
38
|
Karakas D, Ozpolat B. The Role of LncRNAs in Translation. Noncoding RNA 2021; 7:16. [PMID: 33672592 PMCID: PMC8005997 DOI: 10.3390/ncrna7010016] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a group of non-protein coding RNAs with lengths of more than 200 nucleotides, exert their effects by binding to DNA, mRNA, microRNA, and proteins and regulate gene expression at the transcriptional, post-transcriptional, translational, and post-translational levels. Depending on cellular location, lncRNAs are involved in a wide range of cellular functions, including chromatin modification, transcriptional activation, transcriptional interference, scaffolding and regulation of translational machinery. This review highlights recent studies on lncRNAs in the regulation of protein translation by modulating the translational factors (i.e, eIF4E, eIF4G, eIF4A, 4E-BP1, eEF5A) and signaling pathways involved in this process as wells as their potential roles as tumor suppressors or tumor promoters.
Collapse
Affiliation(s)
- Didem Karakas
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Istinye University, Istanbul 34010, Turkey;
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
39
|
Chen L, Qian X, Wang Z, Zhou X. The HOTAIR lncRNA: A remarkable oncogenic promoter in human cancer metastasis. Oncol Lett 2021; 21:302. [PMID: 33732378 PMCID: PMC7905531 DOI: 10.3892/ol.2021.12563] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) is a new type of non-coding RNA that has an important regulatory influence on several human diseases, including cancer metastasis. HOX antisense intergenic RNA (HOTAIR), a newly discovered lncRNA, has an important effect on tumour proliferation, migration and metastasis. HOTAIR regulates cell proliferation, changes gene expression, and promotes tumour cell invasion and migration. However, its molecular mechanism of action remains unknown. The present review summarizes the molecular mechanism and role of HOTAIR in tumour invasion and metastasis, discusses the association between HOTAIR and tumour metastasis through different pathways, such as the transforming growth factor β, Wnt/β-catenin, PI3K/AKT/MAPK and vascular endothelial growth factor pathways, emphasizes the function of HOTAIR in human malignant tumour metastasis and provides a foundation for its application in the diagnosis, prognosis and medical treatment of various tumours.
Collapse
Affiliation(s)
- Lili Chen
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xinle Qian
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Zhongqi Wang
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| | - Xiqiu Zhou
- Department of Medical Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
40
|
Liu X, Zhang P, Li Y, Zhao N, Han H. The AMPK-mTOR axis requires increased MALAT1 expression for promoting granulosa cell proliferation in endometriosis. Exp Ther Med 2021; 21:21. [PMID: 33235630 PMCID: PMC7678598 DOI: 10.3892/etm.2020.9453] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a common reproductive disorder in women, with a global prevalence of 10-15%. Long noncoding RNAs (lncRNAs) are critical to gene transcription, cell cycle modulation and immune response. The lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) reportedly mediates autophagy of endometrial stromal cells in endometriosis. The present study aimed to evaluate the role and mechanism of MALAT1 in granulosa cells (GCs) in endometriosis. Consequently, MALAT1 expression was upregulated in GCs obtained from patients with endometriosis and in the steroidogenic human granulosa-like tumor cell line KGN. However, MALAT1 knockdown consequently decreased the proliferation and viability of these cells, as determined by MTT and 5-ethynyl-2'-deoxyuridine staining assays. Both Annexin V-fluorescein isothiocyanate/propidium iodide flow cytometry and western blotting performed to detect proapoptotic factors indicated that MALAT1 depletion might promote KGN cell apoptosis. Furthermore, MALAT1 knockdown increased GC autophagy, as evidenced by microtubule-associated protein 1A/1B-light chain 3 (LC3) cleavage upregulation and p62 degradation. In addition, although 5'-AMP-activated protein kinase (AMPK) mRNA expression and protein levels decreased in GCs obtained from patients with endometriosis and KGN cells, MALAT1 knockdown restored AMPK levels. However, addition of BML-275 (MALAT1 inhibitor) to MALAT1-knockdown KGN cells recovered their viability and proliferative capacity and simultaneously reduced their apoptotic and autophagic capacity. Therefore, MALAT1 may regulate GC proliferation via AMPK-mTOR-mediated cell apoptosis and autophagy.
Collapse
Affiliation(s)
- Xuejie Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ping Zhang
- Department of Obstetrics, Zhucheng People's Hospital, Zhucheng, Shandong 262200, P.R. China
| | - Yanmin Li
- Department of Obstetrics and Gynecology, Liaocheng Second People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Na Zhao
- Department of Obstetrics and Gynecology, Dezhou People's Hospital, Dezhou, Shandong 253000, P.R. China
| | - Haiyan Han
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
41
|
Karimzadeh MR, Seyedtaghia MR, Soudyab M, Nezamnia M, Kidde J, Sahebkar A. Exosomal Long Noncoding RNAs: Insights into Emerging Diagnostic and Therapeutic Applications in Lung Cancer. JOURNAL OF ONCOLOGY 2020; 2020:7630197. [PMID: 33224198 PMCID: PMC7671817 DOI: 10.1155/2020/7630197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. Annually, millions of people die from lung cancer because of late detection and ineffective therapies. Recently, exosomes have been introduced as new therapeutic players with the potential to improve upon current diagnostic and treatment options. Exosomes are small membranous vesicles produced during endosomal merging. This allows for cell packaging of nucleic acids, proteins, and lipids and transfer to adjacent or distant cells. While exosomes are a part of normal intercellular signaling, they also allow malignant cells to transfer oncogenic material leading to tumor spread and metastasis. Exosomes are an interesting field of discovery for biomarkers and therapeutic targets. Among exosomal materials, lncRNAs have priority; lncRNAs are a class of noncoding RNAs longer than 200 base pairs. In the case of cancer, primary interest regards their oncogene and tumor suppressor functions. In this review, the advantages of exosomal lncRNAs as biomarkers and therapeutic targets will be discussed in addition to reviewing studies of their application in lung cancer.
Collapse
Affiliation(s)
- Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mohammad Reza Seyedtaghia
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soudyab
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Jason Kidde
- Department of Emergency Medicine, University of Utah, Salt Lake City, UT, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Halal Research Center of IRI, FDA, Tehran, Iran
| |
Collapse
|
42
|
Alizadeh A, Jebelli A, Baradaran B, Amini M, Oroojalian F, Hashemzaei M, Mokhtarzadeh A, Hamblin MR. Crosstalk between long non-coding RNA DLX6-AS1, microRNAs and signaling pathways: A pivotal molecular mechanism in human cancers. Gene 2020; 769:145224. [PMID: 33059027 DOI: 10.1016/j.gene.2020.145224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/02/2020] [Accepted: 10/07/2020] [Indexed: 12/24/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a type of non-protein coding RNA, which have been found to play multiple roles in various molecular and cellular processes by epigenetic regulation of gene expression at post transcriptional levels. LncRNAs may act either as an oncogene or as a tumor suppressor gene in different cancers. Aberrant expression and dysregulation of lncRNAs has been correlated with cancer development and tumor growth via several different signaling pathways. Therefore, lncRNAs could serve as diagnostic biomarkers and as therapeutic targetes in many human cancers. Previous studies have reported that dysregulated expression of the lncRNA called DLX6-AS1 in various cancer types, such as lung, colorectal, bladder, ovarian, hepatocellular, pancreatic and gastric. DLX6-AS1 plays an important role in tumorigenesis by affecting cell proliferation, migration, invasion, EMT, and apoptosis. DLX6-AS1 exerts these regulatory effects by interfering with various microRNA axes and signaling pathways including, Wnt/βcatenin, Notch, P13/AKT/mTOR, and STAT3. This review focuses on the possible mechanisms by which DLX6-AS1 regulates tumor initiation and progression. Accordingly, DLX6-AS1 may act as a novel potential biomarker for cancer diagnosis or therapy in future.
Collapse
Affiliation(s)
- Anita Alizadeh
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic Science, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Aptameology, School of Pharmacy, Zabol University of Medical Sciences, Zabol. Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
43
|
Javed Z, Khan K, Iqbal MZ, Ahmad T, Raza Q, Sadia H, Raza S, Salehi B, Sharifi-Rad J, Cho WC. Long non-coding RNA regulation of TRAIL in breast cancer: A tangle of non-coding threads. Oncol Lett 2020; 20:37. [PMID: 32802161 PMCID: PMC7412712 DOI: 10.3892/ol.2020.11896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is a complex disease posing a serious threat to the female population worldwide. A complex molecular landscape and tumor heterogeneity render breast cancer cells resistant to drugs and able to promote metastasis and invasiveness. Despite the recent advancements in diagnostics and drug discovery, finding an effective cure for breast cancer is still a major challenge. Positive and negative regulation of apoptosis has been a subject of extensive study over the years. Numerous studies have shed light on the mechanisms that impede the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling cascade. Long non-coding RNAs (lncRNAs) have been implicated in the orchestration, development, proliferation, differentiation and metastasis of breast cancer. However, the roles of lncRNAs in fine-tuning apoptosis regulating machinery in breast cancer remain to be elucidated. The present review illuminates the roles of these molecules in the regulation of breast cancer and the interplay between lncRNA and TRAIL in breast cancer. The present review also attempts to reveal their role in the regulation of apoptosis in breast cancer appears a promising approach for the development of new diagnostic and therapeutic regimens.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Punjab 54792, Pakistan
| | - Khushbukhat Khan
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Punjab 44000, Pakistan
| | - Muhammad Zaheer Iqbal
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Punjab 53700, Pakistan
| | - Touqeer Ahmad
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Punjab 54000, Pakistan
| | - Qamar Raza
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab 54000, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Balochistan 87100, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Punjab 54792, Pakistan
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam 44340847, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, P.R. China
| |
Collapse
|
44
|
Wang JJ, Niu MH, Zhang T, Shen W, Cao HG. Genome-Wide Network of lncRNA-mRNA During Ovine Oocyte Development From Germinal Vesicle to Metaphase II in vitro. Front Physiol 2020; 11:1019. [PMID: 32973554 PMCID: PMC7461901 DOI: 10.3389/fphys.2020.01019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA (lncRNA) is involved in many biological processes, and it has been closely investigated. However, research into the role of lncRNA in ovine ovarian development is scant and poorly understood, particularly in relation to the molecular mechanisms of ovine oocyte maturation. In the current study, RNA sequencing was performed with germinal vesicle (GV) and in vitro matured metaphase II (MII) stage oocytes, isolated from ewes. Through the use of bioinformatic analysis, abundant candidate lncRNAs in stage-specific ovine oocytes were identified, and their trans- and cis-regulatory effects were deeply dissected using computational prediction software. Functional enrichment analysis of these lncRNAs revealed that they were involved in the regulation of many key signaling pathways during ovine oocyte development, which was reflected by their targeted genes. From this study, multiple lncRNA-mRNA networks were presumed to be involved in key signaling pathways regarding ovine oocyte maturation and meiotic resumption. In particular, one novel lncRNA (MSTRG.17927) appeared to mediate the regulation of phosphatidylinositol 3-kinase signaling (PI3K) signaling during ovine oocyte maturation. Therefore, this research offers novel insights into the molecular mechanisms underlying ovine oocyte meiotic maturation regulated by lncRNA-mRNA networks from a genome-wide perspective.
Collapse
Affiliation(s)
- Jun-Jie Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Meng-Han Niu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Teng Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hong-Guo Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
45
|
Sharma U, Barwal TS, Acharya V, Tamang S, Vasquez KM, Jain A. Cancer Susceptibility Candidate 9 (CASC9): A Novel Targetable Long Noncoding RNA in Cancer Treatment. Transl Oncol 2020; 13:100774. [PMID: 32450549 PMCID: PMC7256364 DOI: 10.1016/j.tranon.2020.100774] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Based on epidemiological data provided by the World Health Organization (2018), cancer is the second most prevalent cause of death worldwide. Several factors are thought to contribute to the high mortality rate in cancer patients, including less-than-optimal diagnostic and therapeutic strategies. Thus, there is an urgent need to identify accurate biomarkers with diagnostic, prognostic, and potential therapeutic applications. In this regard, long noncoding RNAs (lncRNAs) hold immense potential due to their regulatory roles in cancer development and associated cancer hallmarks. Recently, CASC9 transcripts have attracted significant attention due to their altered expression during the pathogenesis of cancer and their apparent contributions to various cancer-associated phenotypes involving a broad spectrum of molecular mechanisms. Here, we have provided an in-depth review describing the known functions of the lncRNA CASC9 in cancer development and progression.
Collapse
Affiliation(s)
- Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Varnali Acharya
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Suraksha Tamang
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
46
|
Liu L, Liu F, Sun Z, Peng Z, You T, Yu Z. LncRNA NEAT1 promotes apoptosis and inflammation in LPS-induced sepsis models by targeting miR-590-3p. Exp Ther Med 2020; 20:3290-3300. [PMID: 32855700 PMCID: PMC7444425 DOI: 10.3892/etm.2020.9079] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 07/14/2020] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a complication of infection caused by disease or trauma. Increasing evidence have shown that long noncoding RNAs (lncRNAs) are involved in the regulation of sepsis. However, the mechanism of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in the regulation of sepsis progression remains to be elucidated. Lipopolysaccharide (LPS) was used to induce a sepsis cell model. The expression levels of NEAT1 and microRNA (miR)-590-3p were determined by reverse transcription-quantitative PCR. Cell viability and apoptosis were detected using Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. Western blot analysis was performed to evaluate the levels of apoptosis- and NF-κB signaling pathway-related proteins. The concentration of inflammatory cytokines was determined using ELISA. In addition, dual-luciferase reporter assay, RNA immunoprecipitation and biotin-labeled RNA pull-down assay were performed to verify the interaction between NEAT1 and miR-590-3p. The results showed that NEAT1 was highly expressed in patients with sepsis and LPS-induced H9c2 cells. Knockdown of NEAT1 decreased LPS-induced cell apoptosis and inflammation response in H9c2 cells. Meanwhile, miR-590-3p showed decreased expression in sepsis, and its overexpression could relieve LPS-induced H9c2 cell damage. Further experiments revealed that NEAT1 could sponge miR-590-3p. Knockdown of miR-590-3p reversed the inhibitory effect of NEAT1 knockdown on LPS-induced H9c2 cell damage. Additionally, the NEAT1/miR-590-3p axis could regulate the activity of the NF-κB signaling pathway. To conclude, lncRNA NEAT1 accelerated apoptosis and inflammation in LPS-stimulated H9c2 cells via sponging miR-590-3p. These findings may provide a new strategy for the treatment of sepsis.
Collapse
Affiliation(s)
- Lingling Liu
- Emergency Department, First Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, P.R. China
| | - Fengtao Liu
- Center of Functional Laboratory, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhilu Sun
- Emergency Department, First Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhengliang Peng
- Emergency Department, First Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ting You
- Emergency Department, First Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ziying Yu
- Emergency Department, First Affiliated Hospital of the University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
47
|
Podralska M, Ciesielska S, Kluiver J, van den Berg A, Dzikiewicz-Krawczyk A, Slezak-Prochazka I. Non-Coding RNAs in Cancer Radiosensitivity: MicroRNAs and lncRNAs as Regulators of Radiation-Induced Signaling Pathways. Cancers (Basel) 2020; 12:E1662. [PMID: 32585857 PMCID: PMC7352793 DOI: 10.3390/cancers12061662] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a cancer treatment that applies high doses of ionizing radiation to induce cell death, mainly by triggering DNA double-strand breaks. The outcome of radiotherapy greatly depends on radiosensitivity of cancer cells, which is determined by multiple proteins and cellular processes. In this review, we summarize current knowledge on the role of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in determining the response to radiation. Non-coding RNAs modulate ionizing radiation response by targeting key signaling pathways, including DNA damage repair, apoptosis, glycolysis, cell cycle arrest, and autophagy. Additionally, we indicate miRNAs and lncRNAs that upon overexpression or inhibition alter cellular radiosensitivity. Current data indicate the potential of using specific non-coding RNAs as modulators of cellular radiosensitivity to improve outcome of radiotherapy.
Collapse
Affiliation(s)
- Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | | | | |
Collapse
|
48
|
Song J, Tian S, Yu L, Xing Y, Yang Q, Duan X, Dai Q. AC-Caps: Attention Based Capsule Network for Predicting RBP Binding Sites of LncRNA. Interdiscip Sci 2020; 12:414-423. [PMID: 32572768 DOI: 10.1007/s12539-020-00379-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 01/03/2023]
Abstract
Long non-coding RNA(lncRNA) is one of the non-coding RNAs longer than 200 nucleotides and it has no protein encoding function. LncRNA plays a key role in many biological processes. Studying the RNA-binding protein (RBP) binding sites on the lncRNA chain helps to reveal epigenetic and post-transcriptional mechanisms, to explore the physiological and pathological processes of cancer, and to discover new therapeutic breakthroughs. To improve the recognition rate of RBP binding sites and reduce the experimental time and cost, many calculation methods based on domain knowledge to predict RBP binding sites have emerged. However, these prediction methods are independent of nucleotides and do not take into account nucleotide statistics. In this paper, we use a high-order statistical-based encoding scheme, then the encoded lncRNA sequences are fed into a hybrid deep learning architecture named AC-Caps. It consists of a joint processing layer(composed of attention mechanism and convolutional neural network) and a capsule network. The AC-Caps model was evaluated using 31 independent experimental data sets from 12 lncRNA-binding proteins. In experiments, our method achieves excellent performance, with an average area under the curve (AUC) of 0.967 and an average accuracy (ACC) of 92.5%, which are 0.014, 2.3%, 0.261, 28.9%, 0.189, and 21.8% higher than HOCCNNLB, iDeepS, and DeepBind, respectively. The results show that the AC-Caps method can reliably process the large-scale RBP binding site data on the lncRNA chain, and the prediction performance is better than existing deep-learning models. The source code of AC-Caps and the datasets used in this paper are available at https://github.com/JinmiaoS/AC-Caps .
Collapse
Affiliation(s)
- Jinmiao Song
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830008, China
- Dalian Key Lab of Digital Technology for National Culture, Dalian Minzu University, Dalian, 116600, China
| | - Shengwei Tian
- School of Software, Xinjiang University, Urumqi, 830046, China.
| | - Long Yu
- Network Center, Xinjiang University, Urumqi, 830046, China
| | - Yan Xing
- Imaging Center, Xinjiang Medical University Affiliated First Hospital, Urumqi, 830011, China.
| | - Qimeng Yang
- School of Information Science and Engineering, Xinjiang University, Urumqi, 830008, China
| | - Xiaodong Duan
- Dalian Key Lab of Digital Technology for National Culture, Dalian Minzu University, Dalian, 116600, China
| | - Qiguo Dai
- Dalian Key Lab of Digital Technology for National Culture, Dalian Minzu University, Dalian, 116600, China
| |
Collapse
|
49
|
Vafadar A, Shabaninejad Z, Movahedpour A, Mohammadi S, Fathullahzadeh S, Mirzaei HR, Namdar A, Savardashtaki A, Mirzaei H. Long Non-Coding RNAs As Epigenetic Regulators in Cancer. Curr Pharm Des 2020; 25:3563-3577. [PMID: 31470781 DOI: 10.2174/1381612825666190830161528] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 08/21/2019] [Indexed: 02/08/2023]
Abstract
Long noncoding RNAs (lncRNAs) constitute large portions of the mammalian transcriptome which appeared as a fundamental player, regulating various cellular mechanisms. LncRNAs do not encode proteins, have mRNA-like transcripts and frequently processed similar to the mRNAs. Many investigations have determined that lncRNAs interact with DNA, RNA molecules or proteins and play a significant regulatory function in several biological processes, such as genomic imprinting, epigenetic regulation, cell cycle regulation, apoptosis, and differentiation. LncRNAs can modulate gene expression on three levels: chromatin remodeling, transcription, and post-transcriptional processing. The majority of the identified lncRNAs seem to be transcribed by the RNA polymerase II. Recent evidence has illustrated that dysregulation of lncRNAs can lead to many human diseases, in particular, cancer. The aberrant expression of lncRNAs in malignancies contributes to the dysregulation of proliferation and differentiation process. Consequently, lncRNAs can be useful to the diagnosis, treatment, and prognosis, and have been characterized as potential cancer markers as well. In this review, we highlighted the role and molecular mechanisms of lncRNAs and their correlation with some of the cancers.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sima Fathullahzadeh
- Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Hamid R Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Namdar
- Department of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
50
|
Plasticity in Ovarian Cancer: The Molecular Underpinnings and Phenotypic Heterogeneity. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|