1
|
Huang F, Chen J, Tang X, Li Y, Bao H, Mao X, Tang S. Preparation and Wound Repair of Injectable and Self-Healing Benzaldehyde-Modified Konjac Glucomannan Oligosaccharide/Polyglutamic Acid/ε-Polylysine Hydrogel. Biomacromolecules 2025; 26:609-622. [PMID: 39666850 DOI: 10.1021/acs.biomac.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Oligosaccharides always have better water solubility, higher possibilities for modification, and unique biofunctions compared with polysaccharides, but they are rarely used as the matrix of a hydrogel. Here, we prepared a composite BKOS/HPGA/PL hydrogel (BKPP hydrogel) constructed by hydrazone/imine bonds between the aldehyde groups of benzaldehyde-modified konjac glucomannan oligosaccharide (BKOS) and the primary amino groups of both hydrazide-modified polyglutamic acid (HPGA) and ε-polylysine (ε-PL). The hydrogels had both injectable and self-healing properties. The gelation time reached 23 s when 2% of BKOS (DS = 21.7%), 10% HPGA (DS = 11.5%), and 10% ε-PL solutions were mixed in a volume ratio of 5:4.5:0.5. Besides high water-retention capability and good cytocompatibility, the hydrogel also maintained both the immunoactivities of BKOS and the antibacterial performances of ε-PL and HPGA, and thus exhibited good wound healing performance in the whole cortex wound repair process of rats, which might have potential for its biomedical application.
Collapse
Affiliation(s)
- Feng Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jiajie Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xuan Tang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yujian Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Haixin Bao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xuan Mao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Shunqing Tang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Kahvecioglu D, Ozguven SY, Sicak Y, Tok F, Öztürk M, Kocyigit-Kaymakcioglu B. Synthesis and molecular docking analysis of novel hydrazone and thiosemicarbazide derivatives incorporating a pyrimidine ring: exploring neuroprotective activity. J Biomol Struct Dyn 2024:1-15. [PMID: 39731533 DOI: 10.1080/07391102.2024.2442758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/29/2024] [Indexed: 12/30/2024]
Abstract
The increasing global prevalence of Alzheimer's disease necessitates the development of novel therapeutic approaches. Neurodegenerative diseases are associated with increased oxidative stress and levels of cholinesterase enzymes. Hence, the development of cholinesterase inhibitors and antioxidants may provide neuroprotective effects. Our study focused on the synthesis of a new series of hydrazone and thiosemicarbazide derivatives bearing a pyrimidine ring. The compounds of structures were characterized by FT-IR, 1H NMR, 13C NMR, and HR-MS spectroscopic methods. Compounds 3a and 4f were determined using COSY and HSQC spectra. Compared to the standard drug galantamine (IC50 = 4.82 ± 0.75 µM), compound 3d exhibited remarkable inhibitory activity against AChE (IC50 values of 20.15 ± 0.44 µM). This compound was more effective against BChE (IC50 = 36.42 ± 0.73 µM) than galantamine (IC50 = 45.54 ± 0.18 µM). Antioxidant assays revealed the robust antioxidant activity of compound 3d. Furthermore, docking studies have shown that the active site of enzymes interacts strongly with electron donors through hydrogen bonds, while the aromatic ring structure plays an active role in π interactions.
Collapse
Affiliation(s)
- Dilay Kahvecioglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
- Institute of Health Sciences, Marmara University, Istanbul, Türkiye
- Edirne Sultan 1. Murat State Hospital, Republic of Türkiye Ministry of Health, Edirne, Türkiye
| | - Serap Yilmaz Ozguven
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Trakya University, Edirne, Türkiye
| | - Yusuf Sicak
- Department of Herbal and Animal Production, Koycegiz Vocational School, Mugla Sitki Kocman University, Mugla, Türkiye
| | - Fatih Tok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Türkiye
| | - Mehmet Öztürk
- Department of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Mugla, Türkiye
| | | |
Collapse
|
3
|
Boulguemh I, Lehleh A, Beghidja C, Beghidja A. Synthesis, crystal structure and Hirshfeld surface analysis of [Cu(H 2 L) 2(μ-Cl)CuCl 3]·H 2O [H 2 L = 2-hy-droxy- N'-(propan-2-yl-idene)benzohydrazide]. Acta Crystallogr E Crystallogr Commun 2024; 80:961-966. [PMID: 39267871 PMCID: PMC11389674 DOI: 10.1107/s2056989024007941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
The present study focuses on the synthesis and structural characterization of a novel dinuclear CuII complex, [tri-chlorido-copper(II)]-μ-chlorido-{bis-[2-hy-droxy-N'-(propan-2-yl-idene)benzohydrazide]copper(II)} monohydrate, [Cu2Cl4(C10H12N2O2)2]·H2O or [Cu(H2 L)2(μ-Cl)CuCl3]·H2O [H2 L = 2-hy-droxy-N'-(propan-2-yl-idene)benzohydrazide]. The complex crystallizes in the monoclinic space group P21/n with one mol-ecule of water, which forms inter-actions with the ligands. The first copper ion is penta-coordinated to two benzohydrazine-derived ligands via two nitro-gen and two oxygen atoms, and one bridging chloride, which is also coordinated by the second copper ion alongside three terminal chlorines in a distorted tetra-hedral geometry. The arrangement around the first copper ion exhibits a distorted geometry inter-mediate between trigonal bipyramidal and square pyramidal. In the crystal, chains are formed via inter-molecular inter-actions along the a-axis direction, with subsequent layers constructed through hydrogen-bonding inter-actions parallel to the ac plane, and through slipped π-π stacking inter-actions parallel to the ab plane, resulting in a three-dimensional network. The inter-molecular inter-actions in the crystal structure were qu-anti-fied and analysed using Hirshfeld surface analysis. Residual electron density from disordered methanol mol-ecules in the void space could not be reasonably modelled, thus a solvent mask was applied.
Collapse
Affiliation(s)
- Imededdine Boulguemh
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS) Université Constantine 1 - Frères Mentouri 25017 Constantine Algeria
| | - Asma Lehleh
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS) Université Constantine 1 - Frères Mentouri 25017 Constantine Algeria
| | - Chahrazed Beghidja
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS) Université Constantine 1 - Frères Mentouri 25017 Constantine Algeria
| | - Adel Beghidja
- Unité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS) Université Constantine 1 - Frères Mentouri 25017 Constantine Algeria
| |
Collapse
|
4
|
Alzahrani AYA, Shehab WS, Amer AH, Assy MG, Mouneir SM, Aziz MA, Abdel Hamid AM. Design, synthesis, pharmacological evaluation, and in silico studies of the activity of novel spiro pyrrolo[3,4- d]pyrimidine derivatives. RSC Adv 2024; 14:995-1008. [PMID: 38174254 PMCID: PMC10759174 DOI: 10.1039/d3ra07078f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 01/05/2024] Open
Abstract
In the present study, spiro compounds are shown to have distinctive characteristics because of their interesting conformations and their structural impacts on biological systems. A new family of functionalized spiro pyrrolo[3,4-d]pyrimidines is prepared via the one-pot condensation reaction of amino cyclohexane derivatives with benzaldehyde to prepare fused azaspiroundecanedione and azaspirodecenone/thione derivatives. A series of synthesized spiro compounds were scanned against DPPH and evaluated for their ability to inhibit COX-1 and COX-2. All compounds exhibit significant antiinflammatory activity, and they inhibited both COX-1 and COX-2 enzymes with a selectivity index higher than celecoxib as a reference drug. The most powerful and selective COX-2 inhibitor compounds were 11 and 6, with selectivity indices of 175 and 129.21 in comparison to 31.52 of the standard celecoxib. However, candidate 14 showed a very promising antiinflammatory activity with an IC50 of 6.00, while celecoxib had an IC50 of 14.50. Our findings are promising in the area of medicinal chemistry for further optimization of the newly designed and synthesized compounds regarding the discussed structure-activity relationship study (SAR), in order to obtain a superior antioxidant lead compound in the near future. All chemical structures of the novel synthesized candidates were unequivocally elucidated and confirmed utilizing spectroscopic and elemental investigations.
Collapse
Affiliation(s)
- Abdullah Y A Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University Mohail Assir Saudi Arabia
| | - Wesam S Shehab
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Asmaa H Amer
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Mohamed G Assy
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University Cairo 12211 Egypt
| | - Maged A Aziz
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| | - Atef M Abdel Hamid
- Department of Chemistry, Faculty of Science, Zagazig University Zagazig 44519 Egypt
| |
Collapse
|
5
|
Sun S, Zhang Q, Zi W. Palladium-Catalyzed Enantioselective Hydrohydrazonation of 1,3-Dienes. Org Lett 2023; 25:8397-8401. [PMID: 37983182 DOI: 10.1021/acs.orglett.3c02729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
We presented a method for synthesizing allylic chiral hydrazones from 1,4-disubstituted 1,3-dienes and hydrazones through a (R)-DTBM-Segphos-Pd(0)-catalyzed hydrohydrazonation reaction. This transformation has a wide range of substrates and good functional group tolerance. The desired products were obtained in medium to high yield and good regio- and enantioselectivity. Synthetic transformation of the products into various nitrogen-containing chiral compounds was demonstrated.
Collapse
Affiliation(s)
- Shaozi Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qinglong Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China
| |
Collapse
|
6
|
Saayman M, Kannigadu C, Aucamp J, Janse van Rensburg HD, Joseph C, Swarts AJ, N'Da DD. Design, synthesis, electrochemistry and anti-trypanosomatid hit/lead identification of nitrofuranylazines. RSC Med Chem 2023; 14:2012-2029. [PMID: 37859713 PMCID: PMC10583827 DOI: 10.1039/d3md00220a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/12/2023] [Indexed: 10/21/2023] Open
Abstract
Chagas disease and leishmaniasis are vector-borne infectious diseases affecting both humans and animals. These neglected tropical diseases can be fatal if not treated. Hundreds to thousands of new Chagas disease and leishmaniasis cases are being reported by the WHO every year, and currently available treatments are insufficient. Severe adverse effects, impractical administrations and increased pathogen resistance against current clinical treatments underscore a serious need for the development of new drugs to curb these ailments. In search for such drugs, we investigated a series of nitrofuran-based azine derivatives. Herein, we report the design, synthesis, electrochemistry, and biological activity of these derivatives against promastigotes and amastigotes of Leishmania major, and L. donovani strains, as well as epimastigotes and trypomastigotes of Trypanosoma cruzi. Two leishmanicidal early leads and one trypanosomacidal hit with submicromolar activity were uncovered and stand for further in vivo investigation in the search for new antitrypanosomatid drugs. Future objective will focus on the identification of involved biological targets with the parasites.
Collapse
Affiliation(s)
- Maryna Saayman
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Christina Kannigadu
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Janine Aucamp
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Helena D Janse van Rensburg
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| | - Cassiem Joseph
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg-Braamfontein 2050 South Africa
| | - Andrew J Swarts
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand Johannesburg-Braamfontein 2050 South Africa
| | - David D N'Da
- Centre of Excellence for Pharmaceutical Sciences, North-West University Potchefstroom 2520 South Africa +27 18 299 4243 +27 18 299 2256
| |
Collapse
|
7
|
Mossine VV, Kelley SP, Waters JK, Mawhinney TP. Screening a small hydrazide-hydrazone combinatorial library for targeting the STAT3 in monocyte-macrophages with insulated reporter transposons. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
AbstractThe Signal Transducer and Activator of Transcription 3 (STAT3) pharmacological targeting is regarded as a prospective approach to treat cancer, autoimmune disorders, or inflammatory diseases. We have developed a series of reporters of the STAT3, NF-κB, Nrf2, metal-responsive transcription factor-1 (MTF-1), and hypoxia-inducible factor 1α (HIF-1α) transcriptional activation in human monocyte-macrophage line THP-1. The reporter lines were employed to test a set of hydrazide-hydrazones as potential STAT3 inhibitors. A hydrazide-hydrazone library composed of 70 binary combinations of 7 carbonyl and 10 hydrazide components, including a STAT3 inhibitor clinical drug nifuroxazide, has been assembled and screened by the reporters. For the library as a whole, significant correlations between responses of the STAT3 and NF-κB or the STAT3 and HIF-1α reporters in THP-1 monocytes were found. For selected inhibitory combinations, respective hydrazide-hydrazones have been prepared and tested individually. The most potent 2-acetylpyridine 4-chlorobenzoylhydrazone exhibited the STAT3 inhibitory potential significantly exceeding that of nifuroxazide (ED50 2 vs 50 μM respectively) in THP-1 cells. We conclude that insulated reporter transposons could be a useful tool for drug discovery applications.
Graphical Abstract
Collapse
|
8
|
Al-Otaibi JS, Sheena Mary Y, Fazil S, Mary YS, Sarala S. Modeling the structure and reactivity landscapes of a pyrazole-ammonium ionic derivative using wavefunction-dependent characteristics and screening for potential anti-inflammatory activity. J Biomol Struct Dyn 2022; 40:11190-11202. [PMID: 34328395 DOI: 10.1080/07391102.2021.1957020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Spectroscopic investigations of 1-phenyl -2,3-dimethyl-5-oxo-1,2-dihydro-1H-pyrazol-4-ammonium 2[(2-carboxyphenyl) disulfanyl]benzoate (PACB) reported experimentally and theoretically. NH-O interaction is observed and there is a very large downshift for NH-O stretching frequency. Reactive sites are identified from the chemical and electronic properties. For PACB the maximum repulsion was around H33, H55 and H57 atom. LOL shows red regions between C-C and blue around C atoms are surrounded by a delocalized electron cloud. The red ring is a hallmark of electron density depletion from the NCI plot due to electrostatic repulsion and its existences suggests that coordination sphere for PACB is minimally strained around the central ion. Atomic contact energy values and high score of the docking results obtained propose that, PACB may have inhibitory properties and have a significant function in pharmacological chemistry. Molecular dynamics simulation was performed to validate the stability of the title compound with the Bovine thrombin-activatable fibrinolysis inhibitor protein.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jamelah S Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | - Shiji Fazil
- Department of Chemistry, Mannaniya College of Arts and Science, Pangode, Kerala, India
| | | | - S Sarala
- Department of Physics, Kanchi Shri Krishna College of Arts and Science, Kanchipuram, Tamil Nadu, India
| |
Collapse
|
9
|
Silva LP, Santos IP, Silva DKC, dos Reis BPZC, Meira CS, Castro MVBDS, dos Santos Filho JM, de Araujo-Neto JH, Ellena JA, da Silveira RG, Soares MBP. Molecular Hybridization Strategy on the Design, Synthesis, and Structural Characterization of Ferrocene- N-acyl Hydrazones as Immunomodulatory Agents. Molecules 2022; 27:molecules27238343. [PMID: 36500436 PMCID: PMC9737981 DOI: 10.3390/molecules27238343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Immunomodulatory agents are widely used for the treatment of immune-mediated diseases, but the range of side effects of the available drugs makes necessary the search for new immunomodulatory drugs. Here, we investigated the immunomodulatory activity of new ferrocenyl-N-acyl hydrazones derivatives (SintMed(141−156). The evaluated N-acyl hydrazones did not show cytotoxicity at the tested concentrations, presenting CC50 values greater than 50 µM. In addition, all ferrocenyl-N-acyl hydrazones modulated nitrite production in immortalized macrophages, showing inhibition values between 14.4% and 74.2%. By presenting a better activity profile, the ferrocenyl-N-acyl hydrazones SintMed149 and SintMed150 also had their cytotoxicity and anti-inflammatory effect evaluated in cultures of peritoneal macrophages. The molecules were not cytotoxic at any of the concentrations tested in peritoneal macrophages and were able to significantly reduce (p < 0.05) the production of nitrite, TNF-α, and IL-1β. Interestingly, both molecules significantly reduced the production of IL-2 and IFN-γ in cultured splenocytes activated with concanavalin A. Moreover, SintMed150 did not show signs of acute toxicity in animals treated with 50 or 100 mg/kg. Finally, we observed that ferrocenyl-N-acyl hydrazone SintMed150 at 100 mg/kg reduced the migration of neutrophils (44.6%) in an acute peritonitis model and increased animal survival by 20% in an LPS-induced endotoxic shock model. These findings suggest that such compounds have therapeutic potential to be used to treat diseases of inflammatory origin.
Collapse
Affiliation(s)
- Laís Peres Silva
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil
| | - Ivanilson Pimenta Santos
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
| | | | | | - Cássio Santana Meira
- Department of Life Sciences, State University of Bahia (UNEB), Salvador 41150-000, BA, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS—University Center SENAI/CIMATEC), Salvador 41650-010, BA, Brazil
| | - Marcos Venícius Batista de Souza Castro
- Laboratory of Design and Synthesis Applied to Medicinal Chemistry-SintMed®, Center for Technology and Geosciences, Federal University of Pernambuco, Recife 50740-521, PE, Brazil
| | - José Maurício dos Santos Filho
- Laboratory of Design and Synthesis Applied to Medicinal Chemistry-SintMed®, Center for Technology and Geosciences, Federal University of Pernambuco, Recife 50740-521, PE, Brazil
| | - João Honorato de Araujo-Neto
- Multiuser Laboratory of Structural Crystallography, Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil
| | - Javier Alcides Ellena
- Multiuser Laboratory of Structural Crystallography, Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil
| | - Rafael Gomes da Silveira
- Multiuser Laboratory of Structural Crystallography, Institute of São Carlos, University of São Paulo, São Carlos 13566-590, SP, Brazil
- Department of Chemistry, Federal Institute of Goiás, Campus Ceres, Ceres 76300-000, GO, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil
- Institute for Innovation in Advanced Health Systems (CIMATEC ISI SAS—University Center SENAI/CIMATEC), Salvador 41650-010, BA, Brazil
- Correspondence:
| |
Collapse
|
10
|
Aydın E, Şentürk AM, Küçük HB, Güzel M. Cytotoxic Activity and Docking Studies of 2-arenoxybenzaldehyde N-acyl Hydrazone and 1,3,4-Oxadiazole Derivatives against Various Cancer Cell Lines. Molecules 2022; 27:7309. [PMID: 36364134 PMCID: PMC9657749 DOI: 10.3390/molecules27217309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 08/25/2023] Open
Abstract
To understand whether previously synthesized novel hydrazone and oxadiazole derivatives have promising anticancer effects, docking studies and in vitro toxicity assays were performed on A-549, MDA-MB-231, and PC-3 cell lines. The antiproliferative properties of the compounds were investigated using molecular docking experiments. Each compound's best-docked poses, binding affinity, and receptor-ligand interaction were evaluated. Compounds' molecular weights, logPs, TPSAs, abilities to pass the blood-brain barrier, GI absorption qualities, and CYPP450 inhibition have been given. When the activities of these molecules were examined in vitro, for the A-549 cell line, hydrazone 1e had the minimum IC50 value of 13.39 μM. For the MDA-MB-231 cell line, oxadiazole 2l demonstrated the lowest IC50 value, with 22.73 μM. For PC-3, hydrazone 1d showed the lowest C50 value of 9.38 μM. The three most promising compounds were determined as compounds 1e, 1d, and 2a based on their minimum IC50 values, and an additional scratch assay was performed for A-549 and MDA-MB-231 cells, which have high migration capacity, for the three most potent molecules; it was determined that these molecules did not show a significant antimetastatic effect.
Collapse
Affiliation(s)
- Esranur Aydın
- Center of Drug Discovery and Development, Research Institute for Health Sciences and Technologies SABITA, Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Molecular Medicine, and Biotechnology, Health Sciences Institute, Istanbul Medipol University, 34810 Istanbul, Turkey
| | - Ahmet Mesut Şentürk
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Istanbul Biruni University, 34010 Istanbul, Turkey
| | - Hatice Başpınar Küçük
- Department of Chemistry, Faculty of Engineering, Organic Chemistry Division, Istanbul University-Cerrahpasa, 34320 Istanbul, Turkey
| | - Mustafa Güzel
- Center of Drug Discovery and Development, Research Institute for Health Sciences and Technologies SABITA, Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Molecular Medicine, and Biotechnology, Health Sciences Institute, Istanbul Medipol University, 34810 Istanbul, Turkey
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, Istanbul Medipol University, 34810 Istanbul, Turkey
| |
Collapse
|
11
|
Gawrońska-Grzywacz M, Piątkowska-Chmiel I, Popiołek Ł, Herbet M, Dudka J. The N-Substituted-4-Methylbenzenesulphonyl Hydrazone Inhibits Angiogenesis in Zebrafish Tg(fli1: EGFP) Model. Pharmaceuticals (Basel) 2022; 15:ph15111308. [PMID: 36355480 PMCID: PMC9699420 DOI: 10.3390/ph15111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
One of the most important therapies of malignant neoplasms, which are the second cause of death worldwide, is focused on the inhibition of pathological angiogenesis within the tumor. Therefore, the searching for the efficacious and relatively inexpensive small-molecule inhibitors of this process is essential. In this research, the anti-angiogenic potential of N-substituted-4-methylbenzenesulphonyl hydrazone, possessing antiproliferative activity against cancer cells, was tested. For this purpose, an intersegmental vessel (ISV) angiogenesis assay was performed using 6 hpf (hours post fertilization), 12 hpf and 24 hpf embryos of zebrafish transgenic strain, Tg(fli1: EGFP). They were incubated with different concentrations of tested molecule and after 24 h the development of intersegmental vessels of the trunk was analysed. In turn, the acute toxicity study in the zebrafish model was mainly conducted on strain AB, using the OECD-approved and recommended fish embryo acute toxicity test (FET) procedure. The results showed the moderate toxicity of N-[(3-chloro-4-methoxyphenyl)methylidene]-4-methylbenzenesulphonohydrazide in above-mentioned model with the LC50 value calculated at 23.04 mg/L. Moreover, newly synthesized molecule demonstrated the anti-angiogenic potential proved in Tg(fli1: EGFP) zebrafish model, which may be promising for the therapy of neoplastic tumors as well as other diseases related to pathological angiogenesis, such as age-related macular degeneration and diabetic retinopathy.
Collapse
Affiliation(s)
- Monika Gawrońska-Grzywacz
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090 Lublin, Poland
- Correspondence:
| | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090 Lublin, Poland
| | - Łukasz Popiołek
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Mariola Herbet
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090 Lublin, Poland
| | - Jarosław Dudka
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8B Jaczewskiego Street, 20-090 Lublin, Poland
| |
Collapse
|
12
|
Phenylhydrazone linked 1,2,3-triazole hybrids: synthesis, antimicrobial evaluation and docking studies as dual inhibitors of DNA gyrase and lanosterol 14-α demethylase. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Agarkov AS, Gabitova ER, Galieva FB, Ovsyannikov AS, Voloshina AD, Shiryaev AK, Litvinov IA, Solovieva SE, Antipin IS. Structure and Biological Properties of 2-Phenylhydrazone Derivatives of Thiazolopyrimidines. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Cukierman DS, Rey NA. Tridentate N-Acylhydrazones as Moderate Ligands for the Potential Management of Cognitive Decline Associated With Metal-Enhanced Neuroaggregopathies. Front Neurol 2022; 13:828654. [PMID: 35250832 PMCID: PMC8888665 DOI: 10.3389/fneur.2022.828654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/14/2022] [Indexed: 01/07/2023] Open
Affiliation(s)
- Daphne S Cukierman
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nicolás A Rey
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Antioxidant Properties, Neuroprotective Effects and in Vitro Safety Evaluation of New Pyrrole Derivatives. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Świątek P, Glomb T, Dobosz A, Gębarowski T, Wojtkowiak K, Jezierska A, Panek JJ, Świątek M, Strzelecka M. Biological Evaluation and Molecular Docking Studies of Novel 1,3,4-Oxadiazole Derivatives of 4,6-Dimethyl-2-sulfanylpyridine-3-carboxamide. Int J Mol Sci 2022; 23:ijms23010549. [PMID: 35008977 PMCID: PMC8745710 DOI: 10.3390/ijms23010549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
To date, chronic inflammation is involved in most main human pathologies such as cancer, and autoimmune, cardiovascular or neurodegenerative disorders. Studies suggest that different prostanoids, especially prostaglandin E2, and their own synthase (cyclooxygenase enzyme-COX) can promote tumor growth by activating signaling pathways which control cell proliferation, migration, apoptosis, and angiogenesis. Non-steroidal anti-inflammatory drugs (NSAIDs) are used, alongside corticosteroids, to treat inflammatory symptoms particularly in all chronic diseases. However, their toxicity from COX inhibition and the suppression of physiologically important prostaglandins limits their use. Therefore, in continuation of our efforts in the development of potent, safe, non-toxic chemopreventive compounds, we report herein the design, synthesis, biological evaluation of new series of Schiff base-type hybrid compounds containing differently substituted N-acyl hydrazone moieties, 1,3,4-oxadiazole ring, and 4,6-dimethylpyridine core. The anti-COX-1/COX-2, antioxidant and anticancer activities were studied. Schiff base 13, containing 2-bromobenzylidene residue inhibited the activity of both isoenzymes, COX-1 and COX-2 at a lower concentration than standard drugs, and its COX-2/COX-1 selectivity ratio was similar to meloxicam. Furthermore, the results of cytotoxicity assay indicated that all of the tested compounds exhibited potent anti-cancer activity against A549, MCF-7, LoVo, and LoVo/Dx cell lines, compared with piroxicam and meloxicam. Moreover, our experimental study was supported by density functional theory (DFT) and molecular docking to describe the binding mode of new structures to cyclooxygenase.
Collapse
Affiliation(s)
- Piotr Świątek
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (P.Ś.); (T.G.); Tel.: +48-717840391 (P.Ś. & T.G.)
| | - Teresa Glomb
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Correspondence: (P.Ś.); (T.G.); Tel.: +48-717840391 (P.Ś. & T.G.)
| | - Agnieszka Dobosz
- Department of Medical Science Foundation, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wroclaw, Poland;
| | - Kamil Wojtkowiak
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Aneta Jezierska
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Jarosław J. Panek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wrocław, Poland; (K.W.); (A.J.); (J.J.P.)
| | - Małgorzata Świątek
- Hospital Pharmacy, University Clinical Hospital, Borowska 213, 50-556 Wrocław, Poland;
| | - Małgorzata Strzelecka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
17
|
Al-Otaibi JS, Mary Y, Mary Y. Exploring the Detailed Spectroscopic Characteristics, Chemical and Biological Activity of Three Pyrone Derivatives Using Experimental and Theoretical Tools. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jamelah S. Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
18
|
Medeiros MAMB, Gama e Silva M, de Menezes Barbosa J, Martins de Lavor É, Ribeiro TF, Macedo CAF, de Souza Duarte-Filho LAM, Feitosa TA, de Jesus Silva J, Fokoue HH, Araújo CRM, de Assis Gonsalves A, Augusto de Araújo Ribeiro L, Almeida JRGDS. Antinociceptive and anti-inflammatory effects of hydrazone derivatives and their possible mechanism of action in mice. PLoS One 2021; 16:e0258094. [PMID: 34818331 PMCID: PMC8612535 DOI: 10.1371/journal.pone.0258094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/20/2021] [Indexed: 01/12/2023] Open
Abstract
Pain and inflammation are unpleasant experiences that usually occur as a result of tissue damage. Despite the number of existing analgesic drugs, side effects limit their use, stimulating the search for new therapeutic agents. In this sense, five hydrazone derivatives (H1, H2, H3, H4, and H5), with general structure R1R2C = NNR3R4, were synthesized with molecular modification strategies. In this paper, we describe the ability of hydrazone derivatives to attenuate nociceptive behavior and the inflammatory response in mice. Antinociceptive activity was evaluated through acetic acid-induced writhing and formalin-induced nociception tests. In both experimental models, the hydrazone with the greatest potency (H5) significantly (p < 0.05) reduced nociceptive behavior. Additionally, methods of acute and chronic inflammation induced by different chemicals (carrageenan and histamine) were performed to evaluate the anti-inflammatory effect of H5. Moreover, molecular docking analysis revealed that H5 can block the COX-2 enzyme, reducing arachidonic acid metabolism and consequently decreasing the production of prostaglandins, which are important inflammatory mediators. H5 also changes locomotor activity. In summary, H5 exhibited relevant antinociceptive and anti-inflammatory potential and acted on several targets, making it a candidate for a new multi-target oral anti-inflammatory drug.
Collapse
Affiliation(s)
- Maria Alice Miranda Bezerra Medeiros
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brasil
| | - Mariana Gama e Silva
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Pós-Graduação em Biotecnologia—Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | - Jackson de Menezes Barbosa
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Pós-Graduação em Biotecnologia—Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | - Érica Martins de Lavor
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brasil
| | - Tiago Feitosa Ribeiro
- Pós-Graduação em Biotecnologia—Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal Rural de Pernambuco, Recife, Pernambuco, Brasil
| | | | | | - Thiala Alves Feitosa
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Pós Graduação em Biociências, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
| | - Jussara de Jesus Silva
- Colegiado de Farmácia, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
| | - Harold Hilarion Fokoue
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Arlan de Assis Gonsalves
- Colegiado de Farmácia, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
| | - Luciano Augusto de Araújo Ribeiro
- Pós Graduação em Biociências, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Colegiado de Farmácia, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
| | - Jackson Roberto Guedes da Silva Almeida
- Núcleo de Estudos e Pesquisas de Plantas Medicinais (NEPLAME), Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brasil
- Pós-Graduação em Biotecnologia, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brasil
| |
Collapse
|
19
|
Synthesis, Characterization, Single-Crystal X-ray Structure and Biological Activities of [(Z)-N′-(4-Methoxybenzylidene)benzohydrazide–Nickel(II)] Complex. CRYSTALS 2021. [DOI: 10.3390/cryst11020110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
(Z)-N′-(4-methoxybenzylidene)benzohydrazide (HL) and its Ni(II) complex (Ni(II)-2L) were synthesized using eco-friendly protocols. The single X-ray crystal structure of Ni(II)-2L was solved. Moreover, the structural properties were evaluated using Fourier transform infrared, proton nuclear magnetic resonance, mass, and Ultraviolet/Visible spectroscopy. The diamagnetic and thermal stability were assessed using magnetic susceptibility and thermogravimetric analysis, respectively. The biological activities of both HL and Ni(II)-2L (62.5–1000 μg/mL) against Gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial and fungal (Candida albicans, Aspergillus niger, and Aspergillus clavatus) species were studied using the minimum inhibitory concentration (MIC) tests method in reference to Gentamycin and Nystatin standard drugs, respectively. The results revealed an affordable, environmentally friendly, and efficient synthetic method of HL using water as a green solvent. The Ni(II)-2L complex crystallized in a distorted square planar, P21/n space group, and one Ni(II) to two bidentate negatively charged ligand ratio. The analysis of biological activity revealed higher activity of the complex against S. aureus and S. pyogenes (bacteria) and A. niger and A. clavatus (fungi) compared to the ligand. However, the highest activity was at a MIC of 62.5 μg/mL for the complex against S. pyogenes and for the ligand against E. coli. Therefore, both HL and Ni(II)-2L could be promising potential antimicrobials and their selective activity could be an additional benefit of these bioactive materials.
Collapse
|
20
|
Synthesis and Antimicrobial Resistant Modulatory Activity of 2,4-Dinitrophenylhydrazone Derivatives as Agents against Some ESKAPE Human Pathogens. J CHEM-NY 2020. [DOI: 10.1155/2020/2720697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A library of six novel phenylhydrazones were synthesized and evaluated for their in vitro antimicrobial and resistance modulating activity against a panel of Gram-positive, Gram-negative, and fungal species. The compounds were produced in good yields of 60–92% w/w and characterized using melting point, UV-visible spectroscopy, infrared, and nuclear magnetic resonance (1H, 13C, and DEPT-Q) techniques. Mass spectroscopy was used to confirm the identity of one of the most active compounds, 5 [SA5]. The phenylhydrazones showed activity against all the six selected microorganisms with minimum inhibitory concentration (MIC) values of the most active compounds, 1 [BP1] and 5 [SA5], at 138 µM (Klebsiella pneumoniae) and 165 µM (Streptococcus pneumoniae), respectively. Compound 1 [BP1] further demonstrated a high resistance modulatory activity at 1.078 µM against Streptococcus pneumoniae and Klebsiella pneumoniae.
Collapse
|
21
|
Synthesis, in vitro safety and antioxidant activity of new pyrrole hydrazones. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:303-324. [PMID: 32074071 DOI: 10.2478/acph-2020-0026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 01/19/2023]
Abstract
Six new N-pyrrolylhydrazide hydrazones were synthesized under micro synthesis conditions, assuring about 59-93 % yield, low harmful emissions and reagent economy. The structures of the new compounds were elucidated by melting points, TLC characteristics, IR, 1H and 13C NMR spectral data followed by MS data. The purity of the obtained compounds was proven by the corresponding elemental analyses. "Lipinski's rule of five" parameters were applied for preliminary evaluation of the pharmacokinetic properties of the target molecules. The initial in vitro safety screening for cytotoxicity (on HepG2 cells) and hemocompatibility (hemolysis assay) showed good safety of the new compounds, where ethyl 5-(4-bromophenyl)-1-(1-(2-(4-hydroxy-3-methoxybenzylidene)-hydrazineyl)-1-oxo-3-phenylpropan-2-yl)-2-methyl-1H-pyr-role-3-carboxylate (4d) and ethyl 5-(4-bromophenyl)-1-(1-(2-(2-hydroxybenzylidene)hydrazineyl)-1-oxo-3-phenylpropan--2-yl)-2-methyl-1H-pyrrole-3-carboxylate (4a) were the least toxic. The antioxidant activity in terms of radical scavenging activity (DPPH test) and reducing ability (ABTS) was also evaluated. The antioxidant protective potential of the compounds was next determined in different in vitro cellular-based models, revealing compounds 4d and 3 [ethyl 5-(4-bromophenyl)-1-(1-hydrazineyl-1-oxo-3-phenylpropan-2-yl)-2-methyl-1H-pyrrole-3-carboxylate] as the most promising compounds, with 4d having better safety profile.
Collapse
|
22
|
Synthesis, solvent interactions and computational study of monocarbohydrazones. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Mammadbayli EH, Jafarov IA, Astanova AD, Maharramova LM, Jafarova NA. Synthesis and Properties of Aminomethoxy Derivatives of 1-(p-Tolyloxy)-3-(propylsulfanyl)propane. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Tzankova D, Peikova L, Vladimirova S, Georgieva M. Development and validation of RP-HPLC method for stability evaluation of model hydrazone, containing a pyrrole ring. PHARMACIA 2019. [DOI: 10.3897/pharmacia.66.e47035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
RP-HPLC method with UV detection was developed and validated for determination of the chemical stability and stability in close to physiological conditions of a model pyrrole hydrazone ethyl 5-(4-bromophenyl)-1-(1-(2-(4-hydroxy-3-methoxybenzylidene) hydrazineyl)-4-methyl-1-oxopentan-2-yl)-2-methyl-1H-pyrrole-3-carboxylate (D_5d), containing susceptible to hydrolysis hydrazone group. The evaluated substance was subjected to the influence of a variety of pH , representing the main physiological values of 37°C and corresponding pH values in the stomach (pH 2.0), blood (pH 7.4) and small intestine (pH 9.0). Chemical stability in a highly alkaline medium with a pH of 13.0 was also evaluated. The hydrazone I tested was found to be stable at pH 7.4 and pH 9.0 and 37 ° C and hydrolyzed under strong acidic (pH 2.0) and highly alkaline media (pH 13.0) and at the same temperature.The products of hydrolysis were identified to be the initial hydrazide and aldehyde, pointing the hydrazone group as most liable.
Collapse
|
25
|
Kandasamy M, Mak KK, Devadoss T, Thanikachalam PV, Sakirolla R, Choudhury H, Pichika MR. Construction of a novel quinoxaline as a new class of Nrf2 activator. BMC Chem 2019; 13:117. [PMID: 31572984 PMCID: PMC6760105 DOI: 10.1186/s13065-019-0633-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/10/2019] [Indexed: 01/10/2023] Open
Abstract
Background The transcription factor Nuclear factor erythroid-2-related factor 2 (NRF2) and its principal repressive regulator, Kelch-like ECH-associated protein 1 (KEAP1), are perilous in the regulation of inflammation, as well as maintenance of homeostasis. Thus, NRF2 activation is involved in cytoprotection against many inflammatory disorders. N′-Nicotinoylquinoxaline-2-carbohdyrazide (NQC) was structurally designed by the combination of important pharmacophoric features of bioactive compounds reported in the literature. Methods NQC was synthesised and characterised using spectroscopic techniques. The compound was tested for its anti-inflammatory effect using Lipopolysaccharide from Escherichia coli (LPSEc) induced inflammation in mouse macrophages (RAW 264.7 cells). The effect of NQC on inflammatory cytokines was measured using enzyme-linked immune sorbent assay (ELISA). The Nrf2 activity of the compound NQC was determined using ‘Keap1:Nrf2 Inhibitor Screening Assay Kit’. To obtain the insights on NQC’s activity on Nrf2, molecular docking studies were performed using Schrödinger suite. The metabolic stability of NQC was determined using mouse, rat and human microsomes. Results NQC was found to be non-toxic at the dose of 50 µM on RAW 264.7 cells. NQC showed potent anti-inflammatory effect in an in vitro model of LPSEc stimulated murine macrophages (RAW 264.7 cells) with an IC50 value 26.13 ± 1.17 µM. NQC dose-dependently down-regulated the pro-inflammatory cytokines [interleukin (IL)-1β (13.27 ± 2.37 μM), IL-6 (10.13 ± 0.58 μM) and tumor necrosis factor (TNF)-α] (14.41 ± 1.83 μM); and inflammatory mediator, prostaglandin E2 (PGE2) with IC50 values, 15.23 ± 0.91 µM. Molecular docking studies confirmed the favourable binding of NQC at Kelch domain of Keap-1. It disrupts the Nrf2 interaction with kelch domain of keap 1 and its IC50 value was 4.21 ± 0.89 µM. The metabolic stability studies of NQC in human, rat and mouse liver microsomes revealed that it is quite stable with half-life values; 63.30 ± 1.73, 52.23 ± 0.81, 24.55 ± 1.13 min; microsomal intrinsic clearance values; 1.14 ± 0.31, 1.39 ± 0.87 and 2.96 ± 0.34 µL/min/g liver; respectively. It is observed that rat has comparable metabolic profile with human, thus, rat could be used as an in vivo model for prediction of pharmacokinetics and metabolism profiles of NQC in human. Conclusion NQC is a new class of NRF2 activator with potent in vitro anti-inflammatory activity and good metabolic stability.
Collapse
Affiliation(s)
- Murugesh Kandasamy
- 1Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.,4Center for Bioactive Molecules & Drug Delivery, Institute for Research, Development & Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Kit-Kay Mak
- 1Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.,2School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia.,4Center for Bioactive Molecules & Drug Delivery, Institute for Research, Development & Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Thangaraj Devadoss
- KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh India
| | | | | | - Hira Choudhury
- 3Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.,4Center for Bioactive Molecules & Drug Delivery, Institute for Research, Development & Innovation, International Medical University, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- 1Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.,4Center for Bioactive Molecules & Drug Delivery, Institute for Research, Development & Innovation, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Teran R, Guevara R, Mora J, Dobronski L, Barreiro-Costa O, Beske T, Pérez-Barrera J, Araya-Maturana R, Rojas-Silva P, Poveda A, Heredia-Moya J. Characterization of Antimicrobial, Antioxidant, and Leishmanicidal Activities of Schiff Base Derivatives of 4-Aminoantipyrine. Molecules 2019; 24:E2696. [PMID: 31344947 PMCID: PMC6696115 DOI: 10.3390/molecules24152696] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023] Open
Abstract
Our main interest is the characterization of compounds to support the development of alternatives to currently marketed drugs that are losing effectiveness due to the development of resistance. Schiff bases are promising biologically interesting compounds having a wide range of pharmaceutical properties, including anti-inflammatory, antipyretic, and antimicrobial activities, among others. In this work, we have synthesized 12 Schiff base derivatives of 4-aminoantipyrine. In vitro antimicrobial, antioxidant, and cytotoxicity properties are analyzed, as well as in silico predictive adsorption, distribution, metabolism, and excretion (ADME) and bioactivity scores. Results identify two potential Schiff bases: one effective against E. faecalis and the other with antioxidant activity. Both have reasonable ADME scores and provides a scaffold for developing more effective compounds in the future. Initial studies are usually limited to laboratory in vitro approaches, and following these initial studies, much research is needed before a drug can reach the clinic. Nevertheless, these laboratory approaches are mandatory and constitute a first filter to discriminate among potential drug candidates and chemical compounds that should be discarded.
Collapse
Affiliation(s)
- Rommy Teran
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Rommel Guevara
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Jessica Mora
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Lizeth Dobronski
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador
| | - Olalla Barreiro-Costa
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Timo Beske
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
- Facultad de Medicina Veterinaria, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Jorge Pérez-Barrera
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca 3460000, Chile
| | - Patricio Rojas-Silva
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Ana Poveda
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador.
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador.
| | - Jorge Heredia-Moya
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador.
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador.
| |
Collapse
|
27
|
Rocha-Del Castillo E, Gómez-García O, Andrade-Pavón D, Villa-Tanaca L, Ramírez-Apan T, Nieto-Camacho A, Gómez E. Dibutyltin(IV) Complexes Derived from L-DOPA: Synthesis, Molecular Docking, Cytotoxic and Antifungal Activity. Chem Pharm Bull (Tokyo) 2018; 66:1104-1113. [PMID: 30504627 DOI: 10.1248/cpb.c18-00441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A series of organotin(IV) complexes was herein prepared and characterized. A one-pot synthetic strategy afforded reasonable to high yields, depending on the nature of the ligand. All new complexes were fully characterized by spectroscopic techniques, consisting of IR, MS and NMR (1H, 13C and 119Sn). The in vitro cytotoxicity tests demonstrated that the organotin complexes produced a greater inhibition, versus cisplatin (the positive control), of the growth of six human cancer cell lines: U-251 (glioblastoma), K-562 (chronic myelogenous leukemia), HCT-15 (colorectal), MCF-7 (breast), MDA-MB-231 (breast) and SKLU-1 (non-small cell lung). The potency of this cytotoxic activity depended on the nature of the substituent bonded to the aromatic ring. All complexes exhibited excellent IC50 values. The test compounds were also screened in vitro for their antifungal effect against Candida glabrata and Candida albicans, showing minimum inhibitory concentration (MIC) values lower than those obtained for fluconazole. A brine shrimp bioassay was performed to examine the toxic properties. Molecular docking studies demonstrated that the organotin(IV) complexes bind at the active site of topoisomerase I in a similar manner to topotecan, sharing affinity for certain amino acid side chains (Ile535, Arg364 and Asp533), as well as for similar DNA regions (DA113, DC112 and DT10).
Collapse
Affiliation(s)
- Erika Rocha-Del Castillo
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria
| | - Omar Gómez-García
- Departamento de Química Orgánica-Laboratorio de Síntesis de Fármacos Heterocíclicos, Escuela Nacional de Ciencias Biológicas-Instituto Politécnico Nacional
| | - Dulce Andrade-Pavón
- Departamento de Microbiología-Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas-Iinstituto Politécnico Nacional
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología-Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas-Iinstituto Politécnico Nacional
| | - Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria
| | - Elizabeth Gómez
- Instituto de Química, Universidad Nacional Autónoma de México (UNAM), Circuito Exterior s/n, Ciudad Universitaria
| |
Collapse
|
28
|
Lamie PF, Philoppes JN, Azouz AA, Safwat NM. Novel tetrazole and cyanamide derivatives as inhibitors of cyclooxygenase-2 enzyme: design, synthesis, anti-inflammatory evaluation, ulcerogenic liability and docking study. J Enzyme Inhib Med Chem 2017; 32:805-820. [PMID: 28587532 PMCID: PMC6445242 DOI: 10.1080/14756366.2017.1326110] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nineteen new compounds containing tetrazole and/or cyanamide moiety have been designed and synthesised. Their structures were confirmed using spectroscopic methods and elemental analyses. Anti-inflammatory activity for all the synthesised compounds was evaluated in vivo. The most active compounds 4c, 5a, 5d-f, 8a and b and 9a and b were further investigated for their ulcerogenic liability and analgesic activity. Pyrazoline derivatives 9b and 8b bearing trimethoxyphenyl part and SO2NH2 or SO2Me pharmacophore showed equal or nearly the same ulcerogenic liability (UI: 0.5, 0.75, respectively), to celecoxib (UI: 0.50). Most of tested compounds showed potent central and/or peripheral analgesic activities. Histopathological investigations were done to evaluate test compounds effect on rat's gastric tissue. The obtained results were in consistent with the in vitro data on COX evaluation. Docking study was also done for all the target compounds inside COX-2-active site.
Collapse
Affiliation(s)
- Phoebe F Lamie
- a Department of Pharmaceutical Organic Chemistry , Beni Suef University , Beni Suef , Egypt
| | - John N Philoppes
- a Department of Pharmaceutical Organic Chemistry , Beni Suef University , Beni Suef , Egypt
| | - Amany A Azouz
- b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Beni Suef University , Beni Suef , Egypt
| | - Nesreen M Safwat
- c Pathology Department, Faculty of Veterinary Medicine , Beni Suef University , Beni Suef , Egypt
| |
Collapse
|
29
|
Zhao H, Tang S, Li S, Ding L, Du L. Theoretical investigation of the hydrogen bond interactions of methanol and dimethylamine with hydrazone and its derivatives. Struct Chem 2016. [DOI: 10.1007/s11224-016-0749-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
de Oliveira MR. Phloretin-induced cytoprotective effects on mammalian cells: A mechanistic view and future directions. Biofactors 2016; 42:13-40. [PMID: 26826024 DOI: 10.1002/biof.1256] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/19/2015] [Indexed: 11/11/2022]
Abstract
Phloretin (C15 H14 O5 ), a dihydrochalcone flavonoid, is mainly found in fruit, leaves, and roots of apple tree. Phloretin exerts antioxidant, anti-inflammatory, and anti-tumor activities in mammalian cells through mechanisms that have been partially elucidated throughout the years. Phloretin bioavailability is well known in humans, but still remains to be better studied in experimental animals, such as mouse and rat. The focus of the present review is to gather information regarding the mechanisms involved in the phloretin-elicited effects in different in vitro and in vivo experimental models. Several manuscripts were analyzed and data raised by authors were described and discussed here in a mechanistic manner. Comparisons between the effects elicited by phloretin and phloridzin were made whenever possible, as well as with other polyphenols, clarifying questions about the use of phloretin as a potential therapeutic agent. Toxicological aspects associated to phloretin exposure were also discussed here. Furthermore, a special section containing future directions was created as a suggestive guide towards the elucidation of phloretin-related actions in mammalian cells and tissues.
Collapse
Affiliation(s)
- Marcos Roberto de Oliveira
- Department of Chemistry/ICET, Postgraduate Program in Chemistry (PPGQ), Federal University of Mato Grosso (UFMT), CEP, Cuiaba, MT, Brazil
| |
Collapse
|
31
|
da Silva YKC, Reyes CTM, Rivera G, Alves MA, Barreiro EJ, Moreira MSA, Lima LM. 3-Aminothiophene-2-acylhydrazones: non-toxic, analgesic and anti-inflammatory lead-candidates. Molecules 2014; 19:8456-71. [PMID: 24955640 PMCID: PMC6271570 DOI: 10.3390/molecules19068456] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 11/29/2022] Open
Abstract
Different chemotypes are described as anti-inflammatory. Among them the N-acylhydrazones (NAH) are highlighted by their privileged structure nature, being present in several anti-inflammatory drug-candidates. In this paper a series of functionalized 3-aminothiophene-2-acylhydrazone derivatives 5a-i were designed, synthesized and bioassayed. These new derivatives showed great anti-inflammatory and analgesic potency and efficacy. Compounds 5a and 5d stand out in this respect, and were also active in CFA-induced arthritis in rats. After daily treatment for seven days with 5a and 5d (50 µmol/Kg), by oral administration, these compounds were not renal or hepatotoxic nor immunosuppressive. Compounds 5a and 5d also displayed good drug-scores and low risk toxicity calculated in silico using the program OSIRIS Property Explorer.
Collapse
Affiliation(s)
- Yolanda Karla Cupertino da Silva
- LaFI-Laboratório de Farmacologia e Imunidade, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió 57072-900, AL, Brazil.
| | - Christian Tadeo Moreno Reyes
- Laboratório de Avaliação e Síntese de Substâncias Bioativas-LASSBio, Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, PO Box 68024, Rio de Janeiro 21944-902, RJ, Brazil.
| | - Gildardo Rivera
- Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Boulevard del Maestro, s/n, 88710 Reynosa, Mexico.
| | - Marina Amaral Alves
- Laboratório de Avaliação e Síntese de Substâncias Bioativas-LASSBio, Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, PO Box 68024, Rio de Janeiro 21944-902, RJ, Brazil.
| | - Eliezer J Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas-LASSBio, Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, PO Box 68024, Rio de Janeiro 21944-902, RJ, Brazil.
| | - Magna Suzana Alexandre Moreira
- LaFI-Laboratório de Farmacologia e Imunidade, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió 57072-900, AL, Brazil.
| | - Lídia Moreira Lima
- Laboratório de Avaliação e Síntese de Substâncias Bioativas-LASSBio, Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, PO Box 68024, Rio de Janeiro 21944-902, RJ, Brazil.
| |
Collapse
|