1
|
Jaroch DB, Liu Y, Kim AY, Katz SC, Cox BF, Hullinger TG. Intra-arterial Pressure-Enabled Drug Delivery Significantly Increases Penetration of Glass Microspheres in a Porcine Liver Tumor Model. J Vasc Interv Radiol 2024; 35:1525-1533.e4. [PMID: 38969336 DOI: 10.1016/j.jvir.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/28/2024] [Accepted: 06/21/2024] [Indexed: 07/07/2024] Open
Abstract
PURPOSE To test the hypothesis that Pressure-Enabled Drug Delivery (PEDD) would improve the delivery of surrogate therapeutic glass microspheres (GMs) via hepatic artery infusion to liver tumors when compared with a conventional endhole microcatheter. MATERIALS AND METHODS The study was conducted in transgenic pigs (Oncopigs) with induced liver tumors. Tumors were infused intra-arterially with fluorescently labeled GM. PEDD with a specialized infusion device (TriNav; TriSalus Life Sciences, Westminster, Colorado) was compared with conventional endhole microcatheter delivery in both lobar and selective infusions. Near-infrared imaging was used to detect GM fluorescent signal in tumors. Image analysis with a custom deep learning algorithm (Visiopharm A/S) was used to quantitate signal intensity in relation to the tumor border. RESULTS With lobar infusions, significant increases in GM signal intensity were observed in and around tumors after PEDD (n = 10) when compared with those after conventional delivery (n = 7), with PEDD increasing penetration into the tumor by 117% (P = .004). In selective infusions, PEDD (n = 9) increased penetration into the tumor by 39% relative to conventional delivery (n = 8, P = .032). Lobar PEDD of GMs to the tumor was statistically equivalent to conventional selective delivery (P = .497). CONCLUSIONS PEDD with a TriNav device significantly improved GM uptake in liver tumors relative to conventional infusion in both lobar and selective procedures. Lobar GM delivery with PEDD was equivalent to conventional selective delivery with an endhole device, suggesting that proximal PEDD infusions may enable effective delivery without selection of distal target vessels.
Collapse
Affiliation(s)
| | - Yujia Liu
- TriSalus Life Sciences, Westminster, Colorado
| | | | - Steven C Katz
- TriSalus Life Sciences, Westminster, Colorado; Department of Surgery, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Bryan F Cox
- TriSalus Life Sciences, Westminster, Colorado
| | | |
Collapse
|
2
|
Petrucci GN, Magalhães TR, Dias M, Queiroga FL. Metronomic chemotherapy: bridging theory to clinical application in canine and feline oncology. Front Vet Sci 2024; 11:1397376. [PMID: 38903691 PMCID: PMC11187343 DOI: 10.3389/fvets.2024.1397376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Veterinary oncology has experienced significant evolution over the last few decades, with chemotherapy being currently applied to several neoplasms with therapeutic success. Traditionally, chemotherapy protocols are based on classic cytostatic drugs under the concept of maximum tolerated dose (MTD), which has been associated with a greater risk of toxicity and resistance. Thus, new therapeutic alternatives have emerged, such as metronomic chemotherapy (MC), introducing a new paradigm in cancer treatment. MC consists of administering low doses of chemotherapy drugs continuously over a long period of time, modulating the tumour microenvironment (TME) due to the combination of cytotoxic, antiangiogenic and immunomodulatory effects. This multi-targeted therapy has been described as a treatment option in several canine and feline cancers since 2007, with positive results already published in the literature, particularly in mammary carcinomas and soft tissue sarcomas in dogs. The aim of this review article is to describe the current knowledge about the use of MC in small animal oncology, with emphasis on its mechanisms of action, the most commonly used drugs and clinical outcome.
Collapse
Affiliation(s)
- Gonçalo N. Petrucci
- Onevet Hospital Veterinário do Porto, Porto, Portugal
- Animal and Veterinary Department, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, Center for Investigation Vasco da Gama (CIVG), Vasco da Gama University School (EUVG), Coimbra, Portugal
| | - Tomás Rodrigues Magalhães
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Márcia Dias
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Felisbina Luísa Queiroga
- Animal and Veterinary Research Centre (CECAV), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
- Centre for the Study of Animal Science, CECA-ICETA, University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Sarogni P, Brindani N, Zamborlin A, Gonnelli A, Menicagli M, Mapanao AK, Munafò F, De Vivo M, Voliani V. Tumor growth-arrest effect of tetrahydroquinazoline-derivative human topoisomerase II-alpha inhibitor in HPV-negative head and neck squamous cell carcinoma. Sci Rep 2024; 14:9150. [PMID: 38644364 PMCID: PMC11033276 DOI: 10.1038/s41598-024-59592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/12/2024] [Indexed: 04/23/2024] Open
Abstract
Oral malignancies continue to have severe morbidity with less than 50% long-term survival despite the advancement in the available therapies. There is a persisting demand for new approaches to establish more efficient strategies for their treatment. In this regard, the human topoisomerase II (topoII) enzyme is a validated chemotherapeutics target, as topoII regulates vital cellular processes such as DNA replication, transcription, recombination, and chromosome segregation in cells. TopoII inhibitors are currently used to treat some neoplasms such as breast and small cells lung carcinomas. Additionally, topoII inhibitors are under investigation for the treatment of other cancer types, including oral cancer. Here, we report the therapeutic effect of a tetrahydroquinazoline derivative (named ARN21934) that preferentially inhibits the alpha isoform of human topoII. The treatment efficacy of ARN21934 has been evaluated in 2D cell cultures, 3D in vitro systems, and in chick chorioallantoic membrane cancer models. Overall, this work paves the way for further preclinical developments of ARN21934 and possibly other topoII alpha inhibitors of this promising chemical class as a new chemotherapeutic approach for the treatment of oral neoplasms.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Nicoletta Brindani
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy
- NEST - Scuola Normale Superiore, Piazza San Silvestro, 12, 56126, Pisa, Italy
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000, Ghent, Belgium
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy
- Department of Translational Medicine, University of Pisa, 56126, Pisa, Italy
| | - Michele Menicagli
- Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini, 13, 56017, S. Giuliano Terme, Italy
| | - Ana Katrina Mapanao
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | - Federico Munafò
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genoa, Italy.
| | - Valerio Voliani
- Center for Nanotechnology Innovation@ NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56126, Pisa, Italy.
- Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.
| |
Collapse
|
4
|
Grizzi F, Hegazi MAAA, Zanoni M, Vota P, Toia G, Clementi MC, Mazzieri C, Chiriva-Internati M, Taverna G. Prostate Cancer Microvascular Routes: Exploration and Measurement Strategies. Life (Basel) 2023; 13:2034. [PMID: 37895416 PMCID: PMC10608780 DOI: 10.3390/life13102034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Angiogenesis is acknowledged as a pivotal feature in the pathology of human cancer. Despite the absence of universally accepted markers for gauging the comprehensive angiogenic activity in prostate cancer (PCa) that could steer the formulation of focused anti-angiogenic treatments, the scrutiny of diverse facets of tumoral blood vessel development may furnish significant understanding of angiogenic processes. Malignant neoplasms, encompassing PCa, deploy a myriad of strategies to secure an adequate blood supply. These modalities range from sprouting angiogenesis and vasculogenesis to intussusceptive angiogenesis, vascular co-option, the formation of mosaic vessels, vasculogenic mimicry, the conversion of cancer stem-like cells into tumor endothelial cells, and vascular pruning. Here we provide a thorough review of these angiogenic mechanisms as they relate to PCa, discuss their prospective relevance for predictive and prognostic evaluations, and outline the prevailing obstacles in quantitatively evaluating neovascularization via histopathological examinations.
Collapse
Affiliation(s)
- Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Mohamed A. A. A. Hegazi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Matteo Zanoni
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Paolo Vota
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Giovanni Toia
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Maria Chiara Clementi
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Cinzia Mazzieri
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| | - Maurizio Chiriva-Internati
- Departments of Gastroenterology, Hepatology & Nutrition, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Gianluigi Taverna
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- Department of Urology, Humanitas Mater Domini, Castellanza, 21053 Varese, Italy; (M.Z.); (P.V.); (G.T.); (M.C.C.); (C.M.)
| |
Collapse
|
5
|
Romina O, Federico B, Leonardo S, Jennifer M, Carla R, Marina P, Alejandra D, Guillermo J, Lisa T. 6 Iodo-delta lactone inhibits angiogenesis in human HT29 colon adenocarcinoma xenograft. Prostaglandins Leukot Essent Fatty Acids 2022; 186:102507. [PMID: 36244213 DOI: 10.1016/j.plefa.2022.102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/24/2022] [Accepted: 10/06/2022] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Several studies have shown the antiproliferative effect of iodine and 5‑hydroxy-6 iodo-eicosatrienoic delta lactone (IL-δ) on diverse tissues. It was demonstrated that molecular iodine (I2) and IL-δ, but not iodide (I-), exerts anti-neoplastic actions in different cancers. The underlying mechanism through which IL-δ inhibits tumor growth remains unclear. The aim of this study was to analyze the effect of IL-δ on tumor growth and angiogenesis in human HT29 colorectal cancer xenografts. METHODOLOGY AND RESULTS HT29 cells were injected subcutaneously into the flanks of nude mice and IL-δ was i.p. injected at a dose of 15 μg three days a week. IL-δ treatment in HT29 xenografts showed time-dependent inhibition of tumor growth, decrease of mitosis and PCNA expression (p < 0.05), increase of P27 expression and Caspase 3 activity after 18 days of treatment (p < 0.05). To assess tumor Microvessel Densities (MVD), CD31 staining by immunohistochemistry was analyzed. IL-δ treatment decreased MVD by 17% and 30% after 18 and 30 days respectively (p < 0.05), as well as it decreased VEGF and VEGF-R2 expression (p < 0.05). Additionally, our findings demonstrated that IL-δ increased VEGF-R1 and Ang-1 mRNA levels (p < 0.01). CONCLUSION The antitumor efficacy of IL-δ in vivo involves inhibition of cell proliferation as well as induction of apoptosis. IL-δ has also anti-angiogenic effect associated with VEGF and VEGF-R2 downregulation followed by Ang-1 and VEGF-R1 increased expression. High levels of Ang-1 would contribute to mature vessel stabilization and maintenance while VEGF-R1 increase would produce anti-proliferative effect on endothelial cells.
Collapse
Affiliation(s)
- Oglio Romina
- Department of Radiobiology (CAC), National Comission of Atomic Energy (CNEA), Argentine
| | - Buschittari Federico
- Department of Radiobiology (CAC), National Comission of Atomic Energy (CNEA), Argentine
| | - Salvarredi Leonardo
- Department of Radiobiology (CAC), National Comission of Atomic Energy (CNEA), Argentine
| | | | - Rodriguez Carla
- Department of Radiobiology (CAC), National Comission of Atomic Energy (CNEA), Argentine
| | - Perona Marina
- Department of Radiobiology (CAC), National Comission of Atomic Energy (CNEA), Argentine; National Council of Scientific and Technical Research (CONICET), Argentine
| | - Dagrosa Alejandra
- Department of Radiobiology (CAC), National Comission of Atomic Energy (CNEA), Argentine; National Council of Scientific and Technical Research (CONICET), Argentine
| | - Juvenal Guillermo
- Department of Radiobiology (CAC), National Comission of Atomic Energy (CNEA), Argentine; National Council of Scientific and Technical Research (CONICET), Argentine
| | - Thomasz Lisa
- Department of Radiobiology (CAC), National Comission of Atomic Energy (CNEA), Argentine; National Council of Scientific and Technical Research (CONICET), Argentine.
| |
Collapse
|
6
|
Lin Y, Li Z, Liu M, Ye H, He J, Chen J. CD34 and Bcl-2 as predictors for the efficacy of neoadjuvant chemotherapy in cervical cancer. Arch Gynecol Obstet 2021; 304:495-501. [PMID: 33392721 PMCID: PMC8277608 DOI: 10.1007/s00404-020-05921-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Successful neoadjuvant chemotherapy (NACT) could improve the surgical resection rate and radical curability of patients with cervical cancer, but only a subset of patients benefits. Therefore, identifying predictive biomarkers are urgently needed. The aim of this study was to evaluate the predictive value of CD34 and Bcl-2 in the NACT effectiveness of cervical cancer. METHODS Sixty-seven patients with locally advanced cervical cancer (FIGO stages IB3, IIA2 or IIB) were classified into two groups based on effective (n = 48) and ineffective (n = 19) response to NACT. Immunohistochemistry was employed to identify CD34 and Bcl-2 expression before and after NACT. We analyzed the associations between the pre-NACT expression of these two biomarkers and the response of NACT. The expression of these two biomarkers before and after NACT was also assessed and compared. RESULTS More patients were CD34 positive expression before NACT in effective group compared to ineffective group (p = 0.005). However, no statistically significant difference in Bcl-2 expression before NACT were found between two groups (p = 0.084). In NACT effective group, the expression of both CD34 and Bcl-2 after NACT are down-regulated (p < 0.001 and p < 0.001, respectively), while there are no statistical differences between the pre- and post-NACT expression of CD34 and Bcl-2 in NACT ineffective group (p = 0.453 and p = 0.317, respectively). CONCLUSION The positive CD34 expression before NACT may serve as a predictive biomarker for NACT of cervical cancer, but the pre-NACT expression of Bcl-2 is not an independent predictor. The down-regulated expression of these two indicators after NACT may indicate effective NACT.
Collapse
Affiliation(s)
- Yun Lin
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Zhi Li
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mubiao Liu
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Haiyan Ye
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jianhui He
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jianguo Chen
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
7
|
Mapanao AK, Che PP, Sarogni P, Sminia P, Giovannetti E, Voliani V. Tumor grafted - chick chorioallantoic membrane as an alternative model for biological cancer research and conventional/nanomaterial-based theranostics evaluation. Expert Opin Drug Metab Toxicol 2021; 17:947-968. [PMID: 33565346 DOI: 10.1080/17425255.2021.1879047] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 02/09/2023]
Abstract
Introduction: Advancements in cancer management and treatment are associated with strong preclinical research data, in which reliable cancer models are demanded. Indeed, inconsistent preclinical findings and stringent regulations following the 3Rs principle of reduction, refinement, and replacement of conventional animal models currently pose challenges in the development and translation of efficient technologies. The chick embryo chorioallantoic membrane (CAM) is a system for the evaluation of treatment effects on the vasculature, therefore suitable for studies on angiogenesis. Apart from vascular effects, the model is now increasingly employed as a preclinical cancer model following tumor-grafting procedures.Areas covered: The broad application of CAM tumor model is highlighted along with the methods for analyzing the neoplasm and vascular system. The presented and cited investigations focus on cancer biology and treatment, encompassing both conventional and emerging nanomaterial-based modalities.Expert opinion: The CAM tumor model finds increased significance given the influences of angiogenesis and the tumor microenvironment in cancer behavior, then providing a qualified miniature system for oncological research. Ultimately, the establishment and increased employment of such a model may resolve some of the limitations present in the standard preclinical tumor models, thereby redefining the preclinical research workflow.
Collapse
Affiliation(s)
- Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano Di Tecnologia, Pisa, Italy
- NEST-Scuola Normale Superiore, Pisa, Italy
| | - Pei Pei Che
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, The Netherlands
| | - Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano Di Tecnologia, Pisa, Italy
| | - Peter Sminia
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano Di Tecnologia, Pisa, Italy
| |
Collapse
|
8
|
Obermann WMJ, Brockhaus K, Eble JA. Platelets, Constant and Cooperative Companions of Sessile and Disseminating Tumor Cells, Crucially Contribute to the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:674553. [PMID: 33937274 PMCID: PMC8085416 DOI: 10.3389/fcell.2021.674553] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Although platelets and the coagulation factors are components of the blood system, they become part of and contribute to the tumor microenvironment (TME) not only within a solid tumor mass, but also within a hematogenous micrometastasis on its way through the blood stream to the metastatic niche. The latter basically consists of blood-borne cancer cells which are in close association with platelets. At the site of the primary tumor, the blood components reach the TME via leaky blood vessels, whose permeability is increased by tumor-secreted growth factors, by incomplete angiogenic sprouts or by vasculogenic mimicry (VM) vessels. As a consequence, platelets reach the primary tumor via several cell adhesion molecules (CAMs). Moreover, clotting factor VII from the blood associates with tissue factor (TF) that is abundantly expressed on cancer cells. This extrinsic tenase complex turns on the coagulation cascade, which encompasses the activation of thrombin and conversion of soluble fibrinogen into insoluble fibrin. The presence of platelets and their release of growth factors, as well as fibrin deposition changes the TME of a solid tumor mass substantially, thereby promoting tumor progression. Disseminating cancer cells that circulate in the blood stream also recruit platelets, primarily by direct cell-cell interactions via different receptor-counterreceptor pairs and indirectly by fibrin, which bridges the two cell types via different integrin receptors. These tumor cell-platelet aggregates are hematogenous micrometastases, in which platelets and fibrin constitute a particular TME in favor of the cancer cells. Even at the distant site of settlement, the accompanying platelets help the tumor cell to attach and to grow into metastases. Understanding the close liaison of cancer cells with platelets and coagulation factors that change the TME during tumor progression and spreading will help to curb different steps of the metastatic cascade and may help to reduce tumor-induced thrombosis.
Collapse
Affiliation(s)
| | | | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
9
|
Muralidharan K, Kumaravelu P, David DC. Evaluation of antiangiogenic and antiproliferative potential of ethanolic extracts of Andrographis echioides using in vitro and in ovo assays. J Cancer Res Ther 2021; 17:484-490. [PMID: 34121696 DOI: 10.4103/jcrt.jcrt_325_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction Andrographis echioides is a prevalently used medicinal herb in South Asian countries. Scientific researches with the extracts of A. echioides revealed its antipyretic, anti-inflammatory, antimicrobial, ulceroprotective, and hepatoprotective properties. This study was done to elucidate antiproliferative and antiangiogenic potential of ethanolic extracts of A. echioides (EEAE) by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) assay and chorioallantoic membrane (CAM) assay. Materials and Methods EEAE was prepared using Soxhlet apparatus with ethanol after being sun-dried and powdered. MCF 7 (human invasive breast ductal carcinoma) cell lines retaining attributes of differentiated mammary epithelium with both estrogen and progesterone receptors were treated with EEAE, and antiproliferative effect was seen using Mosmann method of MTT assay using 5-fluorouracil (5-FU) as a comparator. The evaluation of antiangiogenic potential of EEAE was done by comparing mean vessel density (MVD) in chick CAM after treatment with EEAE, thalidomide, and vascular endothelial growth factor (VEGF) using CAM assay, an in ovo assay. Results EEAE displayed antiproliferative activity from low to high concentrations with MTT assay. The IC50 of EEAE and 5-FU was 62.5 and 15.6 μg/ml, respectively (P < 0.05). The exhibition of its antiangiogenic activity increased proportionately with increasing concentration. VEGF increased MVD by 45.94%; thalidomide decreased it by 53.76%. There was a decrease of MVD by 5.91%, 20.46%, and 35.95% at concentrations of 25, 50, and 100 μg of EEAE, respectively. Conclusion EEAE possessed significant antiangiogenic and antiproliferative activity, making them a promising substrate in the development of a novel anticancer drug and can be successfully used in the therapy of various cancers after establishment of the anticancer effects in animal models and subsequently in clinical trials.
Collapse
Affiliation(s)
- Karthiga Muralidharan
- Department of Pharmacology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education And Research (Deemed University), Porur, Chennai, Tamil Nadu, India
| | - Punnagai Kumaravelu
- Department of Pharmacology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education And Research (Deemed University), Porur, Chennai, Tamil Nadu, India
| | - Darling Chellathai David
- Department of Pharmacology, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education And Research (Deemed University), Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Nawara HM, Afify SM, Hassan G, Zahra MH, Atallah MN, Seno A, Seno M. An assay for cancer stem cell-induced angiogenesis on chick chorioallantoic membrane. Cell Biol Int 2020; 45:749-756. [PMID: 33274828 DOI: 10.1002/cbin.11511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/15/2020] [Accepted: 11/21/2020] [Indexed: 11/07/2022]
Abstract
Angiogenesis is generally involved in tumor growth and metastasis. Cancer stem cells (CSCs) are considered to facilitate the angiogenesis. Therefore, CSCs could be the effective targets to stop angiogenesis. Recently, our group successfully generated CSC models from induced pluripotent stem cells (iPSCs) in the presence of conditioned medium derived from cancer derived cells. These novel model CSCs has been characterized by highly tumorigenic, angiogenic and metastatic potentials in vivo. The angiogenic potential of CSCs has been explained by the expression of both angiogenic factors and their receptors implying the angiogenesis in autocrine manner. In this protocol we optimized the method to evaluate tumor angiogenesis with the CSC model, which was described effective to assess sorafenib as an antiangiogenic drug, on chick chorioallantoic membrane (CAM) assay. Our results demonstrate that CSCs developed from iPSCs and CAM assay are a robust and cost-effective tool to evaluate tumor angiogenesis with CSCs. Collectively, CSCs in CAM assay could serve as a very useful model for the screening of potential therapeutic agents targeting tumor angiogenesis.
Collapse
Affiliation(s)
- Hend M Nawara
- Laboratory of Nano-Biotechnology, Division of Bioengineering and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Said M Afify
- Laboratory of Nano-Biotechnology, Division of Bioengineering and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Menoufia, Egypt
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Division of Bioengineering and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan.,Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Maram H Zahra
- Laboratory of Nano-Biotechnology, Division of Bioengineering and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Marwa N Atallah
- Department of Zoology, Vertebrates Embryology, and Comparative Anatomy, Faculty of Science, Menoufia University, Menoufia, Egypt
| | - Akimasa Seno
- Laboratory of Nano-Biotechnology, Division of Bioengineering and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Division of Bioengineering and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| |
Collapse
|
11
|
Esteve M. Mechanisms Underlying Biological Effects of Cruciferous Glucosinolate-Derived Isothiocyanates/Indoles: A Focus on Metabolic Syndrome. Front Nutr 2020; 7:111. [PMID: 32984393 PMCID: PMC7492599 DOI: 10.3389/fnut.2020.00111] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
An inverse correlation between vegetable consumption and the incidence of cancer has long been described. This protective effect is stronger when cruciferous vegetables are specifically consumed. The beneficial properties of vegetables are attributed to their bioactive components like fiber, antioxidants vitamins, antioxidants, minerals, and phenolic compounds. Cruciferous vegetables contain all these molecules; however, what makes them different are their sulfurous components, called glucosinolates, responsible for their special smell and taste. Glucosinolates are inactive biologically in the organism but are hydrolyzed by the enzyme myrosinase released as a result of chewing, leading to the formation of active derivatives such as isothiocyanates and indoles. A considerable number of in vitro and in vivo studies have reported that isothiocyanates and indoles elicit chemopreventive potency through multiple mechanisms that include modulation of phases I and II detoxification pathway enzymes, regulation of cell cycle arrest, and control of cell growth, induction of apoptosis, antioxidant activity, anti-angiogenic effects, and epigenetic regulation. Nuclear erythroid 2-related factor 2 (Nrf2) and Nuclear factor-κB (NF-κB) are key and central regulators in all these processes with a main role in oxidative stress and inflammation control. It has been described that isothiocyanates and indoles regulate their activity directly and indirectly. Today, the metabolic syndrome (central obesity, insulin resistance, hyperlipidemia, and hypertension) is responsible for a majority of deaths worldwide. All components of metabolic syndrome are characterized by chronic inflammation with deregulation of the PI3K/AKT/mTOR, MAPK/EKR/JNK, Nrf2, and NF-κB signaling pathways. The effects of GLSs derivatives controlling these pathways have been widely described in relation to cancer. Changes in food consumption patterns observed in the last decades to higher consumption of ultra-processed foods, with elevation in simple sugar and saturated fat contents and lower consumption of vegetables and fruits have been directly correlated with metabolic syndrome prevalence. In this review, it is summarized the knowledge regarding the mechanisms by which cruciferous glucosinolate derivatives (isothiocyanates and indoles) directly and indirectly regulate these pathways. However, the review places a special focus on the knowledge of the effects of glucosinolates derivatives in metabolic syndrome, since this has not been reviewed before.
Collapse
Affiliation(s)
- Montserrat Esteve
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
- Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Tomasin R, Pascoal ACRF, Salvador MJ, Gomes-Marcondes MCC. Aloe vera and Honey Solution and Their Ethanolic Extraction Solution Could Act on Metastasis-Regulating Processes in Walker 256 Tumor Tissues In Vivo? Nutr Cancer 2020; 73:1244-1252. [PMID: 32608289 DOI: 10.1080/01635581.2020.1784443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Research has shown that both Aloe vera and honey have anticancer and nutrition properties, including the inhibition of metastasis. In order to evaluate the effect of a solution of Aloe vera and honey (A) and their ethanolic fraction (F) on metastasis-regulating processes in primary tumors, Wistar rats were subcutaneously implanted with Walker 256 tumors and treated with A and F (670 µl/kg by gavage, daily for 21 days). An analysis of the primary tumor tissues of these animals showed a decrease in N-cadherin expression in groups WA and WF, with a concomitant increase in E-cadherin expression in group WA compared to the control group. Cathepsin D activity was also decreased in the tumor tissues from groups WA and WF. In addition, the number of blood vessels and their diameter significantly reduced in tumor tissues from groups WA and WF compared to those from control group. UHPLC-ESI-MS/MS analysis of the samples A and F, suggested presence of molecules with verified antitumor activity, including caffeic acid, ferulic acid, mannose, aloin A, aloin B, pinocembrin, chrysin, and kaempferol. These data showed that treatment with A and F could reduce the metastatic propensity of tumors by modulating neoangiogenesis and the process of epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Rebeka Tomasin
- Department of Structural and Functional Biology, Laboratory of Nutrition and Cancer, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aislan Cristina Rheder Fagundes Pascoal
- Department of Plant Biology, PPGBTPB and PPGBCE, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil.,Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense (UFF), Nova Friburgo, Rio de Janeiro, Brazil
| | - Marcos José Salvador
- Department of Plant Biology, PPGBTPB and PPGBCE, Institute of Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Maria Cristina Cintra Gomes-Marcondes
- Department of Structural and Functional Biology, Laboratory of Nutrition and Cancer, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Jayaraman Rukmini S, Bi H, Sen P, Everhart B, Jin S, Ye K. Inducing Tumor Suppressive Microenvironments through Genome Edited CD47 -/- Syngeneic Cell Vaccination. Sci Rep 2019; 9:20057. [PMID: 31882679 PMCID: PMC6934648 DOI: 10.1038/s41598-019-56370-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
Tumors can escape from the immune system by overexpressing CD47 and other checkpoint blockades. CD47 is expressed ubiquitously by all cells in the body, posing an obstacle for CD47 blocking treatments due to their systemic toxicity. We performed a study to determine how the tumor microenvironment changes after vaccination with genome edited CD47-/- syngeneic tumor cells. We discovered that inactivated CD47-depleted mouse melanoma cells can protect mice from melanoma. Our animal study indicated that 33% of vaccinated mice remained tumor-free, and 100% of mice had 5-fold reduced growth rates. The characterization of immunomodulatory effects of the vaccine revealed a highly anti-tumorigenic and homogenous microenvironment after vaccination. We observed consistently that in the tumors that failed to respond to vaccines, there were reduced natural killer cells, elevated regulatory T cells, M2-type macrophages, and high PD-L1 expression in these cells. These observations suggested that the tumor microenvironments became more suppressive to tumor growth after vaccination, suggesting a potential new immunotherapy for solid tumors.
Collapse
Affiliation(s)
- Subhadra Jayaraman Rukmini
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA
| | - Huanjing Bi
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA
| | - Puloma Sen
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA
| | - Benjamin Everhart
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA
| | - Sha Jin
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA
| | - Kaiming Ye
- Department of Biomedical Engineering, Center of Biomanufacturing for Regenerative Medicine, Watson School of Engineering and Applied Science, Binghamton University, State University of New York (SUNY), Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
14
|
Vania L, Morris G, Otgaar TC, Bignoux MJ, Bernert M, Burns J, Gabathuse A, Singh E, Ferreira E, Weiss SFT. Patented therapeutic approaches targeting LRP/LR for cancer treatment. Expert Opin Ther Pat 2019; 29:987-1009. [PMID: 31722579 DOI: 10.1080/13543776.2019.1693543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: The ubiquitously expressed 37 kDa/67 kDa high-affinity laminin receptor (laminin receptor precursor/laminin receptor, LRP/LR) is a protein found to play several roles within cells. The receptor is located in the nucleus, cytosol and the cell surface. LRP/LR mediates cell proliferation, cell adhesion and cell differentiation. As a result, it is seen to enhance tumor angiogenesis as well as invasion and adhesion, key steps in the metastatic cascade of cancer. Recent findings have shown that LRP/LR is involved in the maintenance of cell viability through apoptotic evasion, allowing for tumor progression. Thus, several patented therapeutic approaches targeting the receptor for the prevention and treatment of cancer have emerged.Areas covered: The several roles that LRP/LR plays in cancer progression as well as an overview of the current therapeutic patented strategies targeting LRP/LR and cancer to date.Expert opinion: Small molecule inhibitors, monoclonal antibodies and small interfering RNAs might act used as powerful tools in preventing tumor angiogenesis and metastasis through the induction of apoptosis and telomere erosion in several cancers. This review offers an overview of the roles played by LRP/LR in cancer progression, while providing novel patented approaches targeting the receptor as potential therapeutic routes for the treatment of cancer as well as various other diseases.
Collapse
Affiliation(s)
- Leila Vania
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Gavin Morris
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Tyrone C Otgaar
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Monique J Bignoux
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Martin Bernert
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Jessica Burns
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Anne Gabathuse
- Wits Commercial Enterprise, The Commercial Development Hub, Johannesburg, Republic of South Africa
| | - Elvira Singh
- School of Public Health, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Eloise Ferreira
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| | - Stefan F T Weiss
- School of Molecular and Cell Biology, University of the Witwatersrand, Wits, Johannesburg, Republic of South Africa
| |
Collapse
|
15
|
Zarychta E, Rhone P, Bielawski K, Michalska M, Rość D, Ruszkowska-Ciastek B. Anti-angiogenic efficacy in invasive breast carcinoma patients depends on clinicopathological determinants. Adv Med Sci 2019; 64:216-223. [PMID: 30818220 DOI: 10.1016/j.advms.2019.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/19/2018] [Accepted: 02/08/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE The biggest problem with the occurrence of breast cancer is late diagnosis, which is associated with high mortality rates. The aim of the study was to appraise the number of circulating endothelial precursors and the concentration of vascular endothelial growth factor A (VEGF-A) and the soluble forms of its receptors, sVEGFR1 and sVEGFR2, in breast cancer patients with respect to clinicopathological features. MATERIAL AND METHODS The study involved 85 women of Caucasian ethnicity aged 45-66 with primary breast cancer without distant metastases (M0). Inclusion criteria were as follows: histopathological examination confirming the diagnosis of primary breast cancer, without previous radiotherapy and chemotherapy. Immunohistochemistry evaluation of oestrogen and progesterone receptors, human epidermal growth factor receptor 2, Ki67 expression was made in all cases. In the EDTA-plasma, the concentrations of VEGF-A and its soluble receptors, sVEGFR1 and sVEGFR2, were measured applying immunoassay techniques. Circulating endothelial progenitor cells (EPCs) were identified with the immune-phenotype CD45-, CD34+, CD133+, CD31+ using flow cytometry. RESULTS Older women with breast cancer had significantly higher concentrations of VEGF-A as well as sVEGFR2 compared with their younger counterparts. A significantly higher concentration of the soluble form of VEGF receptor type 1 in patients with T1 breast cancer in relation to T2 cases was noted. Also, negative correlations between circulating EPCs and histological grading as well as a soluble form of VEGFR2 with histological grading of breast cancer according to the Elston-Ellis classification were observed. CONCLUSIONS Anti-angiogenic potential is divergent in relation to the clinicopathological determinants.
Collapse
|
16
|
α-Melanocyte-Stimulating Hormone Attenuates Neovascularization by Inducing Nitric Oxide Deficiency via MC-Rs/PKA/NF-κB Signaling. Int J Mol Sci 2018; 19:ijms19123823. [PMID: 30513637 PMCID: PMC6321109 DOI: 10.3390/ijms19123823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022] Open
Abstract
α-melanocyte-stimulating hormone (α-MSH) has been characterized as a novel angiogenesis inhibitor. The homeostasis of nitric oxide (NO) plays an important role in neovascularization. However, it remains unclear whether α-MSH mitigates angiogenesis through modulation of NO and its signaling pathway. The present study elucidated the function and mechanism of NO signaling in α-MSH-induced angiogenesis inhibition using cultured human umbilical vein endothelial cells (HUVECs), rat aorta rings, and transgenic zebrafish. By Griess reagent assay, it was found α-MSH dose-dependently reduced the NO release in HUVECs. Immunoblotting and immunofluorescence analysis revealed α-MSH potently suppressed endothelial and inducible nitric oxide synthase (eNOS/iNOS) expression, which was accompanied with inhibition of nuclear factor kappa B (NF-κB) activities. Excessive supply of NO donor l-arginine reversed the α-MSH-induced angiogenesis inhibition in vitro and in vivo. By using antibody neutralization and RNA interference, it was delineated that melanocortin-1 receptor (MC1-R) and melanocortin-2 receptor (MC2-R) participated in α-MSH-induced inhibition of NO production and NF-κB/eNOS/iNOS signaling. This was supported by pharmaceutical inhibition of protein kinase A (PKA), the downstream effector of MC-Rs signaling, using H89 abolished the α-MSH-mediated suppression of NO release and eNOS/iNOS protein level. Therefore, α-MSH exerts anti-angiogenic function by perturbing NO bioavailability and eNOS/iNOS expression in endothelial cells.
Collapse
|
17
|
A Computer-Aided Decision Support System for Detection and Localization of Cutaneous Vasculature in Dermoscopy Images Via Deep Feature Learning. J Med Syst 2018; 42:33. [DOI: 10.1007/s10916-017-0885-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/18/2017] [Indexed: 01/03/2023]
|
18
|
Kharazmi P, AlJasser MI, Lui H, Wang ZJ, Lee TK. Automated Detection and Segmentation of Vascular Structures of Skin Lesions Seen in Dermoscopy, With an Application to Basal Cell Carcinoma Classification. IEEE J Biomed Health Inform 2017; 21:1675-1684. [DOI: 10.1109/jbhi.2016.2637342] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Bayat Mokhtari R, Baluch N, Homayouni TS, Morgatskaya E, Kumar S, Kazemi P, Yeger H. The role of Sulforaphane in cancer chemoprevention and health benefits: a mini-review. J Cell Commun Signal 2017; 12:91-101. [PMID: 28735362 DOI: 10.1007/s12079-017-0401-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 01/25/2023] Open
Abstract
Cancer is a multi-stage process resulting from aberrant signaling pathways driving uncontrolled proliferation of transformed cells. The development and progression of cancer from a premalignant lesion towards a metastatic tumor requires accumulation of mutations in many regulatory genes of the cell. Different chemopreventative approaches have been sought to interfere with initiation and control malignant progression. Here we present research on dietary compounds with evidence of cancer prevention activity that highlights the potential beneficial effect of a diet rich in cruciferous vegetables. The Brassica family of cruciferous vegetables such as broccoli is a rich source of glucosinolates, which are metabolized to isothiocyanate compounds. Amongst a number of related variants of isothiocyanates, sulforaphane (SFN) has surfaced as a particularly potent chemopreventive agent based on its ability to target multiple mechanisms within the cell to control carcinogenesis. Anti-inflammatory, pro-apoptotic and modulation of histones are some of the more important and known mechanisms by which SFN exerts chemoprevention. The effect of SFN on cancer stem cells is another area of interest that has been explored in recent years and may contribute to its chemopreventive properties. In this paper, we briefly review structure, pharmacology and preclinical studies highlighting chemopreventive effects of SFN.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Sickkids Research Center, Peter Gilgan Centre, 686 Bay St., Rm 15.9714, Toronto, ON, M5G 0A4, Canada.
| | - Narges Baluch
- Department of Pathology and Molecular Medicine, Richardson Laboratory, Queen's University, 88 Stuart Street, Kingston, ON, K7L 3N6, Canada
| | - Tina S Homayouni
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Evgeniya Morgatskaya
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sushil Kumar
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Parandis Kazemi
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Herman Yeger
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada. .,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada. .,Sickkids Research Center, Peter Gilgan Centre, 686 Bay St., Rm 15.9714, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
20
|
Use of Ultrasmall Superparamagnetic Iron Oxide Enhanced Susceptibility Weighted Imaging and Mean Vessel Density Imaging to Monitor Antiangiogenic Effects of Sorafenib on Experimental Hepatocellular Carcinoma. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:9265098. [PMID: 29097941 PMCID: PMC5612611 DOI: 10.1155/2017/9265098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/25/2017] [Indexed: 12/11/2022]
Abstract
We investigated effectiveness of ultrasmall superparamagnetic iron oxide enhanced susceptibility weighted imaging (USPIO-enhanced SWI) and mean vessel density imaging (Q) in monitoring antiangiogenic effects of Sorafenib on orthotopic hepatocellular carcinoma (HCC). Thirty-five HCC xenografts were established. USPIO-enhanced SWI and Q were performed on a 1.5 T MR scanner at baseline, 7, 14, and 21 days after Sorafenib treatment. Intratumoral susceptibility signal intensity (ITSS) and Q were serially measured and compared between the treated (n = 15) and control groups (n = 15). Both ITSS and Q were significantly lower in the treated group at each time point (P < 0.05). Measurements in the treated group showed that ITSS persisted at 7 days (P = 0.669) and increased at 14 and 21 days (P < 0.05), while Q significantly declined at 7 days (P = 0.028) and gradually increased at 14 and 21 days. In the treated group, significant correlation was found between Q and histologic microvessel density (MVD) (r = 0.753, P < 0.001), and ITSS correlated well with MVD (r = 0.742, P = 0.002) after excluding the data from baseline. This study demonstrated that USPIO-enhanced SWI and Q could provide novel biomarkers for evaluating antiangiogenic effects of Sorafenib on HCC.
Collapse
|
21
|
Menter DG, Kopetz S, Hawk E, Sood AK, Loree JM, Gresele P, Honn KV. Platelet "first responders" in wound response, cancer, and metastasis. Cancer Metastasis Rev 2017; 36:199-213. [PMID: 28730545 PMCID: PMC5709140 DOI: 10.1007/s10555-017-9682-0] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platelets serve as "first responders" during normal wounding and homeostasis. Arising from bone marrow stem cell lineage megakaryocytes, anucleate platelets can influence inflammation and immune regulation. Biophysically, platelets are optimized due to size and discoid morphology to distribute near vessel walls, monitor vascular integrity, and initiate quick responses to vascular lesions. Adhesion receptors linked to a highly reactive filopodia-generating cytoskeleton maximizes their vascular surface contact allowing rapid response capabilities. Functionally, platelets normally initiate rapid clotting, vasoconstriction, inflammation, and wound biology that leads to sterilization, tissue repair, and resolution. Platelets also are among the first to sense, phagocytize, decorate, or react to pathogens in the circulation. These platelet first responder properties are commandeered during chronic inflammation, cancer progression, and metastasis. Leaky or inflammatory reaction blood vessel genesis during carcinogenesis provides opportunities for platelet invasion into tumors. Cancer is thought of as a non-healing or chronic wound that can be actively aided by platelet mitogenic properties to stimulate tumor growth. This growth ultimately outstrips circulatory support leads to angiogenesis and intravasation of tumor cells into the blood stream. Circulating tumor cells reengage additional platelets, which facilitates tumor cell adhesion, arrest and extravasation, and metastasis. This process, along with the hypercoagulable states associated with malignancy, is amplified by IL6 production in tumors that stimulate liver thrombopoietin production and elevates circulating platelet numbers by thrombopoiesis in the bone marrow. These complex interactions and the "first responder" role of platelets during diverse physiologic stresses provide a useful therapeutic target that deserves further exploration.
Collapse
Affiliation(s)
- David G Menter
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA.
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Ernest Hawk
- Office of the Vice President Cancer Prevention & Population Science, M. D. Anderson Cancer Center, Unit 1370, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
| | - Anil K Sood
- Gynocologic Oncology & Reproductive Medicine, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Department of Cancer Biology, M. D. Anderson Cancer Center, Unit 1362, 1515 Holcombe Boulevard, Houston, TX, 77054, USA
- Center for RNA Interference and Non-Coding RNA The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Jonathan M Loree
- Department of Gastrointestinal Medical Oncology, M. D. Anderson Cancer Center, Room#: FC10.3004, 1515 Holcombe Boulevard--Unit 0426, Houston, TX, 77030, USA
| | - Paolo Gresele
- Department of Medicine, Section of Internal and Cardiovascular Medicine, University of Perugia, Via E. Dal Pozzo, 06126, Perugia, Italy
| | - Kenneth V Honn
- Bioactive Lipids Research Program, Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Department of Pathology, Wayne State University, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
- Cancer Biology Division, Wayne State University School of Medicine, 431 Chemistry Bldg, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
22
|
Gaspar TB, Henriques J, Marconato L, Queiroga FL. The use of low-dose metronomic chemotherapy in dogs-insight into a modern cancer field. Vet Comp Oncol 2017; 16:2-11. [PMID: 28317239 DOI: 10.1111/vco.12309] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 02/03/2017] [Accepted: 02/11/2017] [Indexed: 12/22/2022]
Abstract
The era of chemotherapy, which started in the middle of the last century, has been ruled by the routine use of dose-intense protocols, based on the "maximum-tolerated dose" concept. By promoting a balance between patient's quality of life and the goal of rapidly killing as many tumour cells as possible, these protocols still play a prominent role in veterinary oncology. However, with the opening of a new millennium, metronomic chemotherapy (MC) started to be considered a possible alternative to traditional dose-intense chemotherapy. Characterized by a long-term daily administration of lower doses of cytotoxic drugs, this new modality stands out for its unique combination of effects, namely on neovascularization, immune response and tumour dormancy. This article reviews the rationale for treatment with MC, its mechanism of action and the main studies conducted in veterinary medicine, and discusses the key challenges yet to be solved.
Collapse
Affiliation(s)
- T B Gaspar
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Hospital Veterinário Berna, Lisboa, Portugal
| | - J Henriques
- Hospital Veterinário Berna, Lisboa, Portugal
| | - L Marconato
- Centro Oncologico Veterinario, Bologna, Italy
| | - F L Queiroga
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.,Center for the Study of Animal Sciences, CECA-ICETA, University of Porto, Porto, Portugal.,Center for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
23
|
Menter DG, Davis JS, Tucker SC, Hawk E, Crissman JD, Sood AK, Kopetz S, Honn KV. Platelets: “First Responders” in Cancer Progression and Metastasis. PLATELETS IN THROMBOTIC AND NON-THROMBOTIC DISORDERS 2017:1111-1132. [DOI: 10.1007/978-3-319-47462-5_74] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
24
|
A Comparative Approach of Tumor-Associated Inflammation in Mammary Cancer between Humans and Dogs. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4917387. [PMID: 28053982 PMCID: PMC5178344 DOI: 10.1155/2016/4917387] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/24/2016] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
Abstract
Infiltrating cells of the immune system are widely accepted to be generic constituents of tumor microenvironment. It has been well established that the development of mammary cancer, both in humans and in dogs, is associated with alterations in numbers and functions of immune cells at the sites of tumor progression. These tumor infiltrating immune cells seem to exhibit exclusive phenotypic and functional characteristics and mammary cancer cells can take advantage of signaling molecules released by them. Cancer related inflammation has an important role in mammary carcinogenesis, contributing to the acquisition of core hallmark capabilities that allow cancer cells to survive, proliferate, and disseminate. Indeed, recent studies in human breast cancer and in canine mammary tumors have identified a growing list of signaling molecules released by inflammatory cells that serve as effectors of their tumor-promoting actions. These include the COX-2, the tumor EGF, the angiogenic VEGF, other proangiogenic factors, and a large variety of chemokines and cytokines that amplify the inflammatory state. This review describes the intertwined signaling pathways shared by T-lymphocytic/macrophage infiltrates and important tissue biomarkers in both human and dog mammary carcinogenesis.
Collapse
|
25
|
Sun Y, Wu C, Ma J, Yang Y, Man X, Wu H, Li S. Toll-like receptor 4 promotes angiogenesis in pancreatic cancer via PI3K/AKT signaling. Exp Cell Res 2016; 347:274-82. [PMID: 27426724 DOI: 10.1016/j.yexcr.2016.07.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023]
Abstract
Deregulation of Toll-like receptor 4 (TLR4) is closely associated with the progression of various types of cancers, but its role in pancreatic carcinogenesis is unclear. This study aimed to investigate the role of TLR4 in the angiogenesis of pancreatic cancer and the underlying molecular mechanisms. The culture supernatant (conditioned medium) of PANC-1 cells after appropriate treatment was used for the treatment of HUVECs. The proliferation, migration and tube formation of HUVECs were assessed by MTT, Transwell and Matrigel, respectively. In pancreatic cancer tissues, TLR4, VEGF and CD31 were upregulated as determined by immunohistochemistry and the expression of TLR4 and VEGF was positively correlated with microvessel density as detected by CD31 staining. Activation of TLR4 signaling by LPS in PANC-1 cells resulted in increased VEGF and phosphorylation of AKT, which were abolished by TLR4 silencing with siRNA and PI3K/AKT signaling inhibitor LY294002. The conditioned medium from PANC-1 cells treated with LY294002 or transfected with TRL4 siRNA reduced the proliferation, migration and tube formation of HUVECs. In contrast, the conditioned medium from PANC-1 cells treated with LPS stimulated the proliferation, migration and tube formation of HUVECs, which was however significantly inhibited by pretreatment of PANC-1 cells with LY294002 or transfection with TRL4 siRNA. Our findings suggest TLR4 may promote angiogenesis in pancreatic cancer by activating the PI3K/AKT signaling pathway to induce VEGF expression.
Collapse
Affiliation(s)
- Yunliang Sun
- Department of Gastroenterology, Lianyungang Ganyu People's Hospital, Ganyu, Jiangsu, China
| | - Congshan Wu
- Department of Gastroenterology, Lianyungang Ganyu People's Hospital, Ganyu, Jiangsu, China
| | - Jianxia Ma
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China.
| | - Yu Yang
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, China
| | - Xiaohua Man
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Hongyu Wu
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Shude Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
26
|
Bakirel T, Alkan FÜ, Üstüner O, Çinar S, Yildirim F, Erten G, Bakirel U. Synergistic growth inhibitory effect of deracoxib with doxorubicin against a canine mammary tumor cell line, CMT-U27. J Vet Med Sci 2016; 78:657-68. [PMID: 26822118 PMCID: PMC4873858 DOI: 10.1292/jvms.15-0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cyclooxygenase (COX) inhibitors have been shown to exert anti-angiogenic and anti-tumor
activities on many types of malignant tumors. These anticancer properties make it
worthwhile to examine the possible benefit of combining COX inhibitors with other
anti-cancer agents. In the present study, we evaluated the potential of deracoxib (DER) in
potentiating antitumor activity of doxorubicin (DOX) in canine mammary carcinoma cells
(CMT-U27). DER (50–250 µM) enhanced the antiproliferative activity of DOX
by reducing the IC50 (approximately 3- to 3.5 fold). Interaction analysis of
the data showed that combinations of DOX at 0.9 µM with DER (100–250
µM) produced synergism in the CMT-U27 cell line, with a ratio index
ranging from 1.98 to 2.33. In additional studies identifying the mechanism of observed
synergistic effect, we found that DER strongly potentiated DOX-caused
G0/G1 arrest in cell cycle progression. Also, DER (100–250
µM) augmented apoptosis induction with approximately 1.35- and 1.37-
fold increases in apoptotic response caused by DOX in the cells. DER enhanced the
antiproliferative effect of DOX in conjunction with induction of apoptosis by modulation
of Bcl-2 expression and changes in the cell cycle of the CMT-U27 cell line. Although the
exact molecular mechanism of the alterations in the cell cycle and apoptosis observed with
DER and DOX combinations require further investigations, the results suggest that the
synergistic effect of DOX and DER combinations in CMT therapy may be achieved at
relatively lower doses of DOX with lesser side effects. Therefore, combining DER with DOX
may prove beneficial in the clinical treatment of canine mammary cancer.
Collapse
Affiliation(s)
- Tülay Bakirel
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, 34320, Turkey
| | | | | | | | | | | | | |
Collapse
|
27
|
Pottier C, Wheatherspoon A, Roncarati P, Longuespée R, Herfs M, Duray A, Delvenne P, Quatresooz P. The importance of the tumor microenvironment in the therapeutic management of cancer. Expert Rev Anticancer Ther 2015; 15:943-54. [PMID: 26098949 DOI: 10.1586/14737140.2015.1059279] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor prognosis is generally defined by various tumor parameters. However, it is well known that paracrine, endocrine and cell-cell interactions between the tumor and its microenvironment contribute to its growth. The tumor microenvironment (TME) can also influence disease prognosis and is likely to be considered as an important prognostic factor. In addition, conventional therapies can influence the microenvironment and antitumor immunity. Similarly, the TME will influence the effectiveness of therapy. The purpose of this review is to demonstrate how TME is important in therapeutic management. Key interactions between TME and different cancer therapies as well as their current clinical consequences have been described. More research is needed to establish the important network between tumor cells and their environment to highlight their relationships with conventional therapies and develop global therapeutic strategies.
Collapse
Affiliation(s)
- Charles Pottier
- Department of Pathology, University Hospital of Liège, Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Expression of angiogenesis regulatory proteins and epithelial-mesenchymal transition factors in platelets of the breast cancer patients. ScientificWorldJournal 2014; 2014:878209. [PMID: 25379550 PMCID: PMC4212629 DOI: 10.1155/2014/878209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 08/14/2014] [Indexed: 12/21/2022] Open
Abstract
Platelets play a role in tumor angiogenesis and growth and are the main transporters of several angiogenesis regulators. Here, we aimed to determine the levels of angiogenesis regulators and epithelial-mesenchymal transition factors sequestered by circulating platelets in breast cancer patients and age-matched healthy controls. Platelet pellets (PP) and platelet-poor plasma (PPP) were collected by routine protocols. Vascular endothelial growth factor (VEGF), platelet-derived growth factor BB (PDGF-BB), thrombospondin-1 (TSP-1), platelet factor 4 (PF4), and transforming growth factor-β1 (TGF-β1) were measured by enzyme-linked immunosorbent assay. Angiogenesis-associated expression of VEGF (2.1 pg/106 platelets versus 0.9 pg/106 platelets, P < 0.001), PF4 (21.2 ng/106 platelets versus 10.2 ng/106 platelets, P < 0.001), PDGF-BB (42.9 pg/106 platelets versus 19.1 pg/106 platelets, P < 0.001), and TGF-β1 (15.3 ng/106 platelets versus 4.3 ng/106 platelets, P < 0.001) differed in the PP samples of cancer and control subjects. In addition, protein concentrations were associated with clinical characteristics (P < 0.05). Circulating platelets in breast cancer sequester higher levels of PF4, VEGF, PDGF-BB, and TGF-β1, suggesting a possible target for early diagnosis. VEGF, PDGF, and TGF-β1 concentrations in platelets may be associated with prognosis.
Collapse
|
29
|
Li Y, Zhai Z, Liu D, Zhong X, Meng X, Yang Q, Liu J, Li H. CD105 promotes hepatocarcinoma cell invasion and metastasis through VEGF. Tumour Biol 2014; 36:737-45. [DOI: 10.1007/s13277-014-2686-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 09/26/2014] [Indexed: 01/08/2023] Open
|