1
|
Idowu OK, Oremosu AA, Dosumu OO, Mohammed AA. Ribose-cysteine and levodopa abrogate Parkinsonism via the regulation of neurochemical and redox activities in alpha-synuclein transgenic Drosophila melanogaster models. Fly (Austin) 2024; 18:2306687. [PMID: 38286464 PMCID: PMC10826630 DOI: 10.1080/19336934.2024.2306687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Parkinson's disease (PD), the most prevalent type of parkinsonism, is a progressive neurodegenerative condition marked by several non-motor and motor symptoms. PD is thought to have a complex aetiology that includes a combination of age, genetic predisposition, and environmental factors. Increased expression of α-synuclein (α-Syn) protein is central to the evolvement of neuropathology in this devastating disorder, but the potential of ribose-cysteine and levodopa in abating pathophysiologic changes in PD model is unknown. Crosses were set up between flies conditionally expressing a pathological variant of human α-Syn (UAS-α-Syn) and those expressing GAL4 in neurons (elav-GAL4) to generate offspring referred to as PD flies. Flies were randomly assigned to five groups (n = 40) from the total population of flies, with each group having five replicates. Groups of PD flies were treated with either 500 mg/kg ribose-cysteine diet, 250 mg/kg levodopa diet, or a combination of the two compounds for 21 days, whereas the control group (w1118) and the PD group were exposed to a diet without ribose-cysteine or levodopa. In addition to various biochemical and neurochemical assays, longevity, larval motility, and gravitaxis assays were carried out. Locomotive capability, lifespan, fecundity, antioxidant state, and neurotransmitter systems were all significantly (p < 0.05) compromised by overexpression of α-Syn. However, flies treated both ribose cysteine and levodopa showed an overall marked improvement in motor functions, lifespan, fecundity, antioxidant status, and neurotransmitter system functions. In conclusion, ribose-cysteine and levodopa, both singly and in combination, potentiated a therapeutic effect on alpha-synuclein transgenic Drosophila melanogaster models of Parkinsonism.
Collapse
Affiliation(s)
- Olumayowa K. Idowu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
- Department of Anatomy, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Ademola A. Oremosu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Olufunke O. Dosumu
- Department of Anatomy, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abdullahi A. Mohammed
- Department of Human Anatomy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
2
|
Zamanian MY, Parra RMR, Soltani A, Kujawska M, Mustafa YF, Raheem G, Al-Awsi L, Lafta HA, Taheri N, Heidari M, Golmohammadi M, Bazmandegan G. Targeting Nrf2 signaling pathway and oxidative stress by resveratrol for Parkinson's disease: an overview and update on new developments. Mol Biol Rep 2023; 50:5455-5464. [PMID: 37155008 DOI: 10.1007/s11033-023-08409-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
Parkinson's disease (PD) as a prevalent neurodegenerative condition impairs motor function and is caused by the progressive deterioration of nigrostriatal dopaminergic (DAergic) neurons. The current therapy solutions for PD are ineffective because they could not inhibit the disease's progression and they even have adverse effects. Natural polyphenols, a group of phytochemicals, have been found to offer various health benefits, including neuroprotection against PD. Among these, resveratrol (RES) has neuroprotective properties owing to its capacity to protect mitochondria and act as an antioxidant. An increase in the formation of reactive oxygen species (ROS) leads to oxidative stress (OS), which is responsible for cellular damage resulting in lipid peroxidation, oxidative protein alteration, and DNA damage. In PD models, it's been discovered that RES pretreatment can diminish oxidative stress by boosting endogenous antioxidant status and directly scavenging ROS. Several studies have examined the involvement of RES in the modulation of the transcriptional factor Nrf2 in PD models because this protein recognizes oxidants and controls the antioxidant defense. In this review, we have examined the molecular mechanisms underlying the RES activity and reviewed its effects in both in vitro and in vivo models of PD. The gathered evidence herein showed that RES treatment provides neuroprotection against PD by reducing OS and upregulation of Nrf2. Moreover, in the present study, scientific proof of the neuroprotective properties of RES against PD and the mechanism supporting clinical development consideration has been described.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | | | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, Poznan, 60-631, Poland
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ghaidaa Raheem
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran
| | - Lateef Al-Awsi
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Holya A Lafta
- Department of Pharmacy, Al-Nisour University College, Baghdad, Iraq
| | - Niloofar Taheri
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Bazmandegan
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
3
|
Pratomo AR, Salim E, Hori A, Kuraishi T. Drosophila as an Animal Model for Testing Plant-Based Immunomodulators. Int J Mol Sci 2022; 23:ijms232314801. [PMID: 36499123 PMCID: PMC9735809 DOI: 10.3390/ijms232314801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Allopathic medicines play a key role in the prevention and treatment of diseases. However, long-term consumption of these medicines may cause serious undesirable effects that harm human health. Plant-based medicines have emerged as alternatives to allopathic medicines because of their rare side effects. They contain several compounds that have the potential to improve health and treat diseases in humans, including their function as immunomodulators to treat immune-related diseases. Thus, the discovery of potent and safe immunomodulators from plants is gaining considerable research interest. Recently, Drosophila has gained prominence as a model organism in evaluating the efficacy of plant and plant-derived substances. Drosophila melanogaster "fruit fly" is a well-known, high-throughput model organism that has been used to study different biological aspects of development and diseases for more than 110 years. Most developmental and cell signaling pathways and 75% of human disease-related genes are conserved between humans and Drosophila. Using Drosophila, one can easily examine the pharmacological effects of plants/plant-derived components by employing a variety of tests in flies, such as survival, anti-inflammatory, antioxidant, and cell death tests. This review focused on D. melanogaster's potential for identifying immunomodulatory features associated with plants/plant-derived components.
Collapse
Affiliation(s)
- Andre Rizky Pratomo
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Emil Salim
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia
- Correspondence: (E.S.); (T.K.)
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa 920-1192, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
- JST-FOREST, Japan Science and Technology Agency, Tokyo 102-0081, Japan
- Correspondence: (E.S.); (T.K.)
| |
Collapse
|
4
|
Himalian R, Singh SK, Singh MP. Ameliorative Role of Nutraceuticals on Neurodegenerative Diseases Using the Drosophila melanogaster as a Discovery Model to Define Bioefficacy. J Am Coll Nutr 2021; 41:511-539. [PMID: 34125661 DOI: 10.1080/07315724.2021.1904305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurodegeneration is the destruction of neurons, and once the neurons degenerate they can't revive. This is one of the most concerned health conditions among aged population, more than ∼70% of the elderly people are suffering from neurodegeneration. Among all of the neurodegenerative diseases, Alzheimer's disease (AD), Parkinson's disease (PD) and Poly-glutamine disease (Poly-Q) are the major one and affecting most of the people around the world and posing excessive burden on the society. In order to understand this disease in non-human animal models it is pertinent to examine in model organism and various animal model are being used for such diseases like rat, mice and non-vertebrate model like Drosophila. Drosophila melanogaster is one of the best animal proven by several eminent scientist and had received several Nobel prizes for uncovering mechanism of human related genes and highly efficient model for studying neurodegenerative diseases due to its great affinity with human disease-related genes. Another factor is also employed to act as therapeutic or preventive method that is nutraceuticals. Nutraceuticals are functional natural compounds with antioxidant properties and had extensively showed the neuroprotective effect in different organisms. These nutraceuticals having antioxidant properties act through scavenging free radicals or by increasing endogenous cellular antioxidant defense molecules. For the best benefit, we are trying to utilize these nutraceuticals, which will have no or negligible side effects. In this review, we are dealing with various types of such nutraceuticals which have potent value in the prevention and curing of the diseases related to neurodegeneration.HighlightsNeurodegeneration is the silently progressing disease which shows its symptoms when it is well rooted.Many chemical drugs (almost all) have only symptomatic relief with side effects.Potent mechanism of neurodegeneration and improvement effect by nutraceuticals is proposed.Based on the Indian Cuisine scientists are trying to find the medicine from the food or food components having antioxidant properties.The best model to study the neurodegenerative diseases is Drosophila melanogaster.Many nutraceuticals having antioxidant properties have been studied and attenuated various diseases are discussed.
Collapse
Affiliation(s)
- Ranjana Himalian
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology (ISET) Foundation, Lucknow, India
| | - Mahendra Pratap Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
5
|
Pharmacological Treatment of Alzheimer's Disease: Insights from Drosophila melanogaster. Int J Mol Sci 2020; 21:ijms21134621. [PMID: 32610577 PMCID: PMC7370071 DOI: 10.3390/ijms21134621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Aging is an ineluctable law of life. During the process of aging, the occurrence of neurodegenerative disorders is prevalent in the elderly population and the predominant type of dementia is Alzheimer’s disease (AD). The clinical symptoms of AD include progressive memory loss and impairment of cognitive functions that interfere with daily life activities. The predominant neuropathological features in AD are extracellular β-amyloid (Aβ) plaque deposition and intracellular neurofibrillary tangles (NFTs) of hyperphosphorylated Tau. Because of its complex pathobiology, some tangible treatment can only ameliorate the symptoms, but not prevent the disease altogether. Numerous drugs during pre-clinical or clinical studies have shown no positive effect on the disease outcome. Therefore, understanding the basic pathophysiological mechanism of AD is imperative for the rational design of drugs that can be used to prevent this disease. Drosophilamelanogaster has emerged as a highly efficient model system to explore the pathogenesis and treatment of AD. In this review we have summarized recent advancements in the pharmacological research on AD using Drosophila as a model species, discussed feasible treatment strategies and provided further reference for the mechanistic study and treatment of age-related AD.
Collapse
|
6
|
Genetic Dissection of Alzheimer's Disease Using Drosophila Models. Int J Mol Sci 2020; 21:ijms21030884. [PMID: 32019113 PMCID: PMC7037931 DOI: 10.3390/ijms21030884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to abnormal accumulation of the amyloid β (Aβ) protein. Despite decades of intensive research, the mechanisms underlying AD remain elusive, and the only available treatment remains symptomatic. Molecular understanding of the pathogenesis and progression of AD is necessary to develop disease-modifying treatment. Drosophila, as the most advanced genetic model, has been used to explore the molecular mechanisms of AD in the last few decades. Here, we introduce Drosophila AD models based on human Aβ and summarize the results of their genetic dissection. We also discuss the utility of functional genomics using the Drosophila system in the search for AD-associated molecular mechanisms in the post-genomic era.
Collapse
|
7
|
Abolaji AO, Fasae KD, Iwezor CE, Aschner M, Farombi EO. Curcumin attenuates copper-induced oxidative stress and neurotoxicity in Drosophila melanogaster. Toxicol Rep 2020; 7:261-268. [PMID: 32025502 PMCID: PMC6997559 DOI: 10.1016/j.toxrep.2020.01.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/23/2023] Open
Abstract
Curcumin is a hydrophobic polyphenol derived from the rhizome of the Herb Curcuma longa belonging to the family Zingiberaceae. Curcumin possesses antioxidative, anti-inflammatory and anti-depressant-like properties. In this study, we evaluated the rescue role of Curcumin in Copper2+-induced toxicity in D. melanogaster. Adult, wild type flies were exposed to Cu2+ (1 mM) and/or Curcumin (0.2 and 0.5 mg/kg diet) in the diet for 7 days. The results indicated that Cu2+- fed flies had reduced survival compared to the control group. Copper toxicity was also associated with a marked decrease in total thiol (T-SH), as well as catalase and glutathione S-transferase activities, contemporaneous with increased acetylcholinesterase (AChE) activity, nitric oxide (nitrate and nitrite) and dopamine levels. Co-exposure of flies to Cu2+ and Curcumin prevented mortality, inhibited AChE activity and restored dopamine to normal levels (p < 0.05). Moreover, Curcumin restored eclosion rates, and the cellular antioxidant status, as well as alleviated the accumulation of nitric oxide level in the flies. Curcumin ameliorated oxidative damage in the flies as evidenced by the survival rates, longevity assay as well as the restoration of antioxidant status. Our findings thus suggest that Curcumin ameliorated Cu2+-induced neurotoxicity in D. melanogaster and as such could be considered an effective therapeutic agent in the prevention and treatment of disorders, where oxidative stress is implicated.
Collapse
Affiliation(s)
- Amos O Abolaji
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Kehinde D Fasae
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Chizim E Iwezor
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ebenezer O Farombi
- Department of Biochemistry, Molecular Drug Metabolism and Toxicology Unit, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|
8
|
Insights into the Functions of LncRNAs in Drosophila. Int J Mol Sci 2019; 20:ijms20184646. [PMID: 31546813 PMCID: PMC6770079 DOI: 10.3390/ijms20184646] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs longer than 200 nucleotides (nt). LncRNAs have high spatiotemporal specificity, and secondary structures have been preserved throughout evolution. They have been implicated in a range of biological processes and diseases and are emerging as key regulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Comparative analyses of lncRNA functions among multiple organisms have suggested that some of their mechanisms seem to be conserved. Transcriptome studies have found that some Drosophila lncRNAs have highly specific expression patterns in embryos, nerves, and gonads. In vivo studies of lncRNAs have revealed that dysregulated expression of lncRNAs in Drosophila may result in impaired embryo development, impaired neurological and gonadal functions, and poor stress resistance. In this review, we summarize the epigenetic, transcriptional, and post-transcriptional mechanisms of lncRNAs and mainly focus on recent insights into the transcriptome studies and biological functions of lncRNAs in Drosophila.
Collapse
|
9
|
Maitra U, Ciesla L. Using Drosophila as a platform for drug discovery from natural products in Parkinson's disease. MEDCHEMCOMM 2019; 10:867-879. [PMID: 31303984 PMCID: PMC6596131 DOI: 10.1039/c9md00099b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with no cure. Despite intensive research, most of the currently available therapies are only effective in alleviating symptoms with no effect on disease progression. There is an urgent need for new therapeutics to impede disease progression. Natural products are valuable sources of bioactive compounds that can be exploited for novel therapeutic potential in PD pathogenesis. However, rapid screening of plant-derived natural products and characterization of bioactive compounds is costly and challenging. Drosophila melanogaster, commonly known as the fruit fly, has recently emerged as an excellent model for human neurodegenerative diseases, including PD. The high degree of conserved molecular pathways with mammalian models make Drosophila PD models an inexpensive solution to preliminary phases of target validation in the drug discovery pipeline. The present review provides an overview of drug discovery from natural extracts using Drosophila as a screening platform to evaluate the therapeutic potential of phytochemicals against PD.
Collapse
Affiliation(s)
- Urmila Maitra
- Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2320, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . ; Tel: +205 348 7599
| | - Lukasz Ciesla
- Department of Biological Sciences , University of Alabama , Science and Engineering Complex 2329, 300 Hackberry Lane , Tuscaloosa , Alabama 35487-0344 , USA . ; Tel: +205 348 1828
| |
Collapse
|
10
|
S N, Shivanandappa T. Neuroprotective action of 4-Hydroxyisophthalic acid against paraquat-induced motor impairment involves amelioration of mitochondrial damage and neurodegeneration in Drosophila. Neurotoxicology 2018; 66:160-169. [DOI: 10.1016/j.neuro.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/14/2023]
|
11
|
Shamsi TN, Parveen R, Afreen S, Azam M, Sen P, Sharma Y, Haque QMR, Fatma T, Manzoor N, Fatima S. Trypsin Inhibitors from Cajanus cajan and Phaseolus limensis Possess Antioxidant, Anti-Inflammatory, and Antibacterial Activity. J Diet Suppl 2018; 15:939-950. [PMID: 29345972 DOI: 10.1080/19390211.2017.1407383] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Protease inhibitors are one of the most promising and investigated subjects for their role in pharmacognostic and pharmacological studies. This study aimed to investigate antioxidant, anti-inflammatory, and antimicrobial activities of trypsin inhibitors (TIs) from two plant sources (Cajanus cajan and Phaseolus limensis). TI was purified from C. cajan (PUSA-992) by ammonium sulfate precipitation followed by ion exchange chromatography. TI from Phaseolus limensis (lima bean trypsin inhibitor; LBTI) was procured from Sigma-Aldrich, St. Louis, Missouri, United States. The antioxidant activity was analyzed by ferric ion reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH). The anti-inflammatory property of TIs was determined by inhibition of albumin denaturation assay. Ascorbic acid and aspirin were used as standards for antioxidant and anti-inflammatory assays, respectively. These TIs were tested against various bacterial and fungal strains. The TIs showed DPPH radical-scavenging activity in a concentration-dependent manner with IC50 values comparable to ascorbic acid. The FRAP values were also observed comparable to ascorbic acid and followed the trend of dose-dependent manner. The half maximal inhibitory concentration (IC50) values of CCTI and LBTI in anti-inflammatory test showed that LBTI is more potent than CCTI. The TIs showed potent antibacterial activity, but apparently no action against fungi. This study has reported the biological properties of CCTI and LBTI for the first time. The results show that TIs possess the ability to inhibit diseases caused by oxidative stress, inflammation, and bacterial infestation.
Collapse
Affiliation(s)
- Tooba Naz Shamsi
- a Department of Biotechnology , Jamia Millia Islamia , New Delhi , India
| | - Romana Parveen
- a Department of Biotechnology , Jamia Millia Islamia , New Delhi , India
| | - Sumbul Afreen
- b Department of Biosciences , Jamia Millia Islamia , New Delhi , India
| | - Mudasser Azam
- b Department of Biosciences , Jamia Millia Islamia , New Delhi , India
| | - Priyankar Sen
- c Centre for Bioseparation Technology, VIT , Vellore , Tamil Nadu , India
| | - Yamini Sharma
- b Department of Biosciences , Jamia Millia Islamia , New Delhi , India
| | | | - Tasneem Fatma
- b Department of Biosciences , Jamia Millia Islamia , New Delhi , India
| | - Nikhat Manzoor
- b Department of Biosciences , Jamia Millia Islamia , New Delhi , India
| | - Sadaf Fatima
- a Department of Biotechnology , Jamia Millia Islamia , New Delhi , India
| |
Collapse
|
12
|
Liu QF, Jeon Y, Sung YW, Lee JH, Jeong H, Kim YM, Yun HS, Chin YW, Jeon S, Cho KS, Koo BS. Nardostachys jatamansi Ethanol Extract Ameliorates Aβ42 Cytotoxicity. Biol Pharm Bull 2018; 41:470-477. [DOI: 10.1248/bpb.b17-00750] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Quan Feng Liu
- Department of Oriental Medicine, Dongguk University
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University
| | - Youngjae Jeon
- Department of Biological Sciences, Konkuk University
| | - Yung-wei Sung
- Department of Oriental Medicine, Dongguk University
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University
| | - Haemin Jeong
- Department of Biological Sciences, Konkuk University
| | - Young-Mi Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University
| | - Young-Won Chin
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul
| | - Songhee Jeon
- Dongguk University Research Institute of Biotechnology, Dongguk University
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University
| | | | - Byung-Soo Koo
- Department of Oriental Medicine, Dongguk University
- Department of Oriental Neuropsychiatry, Graduate School of Oriental Medicine, Dongguk University
| |
Collapse
|
13
|
Cooper EL, Ma MJ. Alzheimer Disease: Clues from traditional and complementary medicine. J Tradit Complement Med 2017; 7:380-385. [PMID: 29034183 PMCID: PMC5634730 DOI: 10.1016/j.jtcme.2016.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 02/07/2023] Open
Abstract
Despite modern medicine's incredible innovation and resulting accumulation of valuable knowledge, many of the world's most problematic diseases such as Alzheimer Disease (AD) still lack effective cures and treatments. Western medicine has revealed many genetic, cellular, and molecular processes that characterize AD such as protein aggregation and inflammation. As the need for novel and effective treatments increases, researchers have turned towards traditional medicine as a resource. Modern, evidence based research examining traditional and complementary remedies for AD has generated promising results within the last decade. Animal based products inhibiting cellular toxicity, anti-inflammatory nutraceuticals such as omega-3 fatty acids, and plant based compounds derived from herbal medicine demonstrate viability as neuroprotective treatments and possible application in developing pharmaceuticals. Analysis of antioxidant, anti-inflammatory, and neuroprotective phytochemicals used in various traditional medicines around the world reveal potential to ameliorate and prevent the devastating neurodegeneration observed in AD.
Collapse
Affiliation(s)
- Edwin L. Cooper
- Laboratory of Comparative Immunology, Department of Neurobiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095-1763, USA
| | | |
Collapse
|
14
|
Siddique YH, Jyoti S. Alteration in biochemical parameters in the brain of transgenic Drosophila melanogaster model of Parkinson's disease exposed to apigenin. Integr Med Res 2017; 6:245-253. [PMID: 28951838 PMCID: PMC5605376 DOI: 10.1016/j.imr.2017.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Oxidative stress is one of the key components of the pathology of various neurodegenerative disorders. Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons owing to the aggregation of alpha-synuclein (αS) in the brain. A number of polyphenols have been reported to inhibit the αS aggregation resulting in the possible prevention of PD. The involvement of free radicals in mediating the neuronal death in PD has also been implicated. METHODS In the present study, the transgenic flies expressing human αS in the brain were exposed to 10 μM, 20 μM, 40 μM, and 80 μM of apigenin established in diet for 24 days. RESULTS The flies showed an increase in life span, glutathione, and dopamine content. The exposure of PD flies to various doses of apigenin also results in the reduction of glutathione-S-transferase activity, lipid peroxidation, monoamine oxidase, caspase-3, and caspase-9 activity in a dose-dependent manner. CONCLUSION The results of the present study reveal that apigenin is potent in increasing the life span, dopamine content, reduced the oxidative stress as well as apoptosis in transgenic Drosophila model of PD.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | | |
Collapse
|
15
|
Panchal K, Tiwari AK. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components. Biomed Pharmacother 2017; 89:1331-1345. [PMID: 28320100 DOI: 10.1016/j.biopha.2017.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 12/18/2022] Open
Abstract
Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components.
Collapse
Affiliation(s)
- Komal Panchal
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar 382 007, Gujarat, India.
| | - Anand K Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar 382 007, Gujarat, India.
| |
Collapse
|
16
|
Jeon Y, Lee S, Shin M, Lee JH, Suh YS, Hwang S, Yun HS, Cho KS. Phenotypic differences between Drosophila Alzheimer's disease models expressing human Aβ42 in the developing eye and brain. Anim Cells Syst (Seoul) 2017; 21:160-168. [PMID: 30460065 PMCID: PMC6138326 DOI: 10.1080/19768354.2017.1313777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster expressing amyloid-β42 (Aβ42) transgenes have been used as models to study Alzheimer's disease. Various Aβ42 transgenes with different structures induce different phenotypes, which make it difficult to compare data among studies which use different transgenic lines. In this study, we compared the phenotypes of four frequently used Aβ42 transgenic lines, UAS-Aβ422X , UAS-Aβ42BL33770 , UAS-Aβ4211C39 , and UAS-Aβ42H29.3 . Among the four transgenic lines, only UAS-Aβ422X has two copies of the upstream activation sequence-amyloid-β42 (UAS-Aβ42) transgene, while remaining three have one copy. UAS-Aβ42BL33770 has the 3' untranslated region of Drosophila α-tubulin, while the others have that of SV40. UAS-Aβ4211C39 and UAS-Aβ42H29.3 have the rat pre-proenkephalin signal peptide, while UAS-Aβ422X and UAS-Aβ42BL33770 have that of the fly argos protein. When the transgenes were expressed ectopically in the developing eyes of the flies, UAS-Aβ422X transgene resulted in a strongly reduced and rough eye phenotype, while UAS-Aβ42BL33770 only showed a strong rough eye phenotype; UAS-Aβ42H29.3 and UAS-Aβ4211C39 had mild rough eyes. The levels of cell death and reactive oxygen species (ROS) in the eye imaginal discs were consistently the highest in UAS-Aβ422X , followed by UAS-Aβ42BL33770 , UAS-Aβ4211C39 , and UAS-Aβ42H29.3 . Surprisingly, the reduction in survival during the development of these lines did not correlate with cell death or ROS levels. The flies which expressed UAS-Aβ4211C39 or UAS-Aβ42H29.3 experienced greatly reduced survival rates, although low levels of ROS or cell death were detected. Collectively, our results demonstrated that different Drosophila AD models show different phenotypic severity, and suggested that different transgenes may have different modes of cytotoxicity. Abbreviations: Aβ42: amyloid-β42; AD: Alzheimer's disease; UAS: upstream activation sequence.
Collapse
Affiliation(s)
- Youngjae Jeon
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Soojin Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Myoungchul Shin
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Yoon Seok Suh
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Soojin Hwang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Gallart-Palau X, Ng CH, Ribera J, Sze SK, Lim KL. Drosophila expressing human SOD1 successfully recapitulates mitochondrial phenotypic features of familial amyotrophic lateral sclerosis. Neurosci Lett 2016; 624:47-52. [PMID: 27163198 DOI: 10.1016/j.neulet.2016.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 02/12/2016] [Accepted: 05/05/2016] [Indexed: 11/30/2022]
Abstract
Mitochondrial pathology is a seminal pathogenic hallmark of familial amyotrophic lateral sclerosis (FALS) which is extensively manifested by human patients and mutant SOD1(G93A) mammalian models. Rodents expressing human FALS-associated mutations successfully mimic several human disease features; although they are not as amenable to genetic and therapeutic compound screenings as non-mammalian models. In this study, we report a newly generated and characterized Drosophila model that expresses human SOD1(G93A) in muscle fibers. Presence of SOD1(G93A) in thoracic muscles causes mitochondrial pathology and impairs normal motor behavior in these flies. Use of this new FALS-24B-SOD1(G93A) fly model holds promise for better understanding of the mitochondrial affectation process in FALS and for the discovery of novel therapeutic compounds able to reverse mitochondrial dysfunction in this fatal disease.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- Experimental Medicine Department, Medical School, University of Lleida, 25198 Lleida, Catalonia, Spain; Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), 25198 Lleida, Catalonia, Spain; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| | - Chee-Hoe Ng
- Department of Research, National Neuroscience Institute, Singapore 308433, Singapore; Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Joan Ribera
- Experimental Medicine Department, Medical School, University of Lleida, 25198 Lleida, Catalonia, Spain; Institut de Recerca Biomèdica de Lleida (IRBLLEIDA), 25198 Lleida, Catalonia, Spain
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Kah-Leong Lim
- Department of Physiology, National University of Singapore, Singapore 117543, Singapore; Department of Research, National Neuroscience Institute, Singapore 308433, Singapore; Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| |
Collapse
|
18
|
Liu QF, Lee JH, Kim YM, Lee S, Hong YK, Hwang S, Oh Y, Lee K, Yun HS, Lee IS, Jeon S, Chin YW, Koo BS, Cho KS. In Vivo Screening of Traditional Medicinal Plants for Neuroprotective Activity against Aβ42 Cytotoxicity by Using Drosophila Models of Alzheimer's Disease. Biol Pharm Bull 2015; 38:1891-901. [PMID: 26458335 DOI: 10.1248/bpb.b15-00459] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive neuronal loss with amyloid β-peptide (Aβ) plaques. Despite several drugs currently used to treat AD, their beneficial effects on AD progress remains under debate. Here, we established a rapid in vivo screening system using Drosophila AD models to assess the neuroprotective activities of medicinal plants that have been used in traditional Chinese medicine. Among 23 medicinal plants tested, the extracts from five plants, Coriandrum sativum, Nardostachys jatamansi, Polygonum multiflorum (P. multiflorum), Rehmannia glutinosa, and Sorbus commixta (S. commixta), showed protective effects against the Aβ42 neurotoxicity. We further characterized the neuroprotective activity of ethanol extracts from P. multiflorum and S. commixta. Aβ42-expressing flies that we used showed AD neurological phenotypes, such as decreased survival and motility and increased cell death and reactive oxygen species level. However, feeding these flies extracts from P. multiflorum or S. commixta showed strong suppression of such phenotypes. Similar results were observed in human cells, so that the treatment of P. multiflorum and S. commixta extracts increased the viability of Aβ-treated SH-SY5Y cells. Moreover, 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, one of the main constituents of P. multiflorum, also showed similar protective activity against Aβ42 cytotoxicity in both Drosophila and human cells. Taken together, our results suggest that both P. multiflorum and S. commixta have therapeutic potential for the treatment of neurodegenerative diseases, such as AD.
Collapse
|
19
|
Phom L, Achumi B, Alone DP, Muralidhara, Yenisetti SC. Curcumin's neuroprotective efficacy in Drosophila model of idiopathic Parkinson's disease is phase specific: implication of its therapeutic effectiveness. Rejuvenation Res 2015; 17:481-9. [PMID: 25238331 DOI: 10.1089/rej.2014.1591] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Selective degeneration of dopaminergic neurons in the substantia nigra underlies the basic motor impairments of Parkinson's disease (PD). Curcumin has been used for centuries in traditional medicines in India. Our aim is to understand the efficacy of genotropic drug curcumin as a neuroprotective agent in PD. Analysis of different developmental stages in model organisms revealed that they are characterized by different patterns of gene expression which is similar to that of developmental stages of human. Genotropic drugs would be effective only during those life cycle stages for which their target molecules are available. Hence there exists a possibility that targets of genotropic compounds such as curcumin may not be present in all life stages. However, no reports are available in PD models illustrating the efficacy of curcumin in later phases of adult life. This is important because this is the period during which late-onset disorders such as idiopathic PD set in. To understand this paradigm, we tested the protective efficacy of curcumin in different growth stages (early, late health stage, and transition phase) in adult Drosophila flies. Results showed that it can rescue the motor defects during early stages of life but is ineffective at later phases. This observation was substantiated with the finding that curcumin treatment could replenish depleted brain dopamine levels in the PD model only during early stages of life cycle, clearly suggesting its limitation as a therapeutic agent in late-onset neurodegenerative disorders such as PD.
Collapse
Affiliation(s)
- Limamanen Phom
- 1 Drosophila Neurobiology Laboratory, Department of Zoology, Nagaland University (Central) , Lumami, Nagaland, India
| | | | | | | | | |
Collapse
|
20
|
Jimenez-Del-Rio M, Velez-Pardo C. Alzheimer’s Disease, Drosophila melanogaster and Polyphenols. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:21-53. [DOI: 10.1007/978-3-319-18365-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|