1
|
Štancl P, Gršković P, Držaić S, Vičić A, Karlić R, Korać P. RNA-Sequencing Identification of Genes Supporting HepG2 as a Model Cell Line for Hepatocellular Carcinoma or Hepatocytes. Genes (Basel) 2024; 15:1460. [PMID: 39596661 PMCID: PMC11593409 DOI: 10.3390/genes15111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Cell lines do not faithfully replicate the authentic transcriptomic condition of the disease under study. The HepG2 cell line is widely used for studying hepatocellular carcinoma (HCC), but not all biological processes and genes exhibit congruent expression patterns between cell lines and the actual disease. The objective of this study is to perform a comparative transcriptomic analysis of the HepG2 cell line, HCC, and primary hepatocytes (PH) in order to identify genes suitable for research in HepG2 as a model for PH or HCC research. Methods: We conducted a differential expression analysis between publicly available data from HCC patients, PH, and HepG2. We examined specific overlaps of differentially expressed genes (DEGs) in a pairwise manner between groups in order to obtain a valuable gene list for studying HCC or PH using different parameter filtering. We looked into the function and druggability of these genes. Conclusions: In total, we identified 397 genes for HepG2 as a valuable HCC model and 421 genes for HepG2 as a valuable PH model, and with more stringent criteria, we derived a smaller list of 40 and 21 genes, respectively. The majority of genes identified as a valuable set for the HCC model are involved in DNA repair and protein degradation mechanisms. This research aims to provide detailed guidance on gene selection for studying diseases like hepatocellular carcinoma, primary hepatocytes, or others using cell lines.
Collapse
Affiliation(s)
- Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Paula Gršković
- Biomedical Research Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| | - Sara Držaić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Ana Vičić
- Department of Obstetrics and Gynecology, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia;
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia; (P.Š.); (S.D.)
| | - Petra Korać
- Biomedical Research Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
2
|
Kasturirangan S, Nancarrow DJ, Shah A, Lagisetty KH, Lawrence TS, Beer DG, Ray D. Isoform alterations in the ubiquitination machinery impacting gastrointestinal malignancies. Cell Death Dis 2024; 15:194. [PMID: 38453895 PMCID: PMC10920915 DOI: 10.1038/s41419-024-06575-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
The advancement of RNAseq and isoform-specific expression platforms has led to the understanding that isoform changes can alter molecular signaling to promote tumorigenesis. An active area in cancer research is uncovering the roles of ubiquitination on spliceosome assembly contributing to transcript diversity and expression of alternative isoforms. However, the effects of isoform changes on functionality of ubiquitination machineries (E1, E2, E3, E4, and deubiquitinating (DUB) enzymes) influencing onco- and tumor suppressor protein stabilities is currently understudied. Characterizing these changes could be instrumental in improving cancer outcomes via the identification of novel biomarkers and targetable signaling pathways. In this review, we focus on highlighting reported examples of direct, protein-coded isoform variation of ubiquitination enzymes influencing cancer development and progression in gastrointestinal (GI) malignancies. We have used a semi-automated system for identifying relevant literature and applied established systems for isoform categorization and functional classification to help structure literature findings. The results are a comprehensive snapshot of known isoform changes that are significant to GI cancers, and a framework for readers to use to address isoform variation in their own research. One of the key findings is the potential influence that isoforms of the ubiquitination machinery have on oncoprotein stability.
Collapse
Affiliation(s)
| | - Derek J Nancarrow
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ayush Shah
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kiran H Lagisetty
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theodore S Lawrence
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David G Beer
- Surgery - Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Dipankar Ray
- Departments of Radiation Oncology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Tavakoli Pirzaman A, Ebrahimi P, Niknezhad S, Vahidi T, Hosseinzadeh D, Akrami S, Ashrafi AM, Moeen Velayatimehr M, Hosseinzadeh R, Kazemi S. Toxic mechanisms of cadmium and exposure as a risk factor for oral and gastrointestinal carcinomas. Hum Exp Toxicol 2023; 42:9603271231210262. [PMID: 37870872 DOI: 10.1177/09603271231210262] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Incidence and mortality rates of gastrointestinal (GI) and oral cancers are among the highest in the world, compared to other cancers. GI cancers include esophageal, gastric, colon, rectal, liver, and pancreatic cancers, with colorectal cancer being the most common. Oral cancer, which is included in the head and neck cancers category, is one of the most important causes of death in India. Cadmium (Cd) is a toxic element affecting humans and the environment, which has both natural and anthropogenic sources. Generally, water, soil, air, and food supplies are reported as some sources of Cd. It accumulates in organs, particularly in the kidneys and liver. Exposure to cadmium is associated with different types of health risks such as kidney dysfunction, cardiovascular disease, reproductive dysfunction, diabetes, cerebral infarction, and neurotoxic effects (Parkinson's disease (PD) and Alzheimer's disease (AD)). Exposure to Cd is also associated with various cancers, including lung, kidney, liver, stomach, hematopoietic system, gynecologic and breast cancer. In the present study, we have provided and summarized the association of Cd exposure with oral and GI cancers.
Collapse
Affiliation(s)
| | - Pouyan Ebrahimi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Shokat Niknezhad
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Turan Vahidi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | | | - Sousan Akrami
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash M Ashrafi
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | | | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Science, Babol, Iran
| | - Sohrab Kazemi
- Cellular and Molecular Biology Research Center, Health Research Center, Babol University of Medical Science, Babol, Iran
| |
Collapse
|
4
|
Ahamed M, Akhtar MJ, Alhadlaq HA. Combined effect of single-walled carbon nanotubes and cadmium on human lung cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87844-87857. [PMID: 35821329 DOI: 10.1007/s11356-022-21933-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Co-exposure of widely used single-walled carbon nanotubes (SWCNTs) and ubiquitous cadmium (Cd) to humans through ambient air is unavoidable. Studies on joint toxicity of SWCNTs and Cd in human cells are scarce. We aimed to investigate the joint effects of SWCNTs and Cd in human lung epithelial (A549) cells. Results showed that SWCNTs were safe while Cd induce significant toxicity to A549 cells. Remarkably, Cd-induced cell viability reduction, lactate dehydrogenase leakage, cell cycle arrest, dysregulation of apoptotic gene (p53, bax, bcl-2, casp3, and casp9), and mitochondrial membrane potential depletion were significantly mitigated following SWCNTs co-exposure. Cd-induced intracellular level of reactive oxygen species, hydrogen peroxide, and lipid peroxidation were significantly attenuated by SWCNT co-exposure. Moreover, glutathione depletion and lower activity of antioxidant enzymes after Cd exposure were also effectively abrogated by co-exposure of SWCNTs. Inductively coupled plasma-mass spectrometry study indicated that higher adsorption of Cd on SCWNTs might decreased cellular uptake and the toxic potential of Cd in A549 cells. Our work warranted further research to explore the potential mechanism of joint effects of SWCNTs and Cd at in vivo levels.
Collapse
Affiliation(s)
- Maqusood Ahamed
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohd Javed Akhtar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hisham A Alhadlaq
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Chen XX, Xu YM, Lau ATY. Metabolic effects of long-term cadmium exposure: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89874-89888. [PMID: 36367641 DOI: 10.1007/s11356-022-23620-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Cadmium (Cd) is a toxic non-essential heavy metal. Chronic low Cd exposure (CLCE) has been associated with distinct pathologies in many organ systems, including liver and kidney damage, osteoporosis, carcinogenicity, or reproductive toxicity. Currently, about 10% of the global population is at risk of CLCE. It is urgent to find robust and effective biomarkers for early diagnosis of Cd exposure and treatment. Metabolomics is a high-throughput method based on mass spectrometry to study the dynamic changes in a series of endogenous small molecular metabolites (typically < 1000 Da) of tissues, cells, or biofluids. It can reflect the rich and complex biochemical changes in the body after exposure to heavy metals, which may be useful in screening biomarkers to monitor exposure to environmental pollutants and/or predict disease risk. Therefore, this review focuses on the changes in metabolic profiles of humans and rodents under long-term Cd exposure from the perspective of metabolomics. Furthermore, the relationship between the disturbance of metabolic pathways and the toxic mechanism of Cd is discussed. All these information will facilitate the development of reliable metabolic biomarkers for early detection and diagnosis of Cd-related diseases.
Collapse
Affiliation(s)
- Xiao-Xia Chen
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, People's Republic of China
| |
Collapse
|
6
|
Mortoglou M, Buha Djordjevic A, Djordjevic V, Collins H, York L, Mani K, Valle E, Wallace D, Uysal-Onganer P. Role of microRNAs in response to cadmium chloride in pancreatic ductal adenocarcinoma. Arch Toxicol 2022; 96:467-485. [PMID: 34905088 PMCID: PMC8837568 DOI: 10.1007/s00204-021-03196-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal and aggressive malignancies with a 5-year survival rate less than 9%. Early detection is particularly difficult due to the lack of symptoms even in advanced stages. microRNAs (miRs/miRNAs) are small (~ 18-24 nucleotides), endogenous, non-coding RNAs, which are involved in the pathogenesis of several malignancies including PDAC. Alterations of miR expressions can lead to apoptosis, angiogenesis, and metastasis. The role of environmental pollutants such as cadmium (Cd) in PDAC has been suggested but not fully understood. This study underlines the role of miRs (miR-221, miR-155, miR-126) in response to cadmium chloride (CdCl2) in vitro. Lethal concentration (LC50) values for CdCl2 resulted in a toxicity series of AsPC-1 > HPNE > BxPC-3 > Panc-1 = Panc-10.5. Following the treatment with CdCl2, miR-221 and miR-155 were significantly overexpressed, whereas miR-126 was downregulated. An increase in epithelial-mesenchymal transition (EMT) via the dysregulation of mesenchymal markers such as Wnt-11, E-cadherin, Snail, and Zeb1 was also observed. Hence, this study has provided evidence to suggest that the environmental pollutant Cd can have a significant role in the development of PDAC, suggesting a significant correlation between miRs and Cd exposure during PDAC progression. Further studies are needed to investigate the precise role of miRs in PDAC progression as well as the role of Cd and other environmental pollutants.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| | | | | | - Hunter Collins
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Lauren York
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Katherine Mani
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Elizabeth Valle
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - David Wallace
- College of Medicine and the Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107-1898 USA
| | - Pinar Uysal-Onganer
- Cancer Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW UK
| |
Collapse
|
7
|
Ray P, Nancarrow DJ, Ferrer-Torres D, Wang Z, San Martinho M, Hinton T, Wu JH, Wu A, Turgeon DK, Hammer MA, Dame MK, Lawrence TS, O'Brien PJ, Spence JR, Beer DG, Ray D. UBCH5 Family Members Differentially Impact Stabilization of Mutant p53 via RNF128 Iso1 During Barrett's Progression to Esophageal Adenocarcinoma. Cell Mol Gastroenterol Hepatol 2021; 13:129-149. [PMID: 34416429 PMCID: PMC8593620 DOI: 10.1016/j.jcmgh.2021.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS TP53 mutations underlie Barrett's esophagus (BE) progression to dysplasia and cancer. During BE progression, the ubiquitin ligase (E3) RNF128/GRAIL switches expression from isoform 2 (Iso2) to Iso1, stabilizing mutant p53. However, the ubiquitin-conjugating enzyme (E2) that partners with Iso1 to stabilize mutant p53 is unknown. METHODS Single-cell RNA sequencing of paired normal esophagus and BE tissues identified candidate E2s, further investigated in expression data from BE to esophageal adenocarcinoma (EAC) progression samples. Biochemical and cellular studies helped clarify the role of RNF128-E2 on mutant p53 stability. RESULTS The UBE2D family member 2D3 (UBCH5C) is the most abundant E2 in normal esophagus. However, during BE to EAC progression, loss of UBE2D3 copy number and reduced expression of RNF128 Iso2 were noted, 2 known p53 degraders. In contrast, expression of UBE2D1 (UBCH5A) and RNF128 Iso1 in dysplastic BE and EAC forms an inactive E2-E3 complex, stabilizing mutant p53. To destabilize mutant p53, we targeted RNF128 Iso1 either by mutating asparagine (N48, 59, and 101) residues to block glycosylation to facilitate β-TrCP1-mediated degradation or by mutating proline (P54 and 105) residues to restore p53 polyubiquitinating ability. In addition, either loss of UBCH5A catalytic activity, or disruption of the Iso1-UBCH5A interaction promoted Iso1 loss. Consequently, overexpression of either catalytically dead or Iso1-binding-deficient UBCH5A mutants destabilized Iso1 to degrade mutant p53, thus compromising the clonogenic survival of mutant p53-dependent BE cells. CONCLUSIONS Loss of RNF128 Iso2-UBCH5C and persistence of the Iso1-UBCH5A complex favors mutant p53 stability to promote BE cell survival. Therefore, targeting of Iso1-UBCH5A may provide a novel therapeutic strategy to prevent BE progression.
Collapse
Affiliation(s)
- Paramita Ray
- Department of Radiation Oncology, Ann Arbor, Michigan
| | | | | | | | | | - Tonaye Hinton
- Department of Radiation Oncology, Ann Arbor, Michigan
| | - Joshua H Wu
- Department of Internal Medicine, Ann Arbor, Michigan
| | - Angeline Wu
- Department of Internal Medicine, Ann Arbor, Michigan
| | | | - Max A Hammer
- Department of Internal Medicine, Ann Arbor, Michigan
| | | | | | | | - Jason R Spence
- Department of Internal Medicine, Ann Arbor, Michigan; Department of Cell and Developmental Biology, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - David G Beer
- Department of Radiation Oncology, Ann Arbor, Michigan; Department of Surgery, Ann Arbor, Michigan
| | - Dipankar Ray
- Department of Radiation Oncology, Ann Arbor, Michigan.
| |
Collapse
|
8
|
Taghavizadeh Yazdi ME, Amiri MS, Nourbakhsh F, Rahnama M, Forouzanfar F, Mousavi SH. Bio-indicators in cadmium toxicity: Role of HSP27 and HSP70. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26359-26379. [PMID: 33834331 DOI: 10.1007/s11356-021-13687-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Heat shock proteins (HSPs) are a family of proteins that are expressed by cells in reply to stressors. The changes in concentration of HSPs could be utilized as a bio-indicator of oxidative stress caused by heavy metal. Exposure to the different heavy metals may induce or reduce the expression of different HSPs. The exposure to cadmium ion (Cd2+) could increase HSP70 and HSP27 over 2- to 10-fold or even more. The in vitro and in vivo models indicate that the HSP70 family is more sensitive to Cd intoxication than other HSPs. The analyses of other HSPs along with HSP70, especially HSP27, could also be useful to obtain more accurate results. In this regard, this review focuses on examining the literature to bold the futuristic uses of HSPs as bio-indicators in the initial assessment of Cd exposure risks in defined environments.
Collapse
Affiliation(s)
| | | | - Fahimeh Nourbakhsh
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Rahnama
- Department of Plant Pathology, University of Kentucky, Lexington, KY, 40506, USA
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hadi Mousavi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Cui ZG, Ahmed K, Zaidi SF, Muhammad JS. Ins and outs of cadmium-induced carcinogenesis: Mechanism and prevention. Cancer Treat Res Commun 2021; 27:100372. [PMID: 33865114 DOI: 10.1016/j.ctarc.2021.100372] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is a heavy metal and a highly toxic pollutant that is released into the environment as a byproduct of most modern factories and industries. Cd enters our body in significant quantities from contaminated water, cigarette smoke, or food product to many detrimental health hazards. Based on causal association all the Cd-related or derived compounds have been classified as carcinogens. In this study, we present an overview of the published literature to understand the molecular mechanisms for Cd-induced carcinogenesis and its prevention. In acute Cd poisoning production of reactive oxygen species is a key factor. However, chronic Cd exposure can transform cells to become more resistant to oxidative stress. Also, as an epigenetic mechanism Cd acts indirectly on DNA repair mechanisms via alteration of reactions upstream. Those transformed cells acquire resistance to apoptosis and deregulation of calcium homeostasis. Leading to uncontrolled carcinogenic cell proliferation and inherent DNA lesions. Flavonoids commonly found in plant foods have been shown to have a protective effect against Cd-induced carcinogenicity. A wide variety of tumorigenic mechanisms involved in chronic Cd exposure and the beneficial effects of flavonoids against Cd-induced carcinogenicity necessitate further investigations.
Collapse
Affiliation(s)
- Zheng-Guo Cui
- Graduate School of Medicine, Henan Polytechnic University, Jiaozuo 454000, China; Department of Environmental Health, University of Fukui School of Medical Science, 23-3 Matsuoka Shimoaizuki, Eiheiji, Fukui 910-1193 Japan
| | - Kanwal Ahmed
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University of Health Sciences, Jeddah, Saudi Arabia
| | - Syed Faisal Zaidi
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University of Health Sciences, Jeddah, Saudi Arabia
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
10
|
Saran U, Tyagi A, Chandrasekaran B, Ankem MK, Damodaran C. The role of autophagy in metal-induced urogenital carcinogenesis. Semin Cancer Biol 2021; 76:247-257. [PMID: 33798723 DOI: 10.1016/j.semcancer.2021.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022]
Abstract
Environmental and/or occupational exposure to metals such as Arsenic (As), Cadmium (Cd), and Chromium (Cr) have been shown to induce carcinogenesis in various organs, including the urogenital system. However, the mechanisms responsible for metal-induced carcinogenesis remain elusive. We and others have shown that metals are potent inducers of autophagy, which has been suggested to be an adaptive stress response to allow metal-exposed cells to survive in hostile environments. Albeit few, recent experimental studies have shown that As and Cd promote tumorigenesis via autophagy and that inhibition of autophagic signaling suppressed metal-induced carcinogenesis. In light of the newly emerging role of autophagic involvement in metal-induced carcinogenesis, the present review focuses explicitly on the mechanistic role of autophagy and potential signaling pathways involved in As-, Cd-, and Cr-induced urogenital carcinogenesis.
Collapse
Affiliation(s)
- Uttara Saran
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Ashish Tyagi
- Department of Urology, University of Louisville, Louisville, KY, United States
| | | | - Murali K Ankem
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Chendil Damodaran
- Department of Urology, University of Louisville, Louisville, KY, United States; College of Pharmacy, Department of Pharmaceutical Sciences, Texas A&M, College Station, TX, United States.
| |
Collapse
|
11
|
Biological Screening and Radiolabeling of Raptinal as a Potential Anticancer Novel Drug in Hepatocellular Carcinoma Model. Eur J Pharm Sci 2021; 158:105653. [DOI: 10.1016/j.ejps.2020.105653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/26/2020] [Accepted: 11/21/2020] [Indexed: 12/21/2022]
|
12
|
Wang K, Ma JY, Li MY, Qin YS, Bao XC, Wang CC, Cui DL, Xiang P, Ma LQ. Mechanisms of Cd and Cu induced toxicity in human gastric epithelial cells: Oxidative stress, cell cycle arrest and apoptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143951. [PMID: 33261865 DOI: 10.1016/j.scitotenv.2020.143951] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) and copper (Cu) are widely present in foods. However, their adverse effects on human gastric epithelium are not fully understood. Here, human gastric epithelial cells (SGC-7901) were employed to study the toxicity and associated mechanisms of Cd + Cu co-exposure. Their effects on cell viability, morphology, oxidative damage, cell cycle, apoptosis, and the mRNA levels of antioxidases and cell cycle regulatory genes were investigated. Co-exposure to Cd (5 μM)/Cu (10 μM) induced >40% cell viability loss, whereas little effect on cell viability at <10 μM Cd or 40 μM Cu. Compared to individual exposure, co-exposure induced greater oxidative damage by elevating ROS (3.5 folds), malondialdehyde (2.3 folds) and expression of SOD1 and HO-1 besides inhibiting CAT, GPX1 and Nrf2. A marked S cell-cycle arrest was observed in co-exposure, evidenced by more cells staying in the S phase (36%), up-regulation of cyclins-dependent kinase (CDK4) and CDKs inhibitor (p21) and down-regulation of CDK2, CDK6 and p27. Furthermore, higher apoptosis (22%) with floated and round cells occurred in co-exposure group. Our data implicate the cytotoxicity of Cd + Cu co-exposure was higher than individual exposure, and individual assessment would underestimate their potential health risk. Oxidative stress and cell cycle arrest possibly played a role in Cd + Cu induced toxicity and apoptosis in SGC-7901 cells. Our data suggest the importance to reduce Cd in foods to decrease its adverse impacts on human digestive system.
Collapse
Affiliation(s)
- Kun Wang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Jiao-Yang Ma
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Meng-Ying Li
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Yi-Shu Qin
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Xin-Chen Bao
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Cheng-Chen Wang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Dao-Lei Cui
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming 650224, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Ferragut Cardoso AP, Udoh KT, States JC. Arsenic-induced changes in miRNA expression in cancer and other diseases. Toxicol Appl Pharmacol 2020; 409:115306. [PMID: 33127375 PMCID: PMC7772821 DOI: 10.1016/j.taap.2020.115306] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
miRNAs (miRNA) are essential players regulating gene expression affecting cellular processes contributing to disease development. Dysregulated miRNA expression has been observed in numerous diseases including hepatitis, cardiovascular diseases and cancers. In cardiovascular diseases, several miRNAs function as mediators of pathogenic stress-related signaling pathways that may lead to an excessive extracellular matrix production and collagen deposition causing cardiac stress resulting in fibrosis. In cancers, many miRNAs function as oncogenes or tumor suppressors facilitating tumor growth, invasion and angiogenesis. Furthermore, the association between distinct miRNA profile and tumor development, progression and treatment response has identified miRNAs as potential biomarkers for disease diagnosis and prognosis. Growing evidence demonstrates changes in miRNA expression levels in experimental settings or observational studies associated with environmental chemical exposures such as arsenic. Arsenic is one of the most well-known human carcinogens. Long-term exposure through drinking water increases risk of developing skin, lung and urinary bladder cancers, as well as cardiovascular disease. The mechanism(s) by which arsenic causes disease remains elusive. Proposed mechanisms include miRNA dysregulation. Epidemiological studies identified differential miRNA expression between arsenic-exposed and non-exposed individuals from India, Bangladesh, China and Mexico. In vivo and in vitro studies have shown that miRNAs are critically involved in arsenic-induced malignant transformation. Few studies analyzed miRNAs in other diseases associated with arsenic exposure. Importantly, there is no consensus on a consistent miRNA profile for arsenic-induced cancers because most studies analyze only particular miRNAs. Identifying miRNA expression changes common among humans, rodents and cell lines might guide future miRNA investigations.
Collapse
Affiliation(s)
- Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Karen T Udoh
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
14
|
Kwok ML, Li ZP, Law TYS, Chan KM. Promotion of cadmium uptake and cadmium-induced toxicity by the copper transporter CTR1 in HepG2 and ZFL cells. Toxicol Rep 2020; 7:1564-1570. [PMID: 33294387 PMCID: PMC7695923 DOI: 10.1016/j.toxrep.2020.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022] Open
Abstract
Cadmium (Cd2+) is considered a human carcinogen as it causes oxidative stress and alters DNA repair responses. However, how Cd2+ is taken up by cells remains unclear. We hypothesized that Cd2+ could be transported into cells via a membrane copper (Cu) transporter, CTR1. CTR1 expression was not affected by Cd2+ exposure at the mRNA or protein level. Stable cell lines overexpressing either hCTR1, in the human liver cell line HepG2, or zCTR1, in the zebrafish liver cell line ZFL, were created to study their responses to Cd2+ insult. It was found that both HepG2 and ZFL cells overexpressing CTR1 had higher Cd2+ uptake and thus became sensitive to Cd2+. In contrast, hCTR1 knockdown in HepG2 cells led to a reduced uptake of Cd2+, making the cells relatively resistant to Cd2+. Localization studies revealed that hCTR1 had a clustered pattern after Cd2+ exposure, possibly in an attempt to reduce both Cd2+ uptake and Cd2+-induced toxicity. These in vitro results indicate that CTR1 can transport Cd2+ into the cell, resulting in Cd2+ toxicity.
Collapse
Key Words
- CTR1, High-affinity Cu-uptake protein 1
- Cadmium toxicity
- Cadmium uptake
- Cd, Cadmium
- Copper transporter
- Cu, Copper
- LC50, Median lethal concentration
- PBS, Phosphate-buffered saline
- Stable cell line
- h, hours
- hCTR1, Human CTR1 protein
- hCtr1, Human CTR1 gene
- min, minutes
- qPCR, Quantitative real-time PCR
- ybx1, Y box-binding protein 1 gene
- zCTR1, Zebrafish CTR1 protein
- zCtr1, Zebrafish CTR1 gene
Collapse
|
15
|
Cell Viability and Immune Response to Low Concentrations of Nickel and Cadmium: An In Vitro Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17249218. [PMID: 33317216 PMCID: PMC7764270 DOI: 10.3390/ijerph17249218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 01/07/2023]
Abstract
Environmental exposure to low concentrations of heavy metals is common in the general population, but the toxicity, immune response mechanisms, and the effects of single and mixed metal exposures have not been clearly identified. In this study, A549 cells and Raw264.7 cells were exposed to low concentrations of the heavy metals nickel (Ni) and cadmium (Cd) for 24, 48, and 72 h, and then cell viability and cytokine levels were analyzed. We found that exposure to low concentrations of Ni (50 nM) or Cd (10 nM) alone did not affect cell viability. However, mixing them together decreased cell viability. In addition, the levels of IL-10, IL-12, and TNF-α decreased with single (only Cd) and mixed (Ni and Cd) exposures. These results show that exposure to low concentrations of heavy metals could affect the normal immune response, even without obvious clinical manifestations. Therefore, chronic exposure to heavy metals might have adverse effects on overall health.
Collapse
|
16
|
Kwok ML, Meng Q, Hu XL, Chung CT, Chan KM. Whole-transcriptome sequencing (RNA-seq) study of the ZFL zebrafish liver cell line after acute exposure to Cd 2+ ions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105628. [PMID: 32971353 DOI: 10.1016/j.aquatox.2020.105628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) is a non-essential metal with no known biological function and a broad range of toxic effects in biological systems. We used whole-transcriptome sequencing (RNA-seq) to study the effects of Cd2+ toxicity in zebrafish liver cells, ZFL. The results of an RNA-Seq analysis of ZFL cells exposed to 5, 10 or 20 μM Cd2+ for 4- or 24-h. The differentially expressed genes affected by Cd2+ were analyzed by using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to study the regulated pathways. Cd2+ regulated the expression of genes associated with cellular Cu, Zn, and Fe homeostasis, DNA replication leading to cell cycle arrest and apoptosis, and glutathione metabolism. Cd2+ boosted up the amino acid synthesis, possibly to support the glutathione metabolism for tackling the oxidative stress generated from Cd2+. Cd2+ stimulation was similar to heat or xenobiotics, based on the responses from ZFL such as endoplasmic reticulum stress and protein folding. We linked also those finding of gene activations relating to carcinogenesis of Cd. This paper provides a comprehensive analysis of the expression profiles induced by Cd2+ exposure in ZFL cells, as well as useful insights into the specific toxic effects.
Collapse
Affiliation(s)
- Man Long Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong
| | - Qi Meng
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong
| | - Xue Lei Hu
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong
| | - Chun Ting Chung
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin., N.T., Hong Kong.
| |
Collapse
|
17
|
Cadmium elicits alterations in mitochondrial morphology and functionality in C3H10T1/2Cl8 mouse embryonic fibroblasts. Biochim Biophys Acta Gen Subj 2020; 1864:129568. [DOI: 10.1016/j.bbagen.2020.129568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/28/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022]
|
18
|
Wallace DR, Taalab YM, Heinze S, Tariba Lovaković B, Pizent A, Renieri E, Tsatsakis A, Farooqi AA, Javorac D, Andjelkovic M, Bulat Z, Antonijević B, Buha Djordjevic A. Toxic-Metal-Induced Alteration in miRNA Expression Profile as a Proposed Mechanism for Disease Development. Cells 2020; 9:cells9040901. [PMID: 32272672 PMCID: PMC7226740 DOI: 10.3390/cells9040901] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023] Open
Abstract
Toxic metals are extensively found in the environment, households, and workplaces and contaminate food and drinking water. The crosstalk between environmental exposure to toxic metals and human diseases has been frequently described. The toxic mechanism of action was classically viewed as the ability to dysregulate the redox status, production of inflammatory mediators and alteration of mitochondrial function. Recently, growing evidence showed that heavy metals might exert their toxicity through microRNAs (miRNA)—short, single-stranded, noncoding molecules that function as positive/negative regulators of gene expression. Aberrant alteration of the endogenous miRNA has been directly implicated in various pathophysiological conditions and signaling pathways, consequently leading to different types of cancer and human diseases. Additionally, the gene-regulatory capacity of miRNAs is particularly valuable in the brain—a complex organ with neurons demonstrating a significant ability to adapt following environmental stimuli. Accordingly, dysregulated miRNAs identified in patients suffering from neurological diseases might serve as biomarkers for the earlier diagnosis and monitoring of disease progression. This review will greatly emphasize the effect of the toxic metals on human miRNA activities and how this contributes to progression of diseases such as cancer and neurodegenerative disorders (NDDs).
Collapse
Affiliation(s)
- David R. Wallace
- School of Biomedical Science, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA;
| | - Yasmeen M. Taalab
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University, Dakahlia Governate 35516, Egypt or
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany;
| | - Sarah Heinze
- Institute of Forensic and Traffic Medicine, University of Heidelberg, Voßstraße 2, 69115 Heidelberg, Germany;
| | - Blanka Tariba Lovaković
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; (B.T.L.); (A.P.)
| | - Alica Pizent
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia; (B.T.L.); (A.P.)
| | - Elisavet Renieri
- Centre of Toxicology Science and Research, University of Crete, School of Medicine, 71601 Heraklion, Greece; (E.R.); (A.T.)
| | - Aristidis Tsatsakis
- Centre of Toxicology Science and Research, University of Crete, School of Medicine, 71601 Heraklion, Greece; (E.R.); (A.T.)
| | | | - Dragana Javorac
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Milena Andjelkovic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Zorica Bulat
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Biljana Antonijević
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia; (D.J.); (M.A.); (Z.B.); (B.A.)
- Correspondence:
| |
Collapse
|
19
|
Xiao Q, Han J, Jiang C, Luo M, Zhang Q, He Z, Hu J, Wang G. Novel Fusion Protein Consisting of Metallothionein, Cellulose Binding Module, and Superfolder GFP for Lead Removal from the Water Decoction of Traditional Chinese Medicine. ACS OMEGA 2020; 5:2893-2898. [PMID: 32095711 PMCID: PMC7034022 DOI: 10.1021/acsomega.9b03739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Many methods have been used to detect heavy metals in herbal medicines, while few are developed to remove them. In this study, a novel genetically engineered fusion protein composed of metallothionein (MT), cellulose binding module (CBM), and superfolder GFP (sfGFP) was designed to remove heavy metals. MT, a kind of cysteine-rich protein, was used to chelate heavy metals with high specific affinity. The CBM facilitated the fusion protein MT-CBM-sfGFP binding to cellulose specifically, which made the purification and immobilization in one step. The sfGFP was used to detect the fusion protein MT-CBM-sfGFP easily during the process of expression and immobilization. The MT from Cancer pagurus (MTCap) and the CBM from Cellulomonas fimi (CBMCef) were used as an example and the fusion protein (MTCap-CBMCef-sfGFP) was expressed in Escherichia coli. Then, the cell lysates were mechanically mixed with cellulose to create biosorbent MTCap-CBMCef-sfGFP@cellulose. The efficiency of the biosorbent MTCap-CBMCef-sfGFP@cellulose for Pb2+ removal was evaluated using the water decoction of Honeysuckle as a model. Results suggested that MTCap-CBMCef-sfGFP@cellulose had high efficiency for Pb2+ removal from the water decoction of Honeysuckle without affecting its active ingredients. The low-cost, easy production, and high efficiency of the biosorbent enable it to have many applications in heavy metal removal from aqueous solutions of herbal medicines and food.
Collapse
Affiliation(s)
- Qing Xiao
- Institute
of Drug Research, Fujian Academy of Traditional
Chinese Medicine, No.
282 Wusi Road, Gulou District, Fuzhou 350003, P. R. China
| | - Jing Han
- Institute
of Drug Research, Fujian Academy of Traditional
Chinese Medicine, No.
282 Wusi Road, Gulou District, Fuzhou 350003, P. R. China
| | - Chang Jiang
- Institute
of Drug Research, Fujian Academy of Traditional
Chinese Medicine, No.
282 Wusi Road, Gulou District, Fuzhou 350003, P. R. China
| | - Meng Luo
- College
of Biological Science and Engineering, Fuzhou
University, No. 2 Xueyuan Road, Minhou County, Fuzhou 350116, P.
R. China
| | - Qingyi Zhang
- College
of Pharmacy, Fujian University of Traditional
Chinese Medicine, No. 1 Qiuyang Road, Minhou County, Fuzhou 350122, P.
R. China
| | - Zhaodong He
- Institute
of Drug Research, Fujian Academy of Traditional
Chinese Medicine, No.
282 Wusi Road, Gulou District, Fuzhou 350003, P. R. China
| | - Juan Hu
- Institute
of Drug Research, Fujian Academy of Traditional
Chinese Medicine, No.
282 Wusi Road, Gulou District, Fuzhou 350003, P. R. China
- College
of Pharmacy, Fujian University of Traditional
Chinese Medicine, No. 1 Qiuyang Road, Minhou County, Fuzhou 350122, P.
R. China
| | - Guozeng Wang
- College
of Biological Science and Engineering, Fuzhou
University, No. 2 Xueyuan Road, Minhou County, Fuzhou 350116, P.
R. China
| |
Collapse
|
20
|
Pal D, Suman S, Kolluru V, Sears S, Das TP, Alatassi H, Ankem MK, Freedman JH, Damodaran C. Inhibition of autophagy prevents cadmium-induced prostate carcinogenesis. Br J Cancer 2017; 117:56-64. [PMID: 28588318 PMCID: PMC5520206 DOI: 10.1038/bjc.2017.143] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cadmium, an established carcinogen, is a risk factor for prostate cancer. Induction of autophagy is a prerequisite for cadmium-induced transformation and metastasis. The ability of Psoralidin (Pso), a non-toxic, orally bioavailable compound to inhibit cadmium-induced autophagy to prevent prostate cancer was investigated. METHODS Psoralidin was studied using cadmium-transformed prostate epithelial cells (CTPE), which exhibit high proliferative, invasive and colony forming abilities. Gene and protein expression were evaluated by qPCR, western blot, immunohistochemistry and immunofluorescence. Xenograft models were used to study the chemopreventive effects in vivo. RESULTS Cadmium-transformed prostate epithelial cells were treated with Pso resulting in growth inhibition, without causing toxicity to normal prostate epithelial cells (RWPE-1). Psoralidin-treatment of CTPE cells inhibited the expression of Placenta Specific 8, a lysosomal protein essential for autophagosome and autolysosome fusion, which resulted in growth inhibition. Additionally, Pso treatment caused decreased expression of pro-survival signalling proteins, NFκB and Bcl2, and increased expression of apoptotic genes. In vivo, Pso effectively suppressed CTPE xenografts growth, without any observable toxicity. Tumours from Pso-treated animals showed decreased autophagic morphology, mesenchymal markers expression and increased epithelial protein expression. CONCLUSIONS These results confirm that inhibition of autophagy by Pso plays an important role in the chemoprevention of cadmium-induced prostate carcinogenesis.
Collapse
Affiliation(s)
- Deeksha Pal
- Department of Urology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Suman Suman
- Department of Urology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Venkatesh Kolluru
- Department of Urology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Sophia Sears
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Trinath P Das
- Department of Urology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Houda Alatassi
- Department of Pathology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Murali K Ankem
- Department of Urology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Jonathan H Freedman
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Chendil Damodaran
- Department of Urology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
21
|
Lee JY, Tokumoto M, Hattori Y, Fujiwara Y, Shimada A, Satoh M. Different Regulation of p53 Expression by Cadmium Exposure in Kidney, Liver, Intestine, Vasculature, and Brain Astrocytes. Toxicol Res 2016; 32:73-80. [PMID: 26977261 PMCID: PMC4780233 DOI: 10.5487/tr.2016.32.1.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 11/20/2022] Open
Abstract
Chronic exposure to cadmium (Cd) is known to adversely affect renal function. Our previous studies indicated that Cd induces p53-dependent apoptosis by inhibiting gene expression of the ubiquitin-conjugating enzyme (Ube) 2d family in both human and rat proximal tubular cells. In this study, the effects of Cd on protein expression of p53 and apoptotic signals in the kidney and liver of mice exposed to Cd for 12 months were examined, as well as the effects of Cd on p53 protein levels and gene expression of the Ube2d family in various cell lines. Results showed that in the kidney of mice exposed to 300 ppm Cd for 12 months, there was overaccumulation of p53 proteins in addition to the induction of apoptosis, which was triggered specifically in the proximal tubules. Interestingly, the site of apoptosis was the same as that of p53 accumulation in the proximal tubules. In the liver of mice chronically exposed to Cd, gene expression of the Ube2d family tended to be slightly decreased, together with slight apoptosis without the accumulation of p53 protein. In rat small intestine epithelial (IEC-6) cells, Cd decreased not only the p53 protein level but also gene expression of Ube2d1, Ube2d2 and Ube2d4. In human brain microvascular endothelial cells (HBMECs), Cd did not suppress gene expression of the Ube2d family, but increased the p53 protein level. In human brain astrocytes (HBASTs), Cd only increased gene expression of UBE2D3. These results suggest that Cd-induced apoptosis through p53 protein is associated with renal toxicity but not hepatic toxicity, and the modification of p53 protein by Cd may vary depending on cell type.
Collapse
Affiliation(s)
- Jin-Yong Lee
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Maki Tokumoto
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Yuta Hattori
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; Department of Preventive Medicine, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasuyuki Fujiwara
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan; Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akinori Shimada
- Laboratory of Pathology, Department of Medical Technology, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Masahiko Satoh
- Laboratory of Pharmaceutical Health Sciences, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
22
|
Menon AV, Chang J, Kim J. Mechanisms of divalent metal toxicity in affective disorders. Toxicology 2015; 339:58-72. [PMID: 26551072 DOI: 10.1016/j.tox.2015.11.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/19/2015] [Accepted: 11/03/2015] [Indexed: 01/01/2023]
Abstract
Metals are required for proper brain development and play an important role in a number of neurobiological functions. The divalent metal transporter 1 (DMT1) is a major metal transporter involved in the absorption and metabolism of several essential metals like iron and manganese. However, non-essential divalent metals are also transported through this transporter. Therefore, altered expression of DMT1 can modify the absorption of toxic metals and metal-induced toxicity. An accumulating body of evidence has suggested that increased metal stores in the brain are associated with elevated oxidative stress promoted by the ability of metals to catalyze redox reactions, resulting in abnormal neurobehavioral function and the progression of neurodegenerative diseases. Metal overload has also been implicated in impaired emotional behavior, although the underlying mechanisms are not well understood with limited information. The current review focuses on psychiatric dysfunction associated with imbalanced metabolism of metals that are transported by DMT1. The investigations with respect to the toxic effects of metal overload on behavior and their underlying mechanisms of toxicity could provide several new therapeutic targets to treat metal-associated affective disorders.
Collapse
Affiliation(s)
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Impact of Cadmium on Intracellular Zinc Levels in HepG2 Cells: Quantitative Evaluations and Molecular Effects. BIOMED RESEARCH INTERNATIONAL 2015; 2015:949514. [PMID: 26339654 PMCID: PMC4538774 DOI: 10.1155/2015/949514] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/02/2015] [Indexed: 01/12/2023]
Abstract
Cadmium is classified as a human carcinogen, and its disturbance in zinc homeostasis has been well established. However, its extent as well as molecular mechanisms involved in cadmium carcinogenesis has yet to be fully clarified. To this end, we used the zinc specific probe Zinquin to visualize and to quantitatively evaluate changes in the concentration of labile zinc, in an in vitro model of human hepatic cells (HepG2) exposed to cadmium. A very large increase (+93%) of intracellular labile zinc, displaced by cadmium from the zinc proteome, was measured when HepG2 were exposed to 10 µM cadmium for 24 hrs. Microarray expression profiling showed that in cells, featuring an increase of labile zinc after cadmium exposure, one of the top regulated genes is Snail1 (+3.6), which is included in the adherens junction pathway and linked to cancer. In the same pathway MET, TGF-βR, and two members of the Rho-family GTPase, Rac, and cdc42 all implicated in the loss of adherence features and acquisition of migratory and cancer properties were regulated, as well. The microRNAs analysis showed a downregulation of miR-34a and miR-200a, both implicated in the epithelial-mesenchymal transition. These microRNAs results support the role played by zinc in affecting gene expression at the posttranscriptional level.
Collapse
|
24
|
Venza M, Visalli M, Biondo C, Oteri R, Agliano F, Morabito S, Caruso G, Caffo M, Teti D, Venza I. Epigenetic effects of cadmium in cancer: focus on melanoma. Curr Genomics 2015; 15:420-35. [PMID: 25646071 PMCID: PMC4311387 DOI: 10.2174/138920291506150106145932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/07/2014] [Accepted: 11/17/2014] [Indexed: 01/01/2023] Open
Abstract
Cadmium is a highly toxic heavy metal, which has a destroying impact on organs. Exposure to cadmium causes severe health problems to human beings due to its ubiquitous environmental presence and features of the pathologies associated with pro-longed exposure. Cadmium is a well-established carcinogen, although the underlying mechanisms have not been fully under-stood yet. Recently, there has been considerable interest in the impact of this environmental pollutant on the epigenome. Be-cause of the role of epigenetic alterations in regulating gene expression, there is a potential for the integration of cadmium-induced epigenetic alterations as critical elements in the cancer risk assessment process. Here, after a brief review of the ma-jor diseases related to cadmium exposure, we focus our interest on the carcinogenic potential of this heavy metal. Among the several proposed pathogenetic mechanisms, particular attention is given to epigenetic alterations, including changes in DNA methylation, histone modifications and non-coding RNA expression. We review evidence for a link between cadmium-induced epigenetic changes and cell transformation, with special emphasis on melanoma. DNA methylation, with reduced expression of key genes that regulate cell proliferation and apoptosis, has emerged as a possible cadmium-induced epigenetic mechanism in melanoma. A wider comprehension of mechanisms related to this common environmental contaminant would allow a better cancer risk evaluation.
Collapse
Affiliation(s)
- Mario Venza
- Department of Experimental Specialistic Medical, Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| | - Maria Visalli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmelo Biondo
- Department of Pediatric, Gynecological, Microbiological and Biomedical Sciences, University of Messina, Messina, Italy
| | - Rosaria Oteri
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Federica Agliano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Silvia Morabito
- Department of Experimental Specialistic Medical, Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| | - Gerardo Caruso
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Maria Caffo
- Department of Neurosciences, University of Messina, Messina, Italy
| | - Diana Teti
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Isabella Venza
- Department of Experimental Specialistic Medical, Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| |
Collapse
|
25
|
Phatak VM, Muller PAJ. Metal toxicity and the p53 protein: an intimate relationship. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00117f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The relationship between p53, ROS and transition metals.
Collapse
|
26
|
Biology of the cell cycle inhibitor p21CDKN1A: molecular mechanisms and relevance in chemical toxicology. Arch Toxicol 2014; 89:155-78. [DOI: 10.1007/s00204-014-1430-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
|
27
|
Chang R, Wei L, Lu Y, Cui X, Lu C, Liu L, Jiang D, Xiong Y, Wang G, Wan C, Qian H. Upregulated expression of ubiquitin-conjugating enzyme E2Q1 (UBE2Q1) is associated with enhanced cell proliferation and poor prognosis in human hapatocellular carcinoma. J Mol Histol 2014; 46:45-56. [PMID: 25311764 DOI: 10.1007/s10735-014-9596-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. Ubiquitin-proteasome system has been shown to play a pivotal role in the pathophysiology of HCC and other malignancies. UBE2Q1 is a putative E2 ubiquitin conjugating enzyme, and may be involved in the regulation of cancer-related proteins. In this study, we investigated the expression pattern of UBE2Q1 in HCC cell lines and human HCC specimens, and its potential clinical and biological significance in HCC. Western blot and immunohistochemical analyses revealed that UBE2Q1 was significantly upregulated in HCC tumorous tissues compared with the adjacent noncancerous ones. Next, univariate and multivariate survival analyses were performed to determine the prognostic significance of UBE2Q1 in HCC. The results showed that upregulated expression of UBE2Q1 was positively correlated with high histological grades of HCC and predicted poor prognosis. In addition, the expression of UBE2Q1 was progressively increased in serum-refed HCC cells. UBE2Q1 depletion by small interfering RNA inhibited cell proliferation and led to G1 phase arrest in HepG2 and BEL-7404 cells. Furthermore, we showed that cells transfected with UBE2Q1-targeting siRNA resulted in significant increase in the levels of p53, p21 in HepG2 and BEL-7404 cells. These data imply that UBE2Q1 is upregulated in liver cancer cell lines and tumorous samples and may play a role in the development of HCC.
Collapse
Affiliation(s)
- Renan Chang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|