1
|
Morphis M, van Staden JA, du Raan H, Ljungberg M, Sjögreen Gleisner K. Accuracy of patient-specific I-131 dosimetry using hybrid whole-body planar-SPECT/CT I-123 and I-131 imaging. EJNMMI Phys 2024; 11:50. [PMID: 38898326 PMCID: PMC11187057 DOI: 10.1186/s40658-024-00657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
PURPOSE This study aimed to assess the accuracy of patient-specific absorbed dose calculations for tumours and organs at risk in radiopharmaceutical therapy planning, utilizing hybrid planar-SPECT/CT imaging. METHODS Three Monte Carlo (MC) simulated digital patient phantoms were created, with time-activity data for mIBG labelled to I-123 (LEHR and ME collimators) and I-131 (HE collimator). The study assessed the accuracy of the mean absorbed doses for I-131-mIBG therapy treatment planning. Multiple planar whole-body (WB) images were simulated (between 1 to 72 h post-injection (p.i)). The geometric-mean image of the anterior and posterior WB images was calculated, with scatter and attenuation corrections applied. Time-activity curves were created for regions of interest over the liver and two tumours (diameters: 3.0 cm and 5.0 cm) in the WB images. A corresponding SPECT study was simulated at 24 h p.i and reconstructed using the OS-EM algorithm, incorporating scatter, attenuation, collimator-detector response, septal scatter and penetration corrections. MC voxel-based absorbed dose rate calculations used two image sets, (i) the activity distribution represented by the SPECT images and (ii) the activity distribution from the SPECT images distributed uniformly within the volume of interest. Mean absorbed doses were calculated considering photon and charged particle emissions, and beta emissions only. True absorbed doses were calculated by MC voxel-based dosimetry of the known activity distributions for reference. RESULTS Considering photon and charged particle emissions, mean absorbed dose accuracies across all three radionuclide-collimator combinations of 3.8 ± 5.5% and 0.1 ± 0.9% (liver), 5.2 ± 10.0% and 4.3 ± 1.7% (3.0 cm tumour) and 15.0 ± 5.8% and 2.6 ± 0.6% (5.0 cm tumour) were obtained for image set (i) and (ii) respectively. Considering charged particle emissions, accuracies of 2.7 ± 4.1% and 5.7 ± 0.7% (liver), 3.2 ± 10.2% and 9.1 ± 1.7% (3.0 cm tumour) and 13.6 ± 5.7% and 7.0 ± 0.6% (5.0 cm tumour) were obtained for image set (i) and (ii) respectively. CONCLUSION The hybrid WB planar-SPECT/CT method proved accurate for I-131-mIBG dosimetry, suggesting its potential for personalized treatment planning.
Collapse
Affiliation(s)
- Michaella Morphis
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Johan A van Staden
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Hanlie du Raan
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | | | | |
Collapse
|
2
|
Park HJ, Choi JY, Kim BK, Hong KT, Kim HY, Kim IH, Cheon GJ, Cheon JE, Park SH, Kang HJ. The Impact of 131I-Metaiodobenzylguanidine as a Conditioning Regimen of Tandem High-Dose Chemotherapy and Autologous Stem Cell Transplantation for High-Risk Neuroblastoma. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1936. [PMID: 38136138 PMCID: PMC10742322 DOI: 10.3390/children10121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND The optimal conditioning regimen of tandem high-dose chemotherapy (HDC) and autologous stem cell transplantation (ASCT) for high-risk neuroblastoma (HR-NBL) has not been established. The efficacy of 131I-MIBG therapy is under exploration in newly diagnosed HR-NBL patients. Here, we compared the outcomes of tandem HDC/ASCT between the 131I-MIBG combination and non-MIBG groups. METHODS We retrospectively analyzed the clinical data of 33 HR-NBL patients who underwent tandem HDC/ASCT between 2007 and 2021 at the Seoul National University Children's Hospital. RESULTS The median age at diagnosis was 3.6 years. 131I-MIBG was administered to 13 (39.4%) of the patients. Thirty patients (90.9%) received maintenance therapy after tandem HDC/ASCT, twenty-two were treated with isotretinoin ± interleukin-2, and eight received salvage chemotherapy. The five-year overall survival (OS) and event-free survival (EFS) rates of all patients were 80.4% and 69.4%, respectively. Comparing the 131I-MIBG combined group and other groups, the five-year OS rates were 82.1% and 79.7% (p = 0.655), and the five-year EFS rates were 69.2% and 69.6% (p = 0.922), respectively. Among the adverse effects of grade 3 or 4, the incidence of liver enzyme elevation was significantly higher in the non-131I-MIBG group. CONCLUSIONS Although tandem HDC/ASCT showed promising outcomes, the 131I-MIBG combination did not improve survival rates.
Collapse
Affiliation(s)
- Hyun Jin Park
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.P.); (K.T.H.)
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
| | - Jung Yoon Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.P.); (K.T.H.)
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
| | - Bo Kyung Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.P.); (K.T.H.)
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
| | - Kyung Taek Hong
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.P.); (K.T.H.)
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Il Han Kim
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Gi Jeong Cheon
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung-Eun Cheon
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea;
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (H.J.P.); (K.T.H.)
- Seoul National University Cancer Research Institute, Seoul 03080, Republic of Korea (G.J.C.)
- Wide River Institute of Immunology, Hongcheon 25159, Republic of Korea
| |
Collapse
|
3
|
Mastrangelo S, Romano A, Attinà G, Maurizi P, Ruggiero A. Timing and chemotherapy association for 131-I-MIBG treatment in high-risk neuroblastoma. Biochem Pharmacol 2023; 216:115802. [PMID: 37696454 DOI: 10.1016/j.bcp.2023.115802] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Prognosis of high-risk neuroblastoma is dismal, despite intensive induction chemotherapy, surgery, high-dose chemotherapy, radiotherapy, and maintenance. Patients who do not achieve a complete metastatic response, with clearance of bone marrow and skeletal NB infiltration, after induction have a significantly lowersurvival rate. Thus, it's necessary to further intensifytreatment during this phase. 131-I-metaiodobenzylguanidine (131-I-MIBG) is a radioactive compound highly effective against neuroblastoma, with32% response rate in relapsed/resistant cases, and only hematological toxicity. 131-I-MIBG wasutilized at different doses in single or multiple administrations, before autologous transplant or combinedwith high-dose chemotherapy. Subsequently, it was added to consolidationin patients with advanced NB after induction, but an independent contribution against neuroblastoma and for myelotoxicity is difficult to determine. Despiteresults of a 2008 paper demonstratedefficacy and mild hematological toxicity of 131-I-MIBG at diagnosis, no center had included it with intensive chemotherapy in first-line treatment protocols. In our institution, at diagnosis, 131-I-MIBG was included in a 5-chemotherapy drug combination and administered on day-10, at doses up to 18.3 mCi/kg. Almost 87% of objective responses were observed 50 days from start with acceptable hematological toxicity. In this paper, we review the literature data regarding 131-I-MIBG treatment for neuroblastoma, and report on doses and combinations used, tumor responses and toxicity. 131-I-MIBG is very effective against neuroblastoma, in particular if given to patients at diagnosis and in combination with chemotherapy, and it should be included in all induction regimens to improve early responses rates and consequently long-term survival.
Collapse
Affiliation(s)
- Stefano Mastrangelo
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy.
| | - Alberto Romano
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy
| | - Antonio Ruggiero
- Pediatric Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Gemelli, 8, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Largo Gemelli, 8, 00168 Rome, Italy
| |
Collapse
|
4
|
Akinjole O, Menta K, Alsalhi A, Bani-Yaghoub M, Youan BBC. Novel Meta-iodobenzylguanidine and Etoposide Complex: Physicochemical Characterization and Mathematical Modeling of Anticancer Activity. AAPS PharmSciTech 2023; 24:174. [PMID: 37594527 DOI: 10.1208/s12249-023-02599-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/30/2023] [Indexed: 08/19/2023] Open
Abstract
It is hypothesized that meta-iodobenzylguanidine (MIBG) complexation with etoposide (VP-16) will improve drug solubility and specificity towards BE(2)C neuroblastoma (NB) cells, 90% of which are known to be MIBG avid. After MIBG and VP-16 interaction, the dry complex was analyzed for crystalline structure, surface morphology, solubility, and size distribution by X-ray powder diffraction (P-XRD), scanning electron microscopy (SEM), infrared (FTIR) and UV spectroscopy, and dynamic light scattering. After exposure to the complex, the cell viability and decay rates were assessed by the MTS assay and estimated using exponential decay models (EDM). Multi-factorial ANOVA and an independent t-test were used to assess for cell viability and solubility data, respectively. The resulting (1: 3 w/w) VP-16: MIBG complex had a mean diameter and zeta potential of 458.5 nm and 0.951 mV, respectively. It dramatically increased the drug apparent water solubility (~ 12-folds). This was ascribed to the formation of a VP-16/MIBG nanocrystalline state mainly governed by cation-π interactions, evidenced by FTIR, SEM, and P-XRD data following the complexation. The EDM relating percent cell viability to drug concentration yielded an excellent fit (r2 > 0.95) and enabled to estimate the IC50 values of both native drug and its complex: 6.2 μM and 5.23 μM, respectively (indicating a conservation of drug anticancer activity). The statistical results were consistent with those of the exponential decay models, indicating that MIBG does not inhibit the anticancer activity of VP-16. This study indicates that the VP-16/MIBG complexation improves VP-16 solubility without antagonizing its anticancer activity. Moreover, the efficiency of the EDM for drug IC50 estimation provides alternative mathematical method for such in vitro cytotoxicity studies.
Collapse
Affiliation(s)
- Omowumi Akinjole
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, 2464 Charlotte, Kansas City, Missouri, 64108, USA
| | - Kathryn Menta
- Division of Computing, Analytics and Mathematics, School of Science and Engineering, University of Missouri, Kansas City, USA
| | - Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Majid Bani-Yaghoub
- Division of Computing, Analytics and Mathematics, School of Science and Engineering, University of Missouri, Kansas City, USA
| | - Bi-Botti Celestin Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri, 2464 Charlotte, Kansas City, Missouri, 64108, USA.
| |
Collapse
|
5
|
Rivera Z, Escutia C, Madonna MB, Gupta KH. Biological Insight and Recent Advancement in the Treatment of Neuroblastoma. Int J Mol Sci 2023; 24:ijms24108470. [PMID: 37239815 DOI: 10.3390/ijms24108470] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
One of the most frequent solid tumors in children is neuroblastoma, which has a variety of clinical behaviors that are mostly influenced by the biology of the tumor. Unique characteristics of neuroblastoma includes its early age of onset, its propensity for spontaneous tumor regression in newborns, and its high prevalence of metastatic disease at diagnosis in individuals older than 1 year of age. Immunotherapeutic techniques have been added to the previously enlisted chemotherapeutic treatments as therapeutic choices. A groundbreaking new treatment for hematological malignancies is adoptive cell therapy, specifically chimeric antigen receptor (CAR) T cell therapy. However, due to the immunosuppressive nature of the tumor microenvironment (TME) of neuroblastoma tumor, this treatment approach faces difficulties. Numerous tumor-associated genes and antigens, including the MYCN proto-oncogene (MYCN) and disialoganglioside (GD2) surface antigen, have been found by the molecular analysis of neuroblastoma cells. The MYCN gene and GD2 are two of the most useful immunotherapy findings for neuroblastoma. The tumor cells devise numerous methods to evade immune identification or modify the activity of immune cells. In addition to addressing the difficulties and potential advancements of immunotherapies for neuroblastoma, this review attempts to identify important immunological actors and biological pathways involved in the dynamic interaction between the TME and immune system.
Collapse
Affiliation(s)
- Zoriamin Rivera
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Carlos Escutia
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Mary Beth Madonna
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Kajal H Gupta
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
6
|
Taniguchi Y, Wakabayashi H, Yoneyama H, Chen Z, Morino K, Otosaki A, Yamada M, Inaki A, Kayano D, Kinuya S. Application of a tungsten apron for occupational radiation exposure in nursing care of children with neuroblastoma during 131I-meta-iodo-benzyl-guanidine therapy. Sci Rep 2022; 12:47. [PMID: 34996922 PMCID: PMC8742119 DOI: 10.1038/s41598-021-03843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/13/2021] [Indexed: 11/09/2022] Open
Abstract
The use of effective shielding materials against radiation is important among medical staff in nuclear medicine. Hence, the current study investigated the shielding effects of a commercially available tungsten apron using gamma ray measuring instruments. Further, the occupational radiation exposure of nurses during 131I-meta-iodo-benzyl-guanidine (131I-MIBG) therapy for children with high-risk neuroblastoma was evaluated. Attachable tungsten shields in commercial tungsten aprons were set on a surface-ray source with 131I, which emit gamma rays. The mean shielding rate value was 0.1 ± 0.006 for 131I. The shielding effects of tungsten and lead aprons were evaluated using a scintillation detector. The shielding effect rates of lead and tungsten aprons against 131I was 6.3% ± 0.3% and 42.1% ± 0.2% at 50 cm; 6.1% ± 0.5% and 43.3% ± 0.3% at 1 m; and 6.4% ± 0.9% and 42.6% ± 0.6% at 2 m, respectively. Next, we assessed the occupational radiation exposure during 131I-MIBG therapy (administration dose: 666 MBq/kg, median age: 4 years). The total occupational radiation exposure dose per patient care per 131I-MIBG therapy session among nurses was 0.12 ± 0.07 mSv. The average daily radiation exposure dose per patient care among nurses was 0.03 ± 0.03 mSv. Tungsten aprons had efficient shielding effects against gamma rays and would be beneficial to reduce radiation exposures per patient care per 131I-MIBG therapy session.
Collapse
Affiliation(s)
- Yuka Taniguchi
- Division of Nursing, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Hiroto Yoneyama
- Department of Radiological Technology, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Zhuoqing Chen
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kei Morino
- Division of Nursing, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Akiko Otosaki
- Division of Nursing, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Masako Yamada
- Division of Nursing, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Daiki Kayano
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
7
|
Burak Z. Radionuclide Therapy in Neuroectodermal Tumors. RADIONUCLIDE THERAPY 2022:199-222. [DOI: 10.1007/978-3-030-97220-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Pediatric issues in nuclear medicine therapy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Karakus OO, Godugu K, Fujioka K, Mousa SA. Design, synthesis, and biological evaluation of novel bifunctional thyrointegrin antagonists for neuroblastoma. Bioorg Med Chem 2021; 42:116250. [PMID: 34118788 DOI: 10.1016/j.bmc.2021.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/10/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022]
Abstract
Receptor-mediated cancer therapy has received much attention in the last few decades. Neuroblastoma and other cancers of the sympathetic nervous system highly express norepinephrine transporter (NET) and cell plasma membrane integrin αvβ3. Dual targeting of the NET and integrin αvβ3 receptors using a Drug-Drug Conjugate (DDC) might provide effective treatment strategy in the fight against neuroblastoma and other neuroendocrine tumors. In this work, we synthesized three dual-targeting BG-P400-TAT derivatives, dI-BG-P400-TAT, dM-BG-P400-TAT, and BG-P400-PAT containing di-iodobenzene, di-methoxybenzene, and piperazine groups, respectively. These derivatives utilize to norepinephrine transporter (NET) and the integrin αvβ3 receptor to simultaneously modulate both targets based on evaluation in a neuroblastoma animal model using the neuroblastoma SK-N-F1 cell line. Among the three synthesized agents, the piperazine substituted BG-P400-PAT exhibited potent integrin αvβ3 antagonism and reduced neuroblastoma tumor growth and cancer cell viability by >90%. In conclusion, BG-P400-PAT and derivatives represent a potential therapeutic approach in the management of neuroblastoma.
Collapse
Affiliation(s)
- Ozlem Ozen Karakus
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Kavitha Godugu
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Kazutoshi Fujioka
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States.
| |
Collapse
|
10
|
Masselli G, Casciani E, De Angelis C, Sollaku S, Gualdi G. Clinical application of 18F-DOPA PET/TC in pediatric patients. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2021; 11:64-76. [PMID: 34079636 PMCID: PMC8165723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
The use 18F-DOPA PET/CT for oncologic and non-oncologic pediatric diseases is well consolidated in clinical practice. The indications include brain tumors, neuroendocrine malignancies and congenital hyperinsulinism. The number of papers involving pediatric subjects is steadily growing. However, literature still lacks clinical trials and large multicentric studies in contrast with the extensive literature available for adult patients. The aim of this review is to discuss the main clinical indications of 18F-DOPA in pediatric oncologic and nononcologic diseases and to analyze its role in diagnosis, staging, biopsy and surgical planning. The high resolution of PET/CT tomographs in addition to the high sensitivity and specificity of 18F-DOPA imaging exceeds the downsides linked to this nuclear medicine imaging modality. In fact, few potential limitations could discourage the use of PET/CT imaging. For example, similarly to MRI studies the long acquisition time of a PET/CT scan often requires sedation especially in infants. Moreover, the radiation exposure of a PET/CT scan may be high, but the clinical benefit deriving from nuclear medicine imaging outruns the risk connected to the use of ionizing radiations.
Collapse
Affiliation(s)
- Gabriele Masselli
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, “Sapienza” University of RomeItaly
- PET/CT Section, Pio XI Private HospitalRome, Italy
| | | | - Cristina De Angelis
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, “Sapienza” University of RomeItaly
| | - Saadi Sollaku
- Department of Radiological Sciences, Oncology and Anatomo-Pathology, “Sapienza” University of RomeItaly
- PET/CT Section, Pio XI Private HospitalRome, Italy
| | | |
Collapse
|
11
|
Bhoopathi P, Mannangatti P, Emdad L, Das SK, Fisher PB. The quest to develop an effective therapy for neuroblastoma. J Cell Physiol 2021; 236:7775-7791. [PMID: 33834508 DOI: 10.1002/jcp.30384] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/27/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
Neuroblastoma (NB) is a common solid extracranial tumor developing in pediatric populations. NB can spontaneously regress or grow and metastasize displaying resistance to therapy. This tumor is derived from primitive cells, mainly those of the neural crest, in the sympathetic nervous system and usually develops in the adrenal medulla and paraspinal ganglia. Our understanding of the molecular characteristics of human NBs continues to advance documenting abnormalities at the genome, epigenome, and transcriptome levels. The high-risk tumors have MYCN oncogene amplification, and the MYCN transcriptional regulator encoded by the MYCN oncogene is highly expressed in the neural crest. Studies on the biology of NB has enabled a more precise risk stratification strategy and a concomitant reduction in the required treatment in an expanding number of cases worldwide. However, newer treatment strategies are mandated to improve outcomes in pediatric patients who are at high-risk and display relapse. To improve outcomes and survival rates in such high-risk patients, it is necessary to use a multicomponent therapeutic approach. Accuracy in clinical staging of the disease and assessment of the associated risks based on biological, clinical, surgical, and pathological criteria are of paramount importance for prognosis and to effectively plan therapeutic approaches. This review discusses the staging of NB and the biological and genetic features of the disease and several current therapies including targeted delivery of chemotherapy, novel radiation therapy, and immunotherapy for NB.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA.,VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
12
|
Kobayashi M, Mizutani A, Nishi K, Muranaka Y, Nishii R, Shikano N, Nakanishi T, Tamai I, Kleinerman ES, Kawai K. [ 131I]MIBG exports via MRP transporters and inhibition of the MRP transporters improves accumulation of [ 131I]MIBG in neuroblastoma. Nucl Med Biol 2020; 90-91:49-54. [PMID: 33032192 DOI: 10.1016/j.nucmedbio.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION 131I-labeled m-iodobenzylguanidine ([131I]MIBG) has been used to treat neuroblastoma patients, but [131I]MIBG may be immediately excreted from the cancer cells by the adenosine triphosphate binding cassette transporters, similar to anticancer drugs. The purpose of this study was to clarify the efflux mechanism of [131I]MIBG in neuroblastomas and improve accumulation by inhibition of the transporter in neuroblastomas. METHODS [131I]MIBG was incubated in human embryonic kidney (HEK)293 cells expressing human organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, organic anion transporter (OAT)1 and OAT2, organic cation transporter (OCT)1 and OCT2, and sodium taurocholate cotransporting polypeptide, and in vesicles expressing P-glycoprotein (MDR1), multidrug resistance associated protein (MRP)1-4, or breast cancer resistance protein with and without MK-571 and probenecid (MRP inhibitors). Time activity curves of [131I]MIBG with and without MK-571 and probenecid were established using an SK-N-SH neuroblastoma cell line, and transporter expression of multiple drug resistance was measured. Biodistribution and SPECT imaging examinations were conducted using [123I]MIBG with and without probenecid in SK-N-SH-bearing mice. RESULTS [131I]MIBG uptake was significantly higher in OAT1, OAT2, OCT1, and OCT2 than in mock cells. Uptake via OCT1 and OCT2 was little inhibited by MK-571 and probenecid. [131I]MIBG uptake into vesicles that highly expressed MRP1 or MRP4 was significantly higher in ATP than in AMP, and these inhibitors restored uptake to levels similar to that in AMP. Examining the time activity curves for [131I]MIBG in SK-N-SH cells, higher expressions of MDR1, MRP1, MRP4, and MK-571, or probenecid loading produced significantly higher uptake than in control at most incubation times. The ratios of tumors to blood or muscle in SK-N-SH-bearing mice were significantly increased by probenecid loading in comparison with normal mice. CONCLUSIONS [131I]MIBG exports via MRP1 and MRP4 in neuroblastoma. The accumulation and tumor-to-blood or muscle ratios of [131I]MIBG are improved by inhibition of MRPs with probenecid in neuroblastoma. ADVANCES IN KNOWLEDGE: [131I]MIBG, widely used for treatment of neuroendocrine tumors including neuroblastoma, is excreted via MRP1 and MRP4 in neuroblastoma. IMPLICATIONS FOR PATIENT CARE Loading with probenecid, OAT, and MRP inhibitors improves [131I]MIBG accumulation.
Collapse
Affiliation(s)
- Masato Kobayashi
- School of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Asuka Mizutani
- School of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuka Muranaka
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Naoto Shikano
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Ikumi Tamai
- School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Eugenie S Kleinerman
- Division of Pediatrics, University of Texas M.D. Anderson Cancer Center, Houston, USA
| | - Keiichi Kawai
- School of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| |
Collapse
|
13
|
Taniguchi Y, Wakabayashi H, Inaki A, Kayano D, Yamada M, Kinuya S. Radiation exposure in nurses during care of 131I-MIBG therapy for pediatric patients with high-risk neuroblastoma. Ann Nucl Med 2020; 34:441-447. [PMID: 32297135 DOI: 10.1007/s12149-020-01466-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/05/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE 131I-meta-iodo-benzyl-guanidine (131I-MIBG) therapy has been used in children with high-risk neuroblastoma, who, in Japan, are cared for by trained nurses. To determine the safety of occupational radiation exposure in nurses, we retrospectively examined radiation exposure during therapy. METHODS Sixty-two nurses who received radiation exposure during 131I-MIBG therapy were assessed for the daily percentage of total radiation exposure received using the formula, daily radiation exposure/total radiation dose × 100; self-care score of children was evaluated. RESULTS Fifty-four 131I-MIBG treatments (592 ± 111 MBq/kg) were performed in neuroblastoma patients (M/F; 27 /27, mean age at 131I-MIBG treatment; 7 ± 2 years), who were isolated for 5 ± 1 days. Average total (0.36 ± 0.18 mSv; range 0.09-0.97 mSv) and daily (0.07 ± 0.05 mSv/day; range 0.02-0.32 mSv/day) radiation exposure to nurses per patient care. The daily percentage of total radiation exposure significantly decreased in 3 days after 131I-MIBG treatment (days 0, 1, and 2 was 38.2 ± 14.7%, 26.9 ± 12.6%, and 15.3 ± 7.1%, respectively), and the average self-care score was 12.2 ± 3.5 (10-27) for all patients. Higher self-care score was significantly related to younger patients' age and higher daily radiation exposure in nurses. CONCLUSION Individual exposure to radiation was well controlled. Nurses who care for pediatric patients needing daily assistance must be aware of the radiation exposure risks, which can be reduced by establishing a care system and monitoring radiation exposure.
Collapse
Affiliation(s)
- Yuka Taniguchi
- Division of Nursing, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Anri Inaki
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Daiki Kayano
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Masako Yamada
- Division of Nursing, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
14
|
High-dose 131I-metaiodobenzylguanidine therapy in patients with high-risk neuroblastoma in Japan. Ann Nucl Med 2020; 34:397-406. [DOI: 10.1007/s12149-020-01460-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
|
15
|
Treatment of Neuroendocrine Tumours (Neuroblastoma Stage III or IV, Metastatic Pheochromocytoma, Etc.) with 131I-mIBG. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Bailly C, Bodet-Milin C, Bourgeois M, Gouard S, Ansquer C, Barbaud M, Sébille JC, Chérel M, Kraeber-Bodéré F, Carlier T. Exploring Tumor Heterogeneity Using PET Imaging: The Big Picture. Cancers (Basel) 2019; 11:cancers11091282. [PMID: 31480470 PMCID: PMC6770004 DOI: 10.3390/cancers11091282] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
Personalized medicine represents a major goal in oncology. It has its underpinning in the identification of biomarkers with diagnostic, prognostic, or predictive values. Nowadays, the concept of biomarker no longer necessarily corresponds to biological characteristics measured ex vivo but includes complex physiological characteristics acquired by different technologies. Positron-emission-tomography (PET) imaging is an integral part of this approach by enabling the fine characterization of tumor heterogeneity in vivo in a non-invasive way. It can effectively be assessed by exploring the heterogeneous distribution and uptake of a tracer such as 18F-fluoro-deoxyglucose (FDG) or by using multiple radiopharmaceuticals, each providing different information. These two approaches represent two avenues of development for the research of new biomarkers in oncology. In this article, we review the existing evidence that the measurement of tumor heterogeneity with PET imaging provide essential information in clinical practice for treatment decision-making strategy, to better select patients with poor prognosis for more intensive therapy or those eligible for targeted therapy.
Collapse
Affiliation(s)
- Clément Bailly
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44093 Nantes, France
- Nuclear Medicine Department, University Hospital, 44093 Nantes, France
| | - Caroline Bodet-Milin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44093 Nantes, France
- Nuclear Medicine Department, University Hospital, 44093 Nantes, France
| | - Mickaël Bourgeois
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44093 Nantes, France
- Nuclear Medicine Department, University Hospital, 44093 Nantes, France
- Groupement d'Intérêt Public Arronax, 44800 Saint-Herblain, France
| | - Sébastien Gouard
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44093 Nantes, France
| | - Catherine Ansquer
- Nuclear Medicine Department, University Hospital, 44093 Nantes, France
| | - Matthieu Barbaud
- Nuclear Medicine Department, University Hospital, 44093 Nantes, France
| | | | - Michel Chérel
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44093 Nantes, France
- Groupement d'Intérêt Public Arronax, 44800 Saint-Herblain, France
- Nuclear Medicine Department, ICO-René Gauducheau Cancer Center, 44800 Saint-Herblain, France
| | - Françoise Kraeber-Bodéré
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44093 Nantes, France
- Nuclear Medicine Department, University Hospital, 44093 Nantes, France
- Nuclear Medicine Department, ICO-René Gauducheau Cancer Center, 44800 Saint-Herblain, France
| | - Thomas Carlier
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, 44093 Nantes, France.
- Nuclear Medicine Department, University Hospital, 44093 Nantes, France.
| |
Collapse
|
17
|
Lim MMD, Gnerre J, Gerard P. Mechanisms of Uptake of Common Radiopharmaceuticals RadioGraphics Fundamentals | Online Presentation. Radiographics 2018; 38:1550-1551. [DOI: 10.1148/rg.2018180072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marc Michael D. Lim
- From the Department of Radiology, New York Medical College at Westchester Medical Center, 100 Woods Rd, Macy 1459, Valhalla, NY 10595
| | - Jeffrey Gnerre
- From the Department of Radiology, New York Medical College at Westchester Medical Center, 100 Woods Rd, Macy 1459, Valhalla, NY 10595
| | - Perry Gerard
- From the Department of Radiology, New York Medical College at Westchester Medical Center, 100 Woods Rd, Macy 1459, Valhalla, NY 10595
| |
Collapse
|
18
|
Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol 2018; 48:214-241. [PMID: 29378002 DOI: 10.1093/jjco/hyx176] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is one of the most common solid tumors in children and has a diverse clinical behavior that largely depends on the tumor biology. Neuroblastoma exhibits unique features, such as early age of onset, high frequency of metastatic disease at diagnosis in patients over 1 year of age and the tendency for spontaneous regression of tumors in infants. The high-risk tumors frequently have amplification of the MYCN oncogene as well as segmental chromosome alterations with poor survival. Recent advanced genomic sequencing technology has revealed that mutation of ALK, which is present in ~10% of primary tumors, often causes familial neuroblastoma with germline mutation. However, the frequency of gene mutations is relatively small and other aberrations, such as epigenetic abnormalities, have also been proposed. The risk-stratified therapy was introduced by the Japan Neuroblastoma Study Group (JNBSG), which is now moving to the Neuroblastoma Committee of Japan Children's Cancer Group (JCCG). Several clinical studies have facilitated the reduction of therapy for children with low-risk neuroblastoma disease and the significant improvement of cure rates for patients with intermediate-risk as well as high-risk disease. Therapy for patients with high-risk disease includes intensive induction chemotherapy and myeloablative chemotherapy, followed by the treatment of minimal residual disease using differentiation therapy and immunotherapy. The JCCG aims for better cures and long-term quality of life for children with cancer by facilitating new approaches targeting novel driver proteins, genetic pathways and the tumor microenvironment.
Collapse
Affiliation(s)
| | - Yuanyuan Li
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | - Hideki Izumi
- Laboratory of Molecular Biology, Life Science Research Institute, Saga Medical Center Koseikan
| | | | - Hiroko Inada
- Department of Pediatrics, Saga Medical Center Koseikan
| | - Masanori Nishi
- Department of Pediatrics, Saga University, Saga 849-8501, Japan
| |
Collapse
|
19
|
Kayano D, Kinuya S. Current Consensus on I-131 MIBG Therapy. Nucl Med Mol Imaging 2018; 52:254-265. [PMID: 30100938 DOI: 10.1007/s13139-018-0523-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/27/2018] [Accepted: 04/12/2018] [Indexed: 12/24/2022] Open
Abstract
Metaiodobenzylguanidine (MIBG) is structurally similar to the neurotransmitter norepinephrine and specifically targets neuroendocrine cells including some neuroendocrine tumors. Iodine-131 (I-131)-labeled MIBG (I-131 MIBG) therapy for neuroendocrine tumors has been performed for more than a quarter-century. The indications of I-131 MIBG therapy include treatment-resistant neuroblastoma (NB), unresectable or metastatic pheochromocytoma (PC) and paraganglioma (PG), unresectable or metastatic carcinoid tumors, and unresectable or metastatic medullary thyroid cancer (MTC). I-131 MIBG therapy is one of the considerable effective treatments in patients with advanced NB, PC, and PG. On the other hand, I-131 MIBG therapy is an alternative method after more effective novel therapies are used such as radiolabeled somatostatin analogs and tyrosine kinase inhibitors in patients with advanced carcinoid tumors and MTC. No-carrier-aided (NCA) I-131 MIBG has more favorable potential compared to the conventional I-131 MIBG. Astatine-211-labeled meta-astatobenzylguanidine (At-211 MABG) has massive potential in patients with neuroendocrine tumors. Further studies about the therapeutic protocols of I-131 MIBG including NCA I-131 MIBG in the clinical setting and At-211 MABG in both the preclinical and clinical settings are needed.
Collapse
Affiliation(s)
- Daiki Kayano
- 1Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan.,2Department of Nuclear Medicine, Fukushima Medical University Hospital, 1 Hikariga-oka, Fukushima, 960-1295 Japan
| | - Seigo Kinuya
- 1Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takara-machi, Kanazawa, 920-8641 Japan
| |
Collapse
|
20
|
Devadas SK, Khairnar M, Hiregoudar SS, Ojha S, Punatar S, Gupta A, Gokarn A, Bhole P, Kannan S, Khattry N. Is long term storage of cryopreserved stem cells for hematopoietic stem cell transplantation a worthwhile exercise in developing countries? Blood Res 2017; 52:307-310. [PMID: 29333408 PMCID: PMC5762742 DOI: 10.5045/br.2017.52.4.307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/06/2017] [Accepted: 09/28/2017] [Indexed: 11/17/2022] Open
Abstract
Background Stem cell units (SCUs) that are cryopreserved prior to both autologous and allogeneic hematopoietic stem cell transplants (for donor lymphocyte infusion) remain unused or partially used several times, and become an increased burden to blood banks/SCU repositories. Because of the scarcity of data regarding the duration for which the storage is useful, there is no general consensus regarding disposal of SCUs. Methods We conducted a retrospective audit of SCU utilization in 435 patients who planned to undergo either autologous stem cell transplantation (auto-SCT) (N=239) or allogeneic stem cell transplantation (allo-SCT) (N=196) at a tertiary cancer care center between November 2007 to January 2015. Results Our cohort consisted of 1,728 SCUs stored for conducting auto-SCT and 729 SCUs stored for conducting donor lymphocyte infusions (DLIs) after allo-SCT. Stem cells were not infused in 12.5% of patients who had planned to undergo auto-SCT, and 80% of patients who underwent allo-SCT never received DLI. Forty-one percent of SCUs intended for use in auto-SCT remained unutilized, with a second auto-SCT being performed only in 4 patients. Ninety-four percent of SCUs intended for carrying out DLIs remained unused, with only minimal usage observed one year after undergoing allo-SCT. Conclusion The duration of storage of unused SCUs needs to be debated upon, so that a consensus can be reached regarding the ethical disposal of SCU.
Collapse
Affiliation(s)
- Santhosh Kumar Devadas
- Department of Medical Oncology and Bone Marrow Transplantation, Tata Memorial Center, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Mumbai, India
| | - Minal Khairnar
- Department of Transfusion Medicine, Tata Memorial Center, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Mumbai, India
| | - Sumathi S Hiregoudar
- Department of Transfusion Medicine, Tata Memorial Center, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Mumbai, India
| | - Shashank Ojha
- Department of Transfusion Medicine, Tata Memorial Center, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Mumbai, India
| | - Sachin Punatar
- Department of Medical Oncology and Bone Marrow Transplantation, Tata Memorial Center, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Mumbai, India
| | - Alok Gupta
- Department of Medical Oncology and Bone Marrow Transplantation, Tata Memorial Center, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Mumbai, India
| | - Anant Gokarn
- Department of Medical Oncology and Bone Marrow Transplantation, Tata Memorial Center, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Mumbai, India
| | - Pallavi Bhole
- Statistics, Tata Memorial Center, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Mumbai, India
| | - Sadhana Kannan
- Statistics, Tata Memorial Center, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Mumbai, India
| | - Navin Khattry
- Department of Medical Oncology and Bone Marrow Transplantation, Tata Memorial Center, Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Mumbai, India
| |
Collapse
|
21
|
Yamaguchi A, Hanaoka H, Higuchi T, Tsushima Y. Radiolabeled (4-Fluoro-3-Iodobenzyl)Guanidine Improves Imaging and Targeted Radionuclide Therapy of Norepinephrine Transporter–Expressing Tumors. J Nucl Med 2017; 59:815-821. [DOI: 10.2967/jnumed.117.201525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
|
22
|
Bansal D, Totadri S, Chinnaswamy G, Agarwala S, Vora T, Arora B, Prasad M, Kapoor G, Radhakrishnan V, Laskar S, Kaur T, Rath GK, Bakhshi S. Management of Neuroblastoma: ICMR Consensus Document. Indian J Pediatr 2017; 84:446-455. [PMID: 28367616 DOI: 10.1007/s12098-017-2298-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 01/20/2017] [Indexed: 12/21/2022]
Abstract
Neuroblastoma (NBL) is the most common extra-cranial solid tumor in childhood. High-risk NBL is considered challenging and has one of the least favourable outcomes amongst pediatric cancers. Primary tumor can arise anywhere along the sympathetic chain. Advanced disease at presentation is common. Diagnosis is established by tumor biopsy and elevated urinary catecholamines. Staging is performed using bone marrow and mIBG scan (FDG-PET/bone scan if mIBG unavailable or non-avid). Age, stage, histopathological grading, MYCN amplification and 11q aberration are important prognostic factors utilized in risk stratification. Low-risk disease including Stage 1 and asymptomatic Stage 2 disease has an excellent prognosis with non-mutilating surgery alone. Perinatal adrenal neuroblastoma may be managed with close observation alone. Intermediate-risk disease consisting largely of unresectable/symptomatic Stage 2/3 disease and infants with Stage 4 disease has good outcome with few cycles of chemotherapy followed by surgical resection. Paraspinal neuroblastomas with cord compression are treated emergently, typically with upfront chemotherapy. Asymptomatic Stage 4S disease may be followed closely without treatment. Organ dysfunction and age below 3 mo would warrant chemotherapy in 4S. High-risk disease includes older children with Stage 4 disease and MYCN amplified tumors. High-risk disease has a suboptimal outcome, though the survival is improving with multimodality therapy including autologous stem cell transplant and immunotherapy. Relapse after multimodality therapy is difficult to salvage. Late presentation, lack of transplant facility, malnutrition and treatment abandonment are additional hurdles for survival in India. The review provides a consensus document on management of NBL for developing countries, including India.
Collapse
Affiliation(s)
- Deepak Bansal
- Pediatric Hematology Oncology Unit, Department of Pediatrics, Advanced Pediatric Center, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Sidharth Totadri
- Pediatric Hematology Oncology Unit, Department of Pediatrics, Advanced Pediatric Center, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Girish Chinnaswamy
- Department of Pediatric Oncology, Tata Memorial Hospital, Parel, Mumbai, India
| | - Sandeep Agarwala
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Tushar Vora
- Department of Pediatric Oncology, Tata Memorial Hospital, Parel, Mumbai, India
| | - Brijesh Arora
- Department of Pediatric Oncology, Tata Memorial Hospital, Parel, Mumbai, India
| | - Maya Prasad
- Department of Pediatric Oncology, Tata Memorial Hospital, Parel, Mumbai, India
| | - Gauri Kapoor
- Department of Pediatric Hematology & Oncology, Rajiv Gandhi Cancer Institute and Research Center, Delhi, India
| | - Venkatraman Radhakrishnan
- Department of Medical Oncology and Pediatric Oncology, Cancer Institute (W.I.A), Adyar, Chennai, India
| | - Siddharth Laskar
- Department of Radiation Oncology, Tata Memorial Hospital, Parel, Mumbai, India
| | - Tanvir Kaur
- NCD Division, Indian Council of Medical Research (ICMR), New Delhi, India
| | - G K Rath
- Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
23
|
Kendi AT, Moncayo VM, Nye JA, Galt JR, Halkar R, Schuster DM. Radionuclide Therapies in Molecular Imaging and Precision Medicine. PET Clin 2017; 12:93-103. [DOI: 10.1016/j.cpet.2016.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Wijnen M, van den Heuvel-Eibrink MM, Medici M, Peeters RP, van der Lely AJ, Neggers SJCMM. Risk factors for subsequent endocrine-related cancer in childhood cancer survivors. Endocr Relat Cancer 2016; 23:R299-321. [PMID: 27229933 DOI: 10.1530/erc-16-0113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022]
Abstract
Long-term adverse health conditions, including secondary malignant neoplasms, are common in childhood cancer survivors. Although mortality attributable to secondary malignancies declined over the past decades, the risk for developing a solid secondary malignant neoplasm did not. Endocrine-related malignancies are among the most common secondary malignant neoplasms observed in childhood cancer survivors. In this systematic review, we describe risk factors for secondary malignant neoplasms of the breast and thyroid, since these are the most common secondary endocrine-related malignancies in childhood cancer survivors. Radiotherapy is the most important risk factor for secondary breast and thyroid cancer in childhood cancer survivors. Breast cancer risk is especially increased in survivors of Hodgkin lymphoma who received moderate- to high-dosed mantle field irradiation. Recent studies also demonstrated an increased risk after lower-dose irradiation in other radiation fields for other childhood cancer subtypes. Premature ovarian insufficiency may protect against radiation-induced breast cancer. Although evidence is weak, estrogen-progestin replacement therapy does not seem to be associated with an increased breast cancer risk in premature ovarian-insufficient childhood cancer survivors. Radiotherapy involving the thyroid gland increases the risk for secondary differentiated thyroid carcinoma, as well as benign thyroid nodules. Currently available studies on secondary malignant neoplasms in childhood cancer survivors are limited by short follow-up durations and assessed before treatment regimens. In addition, studies on risk-modifying effects of environmental and lifestyle factors are lacking. Risk-modifying effects of premature ovarian insufficiency and estrogen-progestin replacement therapy on radiation-induced breast cancer require further study.
Collapse
Affiliation(s)
- M Wijnen
- Department of Pediatric Oncology/HematologyErasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands Department of MedicineSection Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M M van den Heuvel-Eibrink
- Department of Pediatric Oncology/HematologyErasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands Princess Maxima Center for Pediatric OncologyUtrecht, the Netherlands
| | - M Medici
- Department of MedicineSection Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands Rotterdam Thyroid CenterErasmus University Medical Center, Rotterdam, the Netherlands
| | - R P Peeters
- Department of MedicineSection Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands Rotterdam Thyroid CenterErasmus University Medical Center, Rotterdam, the Netherlands
| | - A J van der Lely
- Department of MedicineSection Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S J C M M Neggers
- Department of Pediatric Oncology/HematologyErasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands Department of MedicineSection Endocrinology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
25
|
|
26
|
Gudkov SV, Shilyagina NY, Vodeneev VA, Zvyagin AV. Targeted Radionuclide Therapy of Human Tumors. Int J Mol Sci 2015; 17:E33. [PMID: 26729091 PMCID: PMC4730279 DOI: 10.3390/ijms17010033] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/07/2015] [Accepted: 12/22/2015] [Indexed: 12/12/2022] Open
Abstract
Targeted radionuclide therapy is one of the most intensively developing directions of nuclear medicine. Unlike conventional external beam therapy, the targeted radionuclide therapy causes less collateral damage to normal tissues and allows targeted drug delivery to a clinically diagnosed neoplastic malformations, as well as metastasized cells and cellular clusters, thus providing systemic therapy of cancer. The methods of targeted radionuclide therapy are based on the use of molecular carriers of radionuclides with high affinity to antigens on the surface of tumor cells. The potential of targeted radionuclide therapy has markedly grown nowadays due to the expanded knowledge base in cancer biology, bioengineering, and radiochemistry. In this review, progress in the radionuclide therapy of hematological malignancies and approaches for treatment of solid tumors is addressed.
Collapse
Affiliation(s)
- Sergey V Gudkov
- Laboratory of Optical Theranostics, Lobachevsky Nizhny Novgorod State University, Gagarin Ave. 23, Nizhny Novgorod 603950, Russia.
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya St, 3, Pushchino, Moscow 142290, Russia.
- Prokhorov Institute of General Physics, Russian Academy of Sciences, Vavilova St, 38, Moscow 119991, Russia.
| | - Natalya Yu Shilyagina
- Laboratory of Optical Theranostics, Lobachevsky Nizhny Novgorod State University, Gagarin Ave. 23, Nizhny Novgorod 603950, Russia.
| | - Vladimir A Vodeneev
- Laboratory of Optical Theranostics, Lobachevsky Nizhny Novgorod State University, Gagarin Ave. 23, Nizhny Novgorod 603950, Russia.
| | - Andrei V Zvyagin
- Laboratory of Optical Theranostics, Lobachevsky Nizhny Novgorod State University, Gagarin Ave. 23, Nizhny Novgorod 603950, Russia.
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney 2109, Australia.
| |
Collapse
|
27
|
Mulholland N, Chakravartty R, Devlin L, Kalogianni E, Corcoran B, Vivian G. Long-term outcomes of (131)Iodine mIBG therapy in metastatic gastrointestinal pancreatic neuroendocrine tumours: single administration predicts non-responders. Eur J Nucl Med Mol Imaging 2015; 42:2002-12. [PMID: 26142730 DOI: 10.1007/s00259-015-3116-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/10/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND (131)Iodine (I131)-metaiodobenzylguanidine (mIBG) is a radionuclide-based treatment option for metastatic gastrointestinal-pancreatic neuroendocrine tumours (GEP NET). This study aimed at identifying prognostic indicators of long-term outcome based on initial evaluation following a first mIBG treatment (7400 MBq) in a patient cohort with such tumours, with a secondary aim of evaluating progression-free survival (PFS) and overall survival (OS) following mIBG therapy. METHODS Retrospective review of the hospital records was performed to identify a cohort of 38 adult patients who underwent (131)Iodine-mIBG therapy over a 9-year period for metastatic GEP NETs and neuroendocrine tumours with an unknown primary. Treatment response was evaluated based on radiological criteria (RECIST1.1), biochemical markers [serum Chromogranin A (CgA)/urinary 5HIAA] and symptomatic response at clinical follow-up, all evaluated at 3-6 months from first mIBG treatment. Progression-free survival (PFS) and overall survival (OS) from the first mIBG treatment were recorded. RESULTS At 3-6 months following a single mIBG therapy, 75%, 67%, and 63% of patients showed either a partial response (PR) or stable disease (SD) on radiological, biochemical, and symptomatic criteria, respectively. Complete response (CR) was not seen in any patient. OS from the date of diagnosis and from the first therapy was 8 years +/-1.1 (95% CI 5.7 to 10.2 years) and 4 years+/-0.69 (95% CI 2.6-5.3 years), respectively. Twenty-nine percent of patients were alive at 10 years. Significant survival advantage was seen in patients with SD/PR as compared to those who had progressive disease (PD) for each of these three criteria. CONCLUSION Biochemical, radiological (RECIST 1.1) and symptomatic assessment of disease status at 3 to 6 months after first I131-mIBG therapy stratifies patients with a poor prognosis. This can be used to identify patients who may benefit from alternative strategies of treatment.
Collapse
Affiliation(s)
- Nicola Mulholland
- Department of Nuclear Medicine, King's College Hospital, Denmark Hill, London, SE5 9RS, UK.
| | - Riddhika Chakravartty
- Department of Nuclear Medicine, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Lindsey Devlin
- Department of Nuclear Medicine, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Eleni Kalogianni
- Department of Nuclear Medicine, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Ben Corcoran
- Department of Nuclear Medicine, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| | - Gillian Vivian
- Department of Nuclear Medicine, King's College Hospital, Denmark Hill, London, SE5 9RS, UK
| |
Collapse
|