1
|
Pei J, Xiong L, Wang X, Guo S, Cao M, Ding Z, Kang Y, Chu M, Wu X, Bao P, Guo X. Dynamic changes in cellular atlases and communication patterns within yak ovaries across diverse reproductive states unveiled by single-cell analysis. Front Cell Dev Biol 2024; 12:1444706. [PMID: 39268087 PMCID: PMC11390571 DOI: 10.3389/fcell.2024.1444706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Yaks (Bos grunniens) exhibit exceptional adaptation to the challenging high-altitude environment of the Qinghai-Tibetan plateau, making them the sole bovine species capable of thriving in such exreme conditions. Investigating the cellular and molecular characteristics of yak ovaries across different reproductive states is crucial for gaining insight into their ovarian functions. Herein, the cellular atlases of yak ovaries in different reproductive states were depicted by single-cell RNA-sequencing (scRNA-seq). The cellular atlases of the ovaries were established by identifying specific gene expression patterns of various cell types, including granulosa cells, theca cells, stromal cells, smooth muscle cells, endothelial cells, glial cell, macrophages, natural killer cells, and proliferating cells. The cellular compositions of the ovaries vary among different reproductive states. Furthermore, the granulosa cells comprise six cell subtypes, while theca cells consist of eight cell subtypes. The granulosa cells and theca cells exhibit distinct biological functions throughout different reproductive states. The two cell types were aligned along their respective pseudotime trajectories. Moreover, a cell-to-cell communication network was constructed among distinct cell types within the ovary, spanning the three reproductive states. Notably, during the estrus period, the granulosa cells demonstrated more prominent interactions with other cell types compared to the remaining reproductive states.
Collapse
Affiliation(s)
- Jie Pei
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Mengli Cao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Ziqiang Ding
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Min Chu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| | - Xian Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Pei J, Xiong L, Guo S, Wang X, La Y, Chu M, Liang C, Yan P, Guo X. Single-Cell Transcriptomics Analysis Reveals a Cell Atlas and Cell Communication in Yak Ovary. Int J Mol Sci 2023; 24:ijms24031839. [PMID: 36768166 PMCID: PMC9915757 DOI: 10.3390/ijms24031839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/15/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Yaks (Bos grunniens) are the only bovine species that adapt well to the harsh high-altitude environment in the Qinghai-Tibetan plateau. However, the reproductive adaptation to the climate of the high elevation remains to be elucidated. Cell composition and molecular characteristics are the foundation of normal ovary function which determines reproductive performance. So, delineating ovarian characteristics at a cellular molecular level is conducive to elucidating the mechanism underlying the reproductive adaption of yaks. Here, the single-cell RNA-sequencing (scRNA-seq) was employed to depict an atlas containing different cell types with specific molecular signatures in the yak ovary. The cell types were identified on the basis of their specifically expressed genes and biological functions. As a result, a cellular atlas of yak ovary was established successfully containing theca cells, stromal cells, endothelial cells, smooth muscle cells, natural killer cells, macrophages, and proliferating cells. A cell-to-cell communication network between the distinct cell types was constructed. The theca cells were clustered into five subtypes based on their biological functions. Further, CYP11A1 was confirmed as a marker gene for the theca cells by immunofluorescence staining. Our work reveals an ovarian atlas at the cellular molecular level and contributes to providing insights into reproductive adaption in yaks.
Collapse
Affiliation(s)
- Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence:
| |
Collapse
|
3
|
Pei J, Xiong L, Guo S, Wang X, Bao P, Wu X, Yan P, Guo X. A single-cell transcriptomic atlas characterizes cell types and their molecular features in yak ovarian cortex. FASEB J 2023; 37:e22718. [PMID: 36527406 DOI: 10.1096/fj.202201176rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The ovary as one of the most dynamic organs produces steroids to orchestrate female secondary sexual characteristics, harbors ovarian reserve for oocytes, releases mature oocytes for fertilization, and maintains pregnancy. Yak (Bos grunniens) is the only bovid animal that can adapt to the harsh climatic conditions on the Qinghai-Tibetan Plateau (altitudes of over 3000 m above sea level). However, the cellular atlas is composed of oocytes and other somatic cells, and their individual molecular characteristics remain to be elucidated in the yak ovary. Here, single-cell RNA sequencing (scRNA-seq) was performed to delineate the molecular signature of various cell types in the yak ovarian cortex. A cellular atlas of yak ovarian cortex was constructed successfully on the basis of the differentially expressed genes (DEGs) from the distinct cell types and their functional enrichment analysis, comprising endothelial cells, nature kill cells, stromal cells, smooth muscle cells, oocytes, macrophages, epithelial cells, and granulosa cells. Meanwhile, the signature genes were determined based on their expression specificity in each cell type. A cell-to-cell communication network was built in light of the differentially overexpressed ligand and receptor genes from each cell type. Further, the oocytes were subdivided into four subtypes based on their individual DEGs and the functional enrichment of the DEGs. FST and TOP2A were identified as maker genes for oocytes by immunostaining in the yak ovarian cortex. The cellular atlas reveals the biological characteristics of the ovarian cortex at the cellular molecular level and provides insights into female reproductive biology via cellular communications in the yak.
Collapse
Affiliation(s)
- Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| |
Collapse
|
4
|
Pei J, Zhao S, Yin M, Wu F, Li J, Zhang G, Wu X, Bao P, Xiong L, Song W, Ba Y, Yan P, Song R, Guo X. Differential proteomics of placentas reveals metabolic disturbance and oxidative damage participate yak spontaneous miscarriage during late pregnancy. BMC Vet Res 2022; 18:248. [PMID: 35761325 PMCID: PMC9235108 DOI: 10.1186/s12917-022-03354-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background High spontaneous miscarriage rate in yak, especially during late pregnancy, have caused a great economic loss to herdsmen living in the Qinghai-Tibet plateau. However, the mechanism underlying spontaneous miscarriage is still poorly understood. In the present study, placenta protein markers were identified to elucidate the pathological reasons for yak spontaneous miscarriage through isobaric tags for relative and absolute quantification (iTRAQ) proteomic technology and bioinformatic approaches. Results Subsequently, a total of 415 differentially expressed proteins (DEPs) were identified between aborted and normal placentas. The up-regulated DEPs in the aborted placentas were significantly associated with “spinocerebellar ataxia”, “sphingolipid signalling”, “relaxin signalling”, “protein export”, “protein digestion and absorption” and “aldosterone synthesis and secretion” pathway. While the down-regulated DEPs in the aborted placentas mainly participated in “valine, leucine and isoleucine degradation”, “PPAR signalling”, “peroxisome”, “oxidative phosphorylation”, “galactose metabolism”, “fatty acid degradation”, “cysteine and methionine metabolism” and “citrate cycle” pathway. Conclusions The results implied that the identified DEPs could be considered as placental protein markers for yak miscarriage during late pregnancy, and biomacromolecule metabolic abnormality and oxidative damage might be responsible for the high spontaneous miscarriage rate in yak. These findings provide an important theoretical basis for deciphering the pathologic mechanism of late spontaneous miscarriage in yak. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03354-w.
Collapse
|
5
|
Hannemann J, Böger R. Dysregulation of the Nitric Oxide/Dimethylarginine Pathway in Hypoxic Pulmonary Vasoconstriction—Molecular Mechanisms and Clinical Significance. Front Med (Lausanne) 2022; 9:835481. [PMID: 35252268 PMCID: PMC8891573 DOI: 10.3389/fmed.2022.835481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
The pulmonary circulation responds to hypoxia with vasoconstriction, a mechanism that helps to adapt to short-lived hypoxic episodes. When sustained, hypoxic pulmonary vasoconstriction (HPV) may become deleterious, causing right ventricular hypertrophy and failure, and contributing to morbidity and mortality in the late stages of several chronic pulmonary diseases. Nitric oxide (NO) is an important endothelial vasodilator. Its release is regulated, amongst other mechanisms, by the presence of endogenous inhibitors like asymmetric dimethylarginine (ADMA). Evidence has accumulated in recent years that elevated ADMA may be implicated in the pathogenesis of HPV and in its clinical sequelae, like pulmonary arterial hypertension (PAH). PAH is one phenotypic trait in experimental models with disrupted ADMA metabolism. In high altitude, elevation of ADMA occurs during long-term exposure to chronic or chronic intermittent hypobaric hypoxia; ADMA is significantly associated with high altitude pulmonary hypertension. High ADMA concentration was also reported in patients with chronic obstructive lung disease, obstructive sleep apnoea syndrome, and overlap syndrome, suggesting a pathophysiological role for ADMA-mediated impairment of endothelium-dependent, NO-mediated pulmonary vasodilation in these clinically relevant conditions. Improved understanding of the molecular (dys-)regulation of pathways controlling ADMA concentration may help to dissect the pathophysiology and find novel therapeutic options for these diseases.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
- *Correspondence: Rainer Böger
| |
Collapse
|
6
|
Differential proteomic analysis demonstrates follicle fluid participate immune reaction and protein translation in yak. BMC Vet Res 2022; 18:34. [PMID: 35031034 PMCID: PMC8758897 DOI: 10.1186/s12917-021-03097-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background Ovarian follicle fluid (FF) as a microenvironment surrounding oocyte plays critical roles in physio-biochemical processes of follicle development and oocyte maturation. It is hypothesized that proteins in yak FF participate in the physio-biochemical pathways. The primary aims of this study were to find differentially expressed proteins (DEPs) between mature and immature FF, and to elucidating functions of the mature and immature FF in yak. Results The mature and immature FF samples were obtained from three healthy yaks that were nonpregnant, aged from four to five years, and free from any anatomical reproductive disorders. The FF samples were subjected to mass spectrometry with the isobaric tags for relative and absolute quantification (iTRAQ). The FF samples went through correlation analysis, principle component analysis, and expression pattern analysis based on quantification of the identified proteins. Four hundred sixty-three DEPs between mature and immature FF were identified. The DEPs between the mature and immature FF samples underwent gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI) analysis. The DEPs highly expressed in the mature FF mainly took parts in the complement and coagulation cascades, defense response, acute-phase response, response to other organism pathways to avoid invasion of exogenous microorganisms. The complement activation pathway contains eight DEPs, namely C2, C5, C6, C7, C9, C4BPA, CFH, and MBL2. The three DEPs, CATHL4, CHGA, and PGLYRP1, take parts in defense response pathway to prevent invasion of exogenetic microorganism. The coagulation cascades pathway involves many coagulation factors, such as F7, F13A1, FGA, FGB, FGG, KLKB1, KNG1, MASP1, SERPINA1, and SERPIND1. While the DEPs highly expressed in the immature FF participated in protein translation, peptide biosynthetic process, DNA conformation change, and DNA geometric change pathways to facilitate follicle development. The translation pathway contains many ribosomal proteins, such as RPL3, RPL5, RPS3, RPS6, and other translation factors, such as EIF3J, EIF4G2, ETF1, MOV10, and NARS. The DNA conformation change and DNA geometric change involve nine DEPs, DDX1, G3BP1, HMGB1, HMGB2, HMGB3, MCM3, MCM5, MCM6, and RUVBL2. Furthermore, the expressed levels of the main DEPs, C2 and SERPIND1, were confirmed by western blot. Conclusions The differential proteomics revealed the up-regulated DEPs in mature FF take parts in immunoreaction to prevent invasion of microorganisms and the up-regulated DEPs in immature FF participate in protein synthesis, which may improve our knowledge of the follicular microenvironment and its biological roles for reproductive processes in yak. The DEPs, C2 and SERPIND1, can be considered as protein markers for mature yak follicle. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03097-0.
Collapse
|
7
|
Hannemann J, Siques P, Schmidt-Hutten L, Zummack J, Brito J, Böger R. Association of Genes of the NO Pathway with Altitude Disease and Hypoxic Pulmonary Hypertension. J Clin Med 2021; 10:jcm10245761. [PMID: 34945057 PMCID: PMC8704804 DOI: 10.3390/jcm10245761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023] Open
Abstract
Chronic intermittent hypoxia leads to high-altitude pulmonary hypertension, which is associated with high asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthesis. Therefore, we aimed to understand the relation of single nucleotide polymorphisms in this pathway to high-altitude pulmonary hypertension (HAPH). We genotyped 69 healthy male Chileans subjected to chronic intermittent hypoxia. Acclimatization to altitude was determined using the Lake Louise Score and the presence of acute mountain sickness. Echocardiography was performed after six months in 24 individuals to estimate pulmonary arterial pressure. The minor allele of dimethylarginine dimethylaminohydrolase (DDAH)1 rs233112 was associated with high-baseline plasma ADMA concentration, while individuals homozygous for the major allele of DDAH2 rs805304 had a significantly greater increase in ADMA during chronic intermittent hypoxia. The major allele of alanine glyoxylate aminotransferase-2 (AGXT2) rs37369 was associated with a greater reduction of plasma symmetric dimethylarginine (SDMA). Several genes were associated with high-altitude pulmonary hypertension, and the nitric oxide synthase (NOS)3 and DDAH2 genes were related to acute mountain sickness. In conclusion, DDAH1 determines baseline plasma ADMA, while DDAH2 modulates ADMA increase in hypoxia. AGXT2 may be up-regulated in hypoxia. Genomic variation in the dimethylarginine pathway affects the development of HAPH and altitude acclimatization.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.S.-H.); (J.Z.); (R.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20246 Hamburg, Germany and Iquique 1100000, Chile; (P.S.); (J.B.)
- Correspondence:
| | - Patricia Siques
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20246 Hamburg, Germany and Iquique 1100000, Chile; (P.S.); (J.B.)
- Institute of Health Studies, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Lena Schmidt-Hutten
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.S.-H.); (J.Z.); (R.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20246 Hamburg, Germany and Iquique 1100000, Chile; (P.S.); (J.B.)
| | - Julia Zummack
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.S.-H.); (J.Z.); (R.B.)
| | - Julio Brito
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20246 Hamburg, Germany and Iquique 1100000, Chile; (P.S.); (J.B.)
- Institute of Health Studies, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (L.S.-H.); (J.Z.); (R.B.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20246 Hamburg, Germany and Iquique 1100000, Chile; (P.S.); (J.B.)
| |
Collapse
|
8
|
Vilcea A, Darabantiu D, Puschita M. The Importance of a New Cardiovascular Risk Factor - Asymmetric Dimethylarginine. MÆDICA 2020; 15:373-375. [PMID: 33312254 DOI: 10.26574/maedica.2020.15.3.373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the past years, scientific research has highlighted the presence of a new cardiovascular risk factor, the implications of which have not been sufficiently studied so far. It is different from conventional risk factors because it acts independently at the endothelial level, having important proatherogenic properties. Through its action, this risk factor leads to increased oxidative stress and promotes the onset of atherosclerosis faster than other well-known risk factors so far. Asymmetric dimethylarginine (ADMA) is a methylprotein that arises from posttranslational methylation of proteins. Its importance has emerged in recent years, when the rate of cardiovascular mortality among patients with chronic kidney disease has been high. The distinctive element of this risk factor compared to other well-known ones is given by its ability to compete directly with nitric oxide synthase, being its strongest endogenous inhibitor, with strong proatherogenic attributions. Given that ADMA has tight correlations with atherogenesis and endothelial damage, its assessment should be taken into consideration for any patient who has been recently diagnosed with high blood pressure.
Collapse
|
9
|
Hannemann J, Zummack J, Hillig J, Böger R. Metabolism of asymmetric dimethylarginine in hypoxia: from bench to bedside. Pulm Circ 2020; 10:2045894020918846. [PMID: 32313644 PMCID: PMC7158260 DOI: 10.1177/2045894020918846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Acute hypoxia and chronic hypoxia induce pulmonary vasoconstriction. While hypoxic pulmonary vasoconstriction is a physiological response if parts of the lung are affected, global exposure to hypoxic conditions may lead to clinical conditions like high-altitude pulmonary hypertension. Nitric oxide is the major vasodilator released from the vascular endothelium. Nitric oxide-dependent vasodilation is impaired in hypoxic conditions. Inhibition of nitric oxide synthesis is the most rapid and easily reversible molecular mechanism to regulate nitric oxide-dependent vascular function in response to physiological and pathophysiological stimuli. Asymmetric dimethylarginine is an endogenous, competitive inhibitor of nitric oxide synthase and a risk marker for major cardiovascular events and mortality. Elevated asymmetric dimethylarginine has been observed in animal models of hypoxia as well as in human cohorts under chronic and chronic intermittent hypoxia at high altitude. In lowlanders, asymmetric dimethylarginine is high in patients with pulmonary hypertension. We have recently shown that high asymmetric dimethylarginine at sea level is a predictor for high-altitude pulmonary hypertension. Asymmetric dimethylarginine is a highly regulated molecule, both by its biosynthesis and metabolism. Methylation of L-arginine by protein arginine methyltransferases was shown to be increased in hypoxia. Furthermore, the metabolism of asymmetric dimethylarginine by dimethylarginine dimethylaminohydrolases (DDAH1 and DDAH2) is decreased in animal models of hypoxia. Whether these changes are caused by transcriptional or posttranslational modifications remains to be elucidated. Current data suggest a major role of asymmetric dimethylarginine in regulating pulmonary arterial nitric oxide production in hypoxia. Further studies are needed to decipher the molecular mechanisms regulating asymmetric dimethylarginine in hypoxia and to understand their clinical significance.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
| | - Julia Zummack
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
| | - Jonas Hillig
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and its Health Sequelae, Hamburg, Germany
| |
Collapse
|
10
|
Ma X, Jia C, Fu D, Chu M, Ding X, Wu X, Guo X, Pei J, Bao P, Liang C, Yan P. Analysis of Hematological Traits in Polled Yak by Genome-Wide Association Studies Using Individual SNPs and Haplotypes. Genes (Basel) 2019; 10:E463. [PMID: 31212963 PMCID: PMC6627507 DOI: 10.3390/genes10060463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
Yak (Bos grunniens) is an important domestic animal living in high-altitude plateaus. Due to inadequate disease prevention, each year, the yak industry suffers significant economic losses. The identification of causal genes that affect blood- and immunity-related cells could provide preliminary reference guidelines for the prevention of diseases in the population of yaks. The genome-wide association studies (GWASs) utilizing a single-marker or haplotype method were employed to analyze 15 hematological traits in the genome of 315 unrelated yaks. Single-marker GWASs identified a total of 43 significant SNPs, including 35 suggestive and eight genome-wide significant SNPs, associated with nine traits. Haplotype analysis detected nine significant haplotype blocks, including two genome-wide and seven suggestive blocks, associated with seven traits. The study provides data on the genetic variability of hematological traits in the yak. Five essential genes (GPLD1, EDNRA,APOB, HIST1H1E, and HIST1H2BI) were identified, which affect the HCT, HGB, RBC, PDW, PLT, and RDWSD traits and can serve as candidate genes for regulating hematological traits. The results provide a valuable reference to be used in the analysis of blood properties and immune diseases in the yak.
Collapse
Affiliation(s)
- Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Congjun Jia
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Donghai Fu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Xuezhi Ding
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| |
Collapse
|
11
|
E GX, Basang WD, Zhu YB. Whole-genome analysis identifying candidate genes of altitude adaptive ecological thresholds in yak populations. J Anim Breed Genet 2019; 136:371-377. [PMID: 31062447 DOI: 10.1111/jbg.12403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
Abstract
The domestic yak (Bos grunniens) is an iconic symbol of animal husbandry on the Qinghai-Tibet Plateau. Long-term domestication and natural selection have led to a wide distribution of yak, forming many ecological populations to adapt to the local ecological environment. High altitude is closely related to oxygen density, and it is an important environmental ecological factor for biological survival and livestock production. The aim of the present study was to perform a preliminary analysis to identify the candidate genes of altitude distribution adapted ecological thresholds in yak using next-generation sequence technology. A total of 15,762,829 SNPs were obtained from 29 yaks with high- and low-altitude distribution by genome-wide sequencing. According to the results of the selective sweep analysis with FST and ZHp, 21 candidate genes were identified. 14 genes (serine/threonine protein kinase TNNI3K, TEN1, DYM, ITPR1, ZC4H2, KNTC1, ADGRB3, CLYBL, TANGO6, ASCC3, KLHL3, PDE4D, DEPDC1B and AGBL4) were grouped into 32 Gene Ontology terms, and four genes (RPS6KA6, ITPR1, GNAO1 and PDE4D) annotated in 35 pathways, including seven environmental information processing and one environmental adaptation. Therefore, the novel candidate genes found in the current study do not only support new theories about high-altitude adaptation, but also further explain the molecular mechanisms of altitude adaptation threshold in yaks.
Collapse
Affiliation(s)
- Guang-Xin E
- Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, College of Animal Science and Technology, Southwest University, Chongqing, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wang-Dui Basang
- State Key Laboratory of Barley and Yak Germplasm Resources and Genetic Improvement (Tibet Academy of Agricultural and Animal Husbandry Sciences (TAAAS)), Lhasa, China.,Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| | - Yan-Bin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa, China
| |
Collapse
|
12
|
Pei J, Bao P, Chu M, Liang C, Ding X, Wang H, Wu X, Guo X, Yan P. Evaluation of 17 microsatellite markers for parentage testing and individual identification of domestic yak ( Bos grunniens). PeerJ 2018; 6:e5946. [PMID: 30473935 PMCID: PMC6237114 DOI: 10.7717/peerj.5946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 10/17/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Yak (Bos grunniens) is the most important domestic animal for people living at high altitudes. Yak ordinarily feed by grazing, and this behavior impacts the accuracy of the pedigree record because it is difficult to control mating in grazing yak. This study aimed to evaluate the pedigree system and individual identification in polled yak. METHODS A total of 71 microsatellite loci were selected from the literature, mostly from the studies on cattle. A total of 35 microsatellite loci generated excellent PCR results and were evaluated for the parentage testing and individual identification of 236 unrelated polled yaks. A total of 17 of these 35 microsatellite loci had polymorphic information content (PIC) values greater than 0.5, and these loci were in Hardy-Weinberg equilibrium without linkage disequilibrium. RESULTS Using multiplex PCR, capillary electrophoresis, and genotyping, very high exclusion probabilities were obtained for the combined core set of 17 loci. The exclusion probability (PE) for one candidate parent when the genotype of the other parent is not known was 0.99718116. PE for one candidate parent when the genotype of the other parent is known was 0.99997381. PE for a known candidate parent pair was 0.99999998. The combined PEI (PE for identity of two unrelated individuals) and PESI (PE for identity of two siblings) were >0.99999999 and 0.99999899, respectively. These findings indicated that the combination of 17 microsatellite markers could be useful for efficient and reliable parentage testing and individual identification in polled yak. DISCUSSION Many microsatellite loci have been investigated for cattle paternity testing. Nevertheless, these loci cannot be directly applied to yak identification because the two bovid species have different genomic sequences and organization. A total of 17 loci were selected from 71 microsatellite loci based on efficient amplification, unambiguous genotyping, and high PIC values for polled yaks, and were suitable for parentage analysis in polled yak populations.
Collapse
Affiliation(s)
- Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Xuezhi Ding
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Hongbo Wang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, Gansu, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Wu H, Luo D, Li C, Zhang H, Shunxian A, Zhang Y, Sun C. Chicoric Acid Improves Heart and Blood Responses to Hypobaric Hypoxia in Tibetan Yaks. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:339-355. [PMID: 29433395 DOI: 10.1142/s0192415x18500179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Yak is a wild bovine species living on the Qinghai Tibet Plateau that demonstrates good adaptability to the hypoxic environment. Chicoric acid, a natural phenolic compound, is known as having anti-oxidant, antiviral, anti-inflammatory and analgesic properties. However, its effect on hypoxia adaptability of yak is still unclear. In this study 40 yaks were selected that were of similar age, parity and weight, and divided into the control group and experimental groups 1, 2, 3, randomly. Results showed that chicoric acid significantly improved RBC, HGB, and WBC. There are significantly beneficial effects to increasing total protein contents ([Formula: see text]): all treatments increased HDL-C contents, and supplementations 100[Formula: see text]mg/h significantly decreased the content of TG on the 60th day ([Formula: see text]). Contents of the serum related enzymes like ALP, GOP and GPT showed varying degrees of change, but no significant differences and the indexes of anti-oxidant capacity (T-AOC and GSH-Px) were significantly improved ([Formula: see text]), but MDA was decreased ([Formula: see text]) under the action of the chicoric acid. Hypoxia-inducible factor in serum such as HIF-2[Formula: see text], EPO, ROS, Fe[Formula: see text] and Tf are all significantly decreased ([Formula: see text]). The myocardial mitochondrial parameters mtDNA, UCP2, PGC1-[Formula: see text], NRF1 and mitochondrial complexes were altered remarkably. Some indicators of glucose metabolism presented variation trends. Taken together, chicoric acid has shown a positive effect on the adaptive ability of yak in high altitude, hypoxic environment in plateau areas. Our findings reported a new potential means to enhance immunity and inflammatory response and improve the anti-oxidant capacity.
Collapse
Affiliation(s)
- Hua Wu
- * College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.,† College of Agriculture and Animal Husbandry of Qinghai University, Xining, Qinghai 810016, P. R. China
| | - Dan Luo
- * College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Changxing Li
- * College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.,† College of Agriculture and Animal Husbandry of Qinghai University, Xining, Qinghai 810016, P. R. China
| | - Hui Zhang
- † College of Agriculture and Animal Husbandry of Qinghai University, Xining, Qinghai 810016, P. R. China
| | - A Shunxian
- † College of Agriculture and Animal Husbandry of Qinghai University, Xining, Qinghai 810016, P. R. China
| | - Yuanxin Zhang
- ‡ Qinghai Datong Cattle Farm, Xining, Qinghai 810102, P. R. China
| | - Chao Sun
- * College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
14
|
Lüneburg N, Siques P, Brito J, De La Cruz JJ, León-Velarde F, Hannemann J, Ibanez C, Böger RH. Long-Term Intermittent Exposure to High Altitude Elevates Asymmetric Dimethylarginine in First Exposed Young Adults. High Alt Med Biol 2017; 18:226-233. [PMID: 28453332 PMCID: PMC5649417 DOI: 10.1089/ham.2016.0123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lüneburg, Nicole, Patricia Siques, Julio Brito, Juan José De La Cruz, Fabiola León-Velarde, Juliane Hannemann, Cristian Ibanez, and Rainer Böger. Long-term intermittent exposure to high altitude elevates asymmetric dimethylarginine in first exposed young adults. High Alt Med Biol. 18:226–233, 2017.—Hypoxia-induced dysregulation of pulmonary and cerebral circulation may be related to an impaired nitric oxide (NO) pathway. We investigated the effect of chronic intermittent hypobaric hypoxia (CIH) on metabolites of the NO pathway. We measured asymmetric and symmetric dimethylarginine (ADMA and SDMA) and monomethyl-L-arginine (L-NMMA) and assessed their associations with acclimatization in male draftees (n = 72) undergoing CIH shifts at altitude (3550 m) during 3 months. Sixteen Andean natives living at altitude (3675 m) (chronic hypobaric hypoxia [CH]) were included for comparison. In CIH, ADMA and L-NMMA plasma concentrations increased from 1.14 ± 0.04 to 1.95 ± 0.09 μmol/L (mean ± SE) and from 0.22 ± 0.07 to 0.39 ± 0.03 μmol/L, respectively, (p < 0.001 for both) after 3 months, whereas SDMA did not change. The concentrations of ADMA and L-NMMA were higher in CH (3.48 ± 0.07, 0.53 ± 0.08 μmol/L; p < 0.001) as compared with CIH. In both CIH and CH, ADMA correlated with hematocrit (r2 = 0.07, p < 0.05; r2 = 0.26; p < 0.01). In CIH, an association of ADMA levels with poor acclimatization status was observed. We conclude that the endogenous NO synthase inhibitors, ADMA and L-NMMA, are elevated in hypoxia. This may contribute to impaired NO production at altitude and may also be predictive of altitude-associated health impairment.
Collapse
Affiliation(s)
- Nicole Lüneburg
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patricia Siques
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile
| | - Julio Brito
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile
| | - Juan José De La Cruz
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fabiola León-Velarde
- Department of Biological and Physiological Sciences, Facultad de Ciencias y Filosofía/IIA, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Juliane Hannemann
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cristian Ibanez
- Institute of Health Studies, Universidad Arturo Prat, Iquique, Chile
| | - Rainer H. Böger
- Department of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|