1
|
Kumari K, Sinha A, Sharma PK, Singh RP. In-depth genome and comparative genome analysis of a metal-resistant environmental isolate Pseudomonas aeruginosa S-8. Front Cell Infect Microbiol 2025; 15:1511507. [PMID: 40083908 PMCID: PMC11903748 DOI: 10.3389/fcimb.2025.1511507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
The present study aimed to identify the mechanisms underlying the survival of an environmental bacterium originally isolated from the waste-contaminated soil of Jhiri, Ranchi, India. Based on 16S rRNA, ANI (average nucleotide identity), and BLAST Ring Image Generator (BRIG) analysis, the isolated strain was identified as Pseudomonas aeruginosa. The present study extends the characterization of this bacterium through genomic and comparative genomic analysis to understand the genomic features pertaining to survival in stressed environments. The sequencing of the bacterium at Illumina HiSeq platform revealed that it possessed a 6.8 Mb circular chromosome with 65.9% GC content and 63 RNAs sequence. The genome also harbored several genes associated to plant growth promotion i.e. phytohormone and siderophore production, phosphate solubilization, motility, and biofilm formation, etc. The genomic analysis with online tools unraveled the various genes belonging to the bacterial secretion system, antibiotic resistance, virulence, and efflux pumps, etc. The presence of biosynthetic gene clusters (BCGs) indicated that large numbers of genes were associated to non-ribosomal synthesized peptide synthetase, polyketide synthetase, and other secondary metabolite production. Additionally, its genomes encode various CAZymes such as glycoside hydrolases and other genes associated with lignocellulose breakdown, suggesting that strain S-8 have strong biomass degradation potential. Furthermore, pan-genome analysis based on a comparison of whole genomes showed that core genome represented the largest part of the gene pools. Therefore, genome and comparative genome analysis of Pseudomonas strains is valuable for understanding the mechanism of resistance to metal stress, genome evolution, HGT events, and therefore, opens a new perspective to exploit a newly isolated bacterium for biotechnological applications.
Collapse
Affiliation(s)
- Kiran Kumari
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, Jharkhand, India
| | - Ayushi Sinha
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Parva Kumar Sharma
- Department of Plant Sciences and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Rajnish Prakash Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| |
Collapse
|
2
|
Bonacolta AM, Visscher PT, Del Campo J, White Iii RA. The eukaryome of modern microbialites reveals distinct colonization across aquatic ecosystems. NPJ Biofilms Microbiomes 2024; 10:78. [PMID: 39227595 PMCID: PMC11372052 DOI: 10.1038/s41522-024-00547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
Protists are less studied for their role and diversity in ecosystems. Notably, protists have played and still play an important role in microbialites. Microbialites, or lithified microbial mats, represent the oldest evidence of fossil biofilms (~3.5 Gyr). Modern microbialites may offer a unique proxy to study the potential role of protists within a geological context. We examined protist diversity in freshwater (Kelly and Pavilion Lake in British Columbia, Canada) and marine (Highborne Cay, Bahamas) to hypersaline (Shark Bay, Australia) microbialites to decipher their geomicrobiological role. The freshwater microbialite communities were clearly distinct from their marine and hypersaline counterparts. Chlorophytes had higher numerical abundance in freshwater microbialites; whereas pennate diatoms dominated numerically in marine microbialites. Despite the differences, protists across ecosystems may have adopted similar roles and functions. We suggest a consistent biogeochemical role of protists across microbialites globally; but that salinity may shape protist composition and evolution in these ecosystems.
Collapse
Affiliation(s)
- Anthony M Bonacolta
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Pieter T Visscher
- Department of Marine Sciences and Earth Sciences, University of Connecticut, Storrs, CT, USA
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Javier Del Campo
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, USA.
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain.
| | - Richard Allen White Iii
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia.
- North Carolina Research Center (NCRC), Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Kannapolis, NC, USA.
- Computational Intelligence to Predict Health and Environmental Risks (CIPHER), Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
3
|
Reid RP, Suosaari EP, Oehlert AM, Pollier CGL, Dupraz C. Microbialite Accretion and Growth: Lessons from Shark Bay and the Bahamas. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:487-511. [PMID: 38231736 DOI: 10.1146/annurev-marine-021423-124637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Microbialites provide geological evidence of one of Earth's oldest ecosystems, potentially recording long-standing interactions between coevolving life and the environment. Here, we focus on microbialite accretion and growth and consider how environmental and microbial forces that characterize living ecosystems in Shark Bay and the Bahamas interact to form an initial microbialite architecture, which in turn establishes distinct evolutionary pathways. A conceptual three-dimensional model is developed for microbialite accretion that emphasizes the importance of a dynamic balance between extrinsic and intrinsic factors in determining the initial architecture. We then explore how early taphonomic and diagenetic processes modify the initial architecture, culminating in various styles of preservation in the rock record. The timing of lithification of microbial products is critical in determining growth patterns and preservation potential. Study results have shown that all microbialites are not created equal; the unique evolutionary history of an individual microbialite matters.
Collapse
Affiliation(s)
- R Pamela Reid
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA; , ,
- Bahamas Marine EcoCentre, Miami, Florida, USA;
| | - Erica P Suosaari
- Bahamas Marine EcoCentre, Miami, Florida, USA;
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Bush Heritage Australia, Melbourne, Victoria, Australia
| | - Amanda M Oehlert
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA; , ,
| | - Clément G L Pollier
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA; , ,
| | - Christophe Dupraz
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden;
| |
Collapse
|
4
|
Tichy J, Waldherr M, Ortbauer M, Graf A, Sipek B, Jembrih-Simbuerger D, Sterflinger K, Piñar G. Pretty in pink? Complementary strategies for analysing pink biofilms on historical buildings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166737. [PMID: 37659529 DOI: 10.1016/j.scitotenv.2023.166737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Salt-weathering is a deterioration mechanism affecting building materials that results from repetitive cycles of salt crystallisation-dissolution in the porous mineral network under changing environmental conditions, causing damage to surfaces. However, an additional biodeterioration phenomenon frequently associated with salt efflorescence is the appearance of coloured biofilms, comprising halotolerant/halophilic microorganisms, containing carotenoid pigments that cause pinkish patinas. In this work, two Austrian historical salt-weathered buildings showing pink biofilms, the St. Virgil's Chapel and the Charterhouse Mauerbach, were investigated. Substrate chemistry (salt concentration/composition) was analysed by ion chromatography and X-ray diffraction to correlate these parameters with the associated microorganisms. Microbiomes were analysed by sequencing full-length 16S rRNA amplicons using Nanopore technology. Data demonstrates that microbiomes are not only influenced by salt concentration, but also by its chemical composition. The chapel showed a high overall halite (NaCl) concentration, but the factor influencing the microbiome was the presence/absence of K+. The K+ areas showed a dominance of Aliifodinibius and Salinisphaera species, capable of tolerating high salt concentrations through the "salt-in" strategy by transporting K+ into cells. Conversely, areas without K+ showed a community shift towards Halomonas species, which favour the synthesis of compatible solutes for salt tolerance. In the charterhouse, the main salts were sulphates. In areas with low concentrations, Rubrobacter species dominated, while in areas with high concentrations, Haloechinothrix species did. Among archaea, Haloccoccus species were dominant in all samples, except at high sulphate concentrations, where Halalkalicoccus prevailed. Finally, the biological pigments visible in both buildings were analysed by Raman spectroscopy, showing the same spectra in all areas investigated, regardless of the building and the microbiomes, demonstrating the presence of carotenoids in the pink biofilms. Comprehensive information on the factors affecting the microbiome associated with salt-weathered buildings should provide the basis for selecting the most appropriate desalination treatment to remove both salt efflorescence and associated biofilms.
Collapse
Affiliation(s)
- Johannes Tichy
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria.
| | - Monika Waldherr
- Department of Applied Life Sciences/Bioengineering/Bioinformatics, FH Campus Wien, Favoritenstrasse 226, A-1100 Vienna, Austria
| | - Martin Ortbauer
- Institute for Conservation - Restoration, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Alexandra Graf
- Department of Applied Life Sciences/Bioengineering/Bioinformatics, FH Campus Wien, Favoritenstrasse 226, A-1100 Vienna, Austria
| | - Beate Sipek
- Institute for Conservation - Restoration, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Dubravka Jembrih-Simbuerger
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Katja Sterflinger
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| | - Guadalupe Piñar
- Institute for Natural Sciences and Technology in the Art, Academy of Fine Arts Vienna, Schillerplatz 3, A-1010 Vienna, Austria
| |
Collapse
|
5
|
Najjari A, Boussetta A, Youssef N, Linares-Pastén JA, Mahjoubi M, Belloum R, Sghaier H, Cherif A, Ouzari HI. Physiological and genomic insights into abiotic stress of halophilic archaeon Natrinema altunense 4.1R isolated from a saline ecosystem of Tunisian desert. Genetica 2023; 151:133-152. [PMID: 36795306 PMCID: PMC9995536 DOI: 10.1007/s10709-023-00182-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Halophilic archaea are polyextremophiles with the ability to withstand fluctuations in salinity, high levels of ultraviolet radiation, and oxidative stress, allowing them to survive in a wide range of environments and making them an excellent model for astrobiological research. Natrinema altunense 4.1R is a halophilic archaeon isolated from the endorheic saline lake systems, Sebkhas, located in arid and semi-arid regions of Tunisia. It is an ecosystem characterized by periodic flooding from subsurface groundwater and fluctuating salinities. Here, we assess the physiological responses and genomic characterization of N. altunense 4.1R to UV-C radiation, as well as osmotic and oxidative stresses. Results showed that the 4.1R strain is able to survive up to 36% of salinity, up to 180 J/m2 to UV-C radiation, and at 50 mM of H2O2, a resistance profile similar to Halobacterium salinarum, a strain often used as UV-C resistant model. In order to understand the genetic determinants of N. altunense 4.1R survival strategy, we sequenced and analyzed its genome. Results showed multiple gene copies of osmotic stress, oxidative stress, and DNA repair response mechanisms supporting its survivability at extreme salinities and radiations. Indeed, the 3D molecular structures of seven proteins related to responses to UV-C radiation (excinucleases UvrA, UvrB, and UvrC, and photolyase), saline stress (trehalose-6-phosphate synthase OtsA and trehalose-phosphatase OtsB), and oxidative stress (superoxide dismutase SOD) were constructed by homology modeling. This study extends the abiotic stress range for the species N. altunense and adds to the repertoire of UV and oxidative stress resistance genes generally known from haloarchaeon.
Collapse
Affiliation(s)
- Afef Najjari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisie
| | - Ayoub Boussetta
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisie
| | - Noha Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Javier A Linares-Pastén
- Department of Biotechnology, Faculty of Engineering, Lunds Tekniska Högskola (LTH), Lund University, P. O. Box 124, 22100, Lund, Sweden.
| | - Mouna Mahjoubi
- University of Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Rahma Belloum
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisie
| | - Haitham Sghaier
- Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Ariana, Tunisia
| | - Ameur Cherif
- University of Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Hadda Imene Ouzari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisie
| |
Collapse
|
6
|
Zhang M, Zhang T, Zhou L, Lou W, Zeng W, Liu T, Yin H, Liu H, Liu X, Mathivanan K, Praburaman L, Meng D. Soil microbial community assembly model in response to heavy metal pollution. ENVIRONMENTAL RESEARCH 2022; 213:113576. [PMID: 35710022 DOI: 10.1016/j.envres.2022.113576] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Heavy metal pollution affected the stability and function of soil ecosystem. The impact of heavy metals on soil microbial community and the interaction of microbial community has been widely studied, but little was known about the response of community assembly to the heavy metal pollution. In this study, we collected 30 soil samples from non (CON), moderately (CL) and severely (CH) contaminated fields. The prokaryotic community was studied using high-throughput Illumina sequencing of 16s rRNA gene amplicons, and community assembly were quantified using phylogenetic-bin-based null approach (iCAMP). Results showed that diversity and composition of both bacterial and archaeal community changed significantly in response to heavy metal pollution. The microbial community assembly tended to be more deterministic with the increase of heavy metal concentration. Among the assembly processes, the relative importance of homogeneous selection (deterministic process) increased significantly (increased by 16.2%), and the relative importance of drift and dispersal limitation (stochastic process) decreased significantly (decreased by 11.4% and 5.4%, respectively). The determinacy of bacterial and archaeal community assembly also increased with heavy metal stress, but the assembly models were different. The deterministic proportion of microorganisms tolerant to heavy metals, such as Thiobacillus, Euryarchaeota and Crenarchaeota (clustered in bin 32, bin59 and bin60, respectively) increased, while the stochastic proportion of microorganisms sensitive to heavy metals, such as Koribacteraceae (clustered in bin23) increased. Therefore, the heavy metal stress made the prokaryotic community be deterministic, however, the effects on the assembly process of different microbial groups differed obviously.
Collapse
Affiliation(s)
- Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Hunan Urban and Rural Environmental Construction Co., Ltd, Changsha, 410118, China
| | - Lei Zhou
- Beijing Research Institute of Chemical Engineering and Metallurgy, 101148, China
| | - Wei Lou
- Hunan Heqing Environmental Technology Co., Ltd, 410221, China
| | - Weiai Zeng
- Changsha Tobacco Company of Hunan Province, Changsha, 410011, China
| | - Tianbo Liu
- Tobacco Research Institute of Hunan Province, Changsha, 410004, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China
| | - Krishnamurthy Mathivanan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Loganathan Praburaman
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China; Key Laboratory of Biometallurgy, Ministry of Education, Changsha, 410083, China.
| |
Collapse
|
7
|
Genomic analysis of heavy metal-resistant Halobacterium salinarum isolated from Sfax solar saltern sediments. Extremophiles 2022; 26:25. [PMID: 35842547 PMCID: PMC9288257 DOI: 10.1007/s00792-022-01273-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023]
Abstract
The draft genome sequences of five archaeal strains, isolated from Sfax solar saltern sediments and affiliated with Halobacterium salinarum, were analyzed in order to reveal their adaptive strategies to live in hypersaline environments polluted with heavy metals. The genomes of the strains (named AS1, AS2, AS8, AS11, and AS19) are found to contain 2,060,688; 2,467,461; 2,236,624; 2,432,692; and 2,428,727 bp respectively, with a G + C content of 65.5, 66.0, 67.0, and 66.2%. The majority of these genes (43.69–55.65%) are annotated as hypothetical proteins. Growth under osmotic stress is possible by genes coding for potassium uptake, sodium efflux, and kinases, as well as stress proteins, DNA repair systems, and proteasomal components. These strains harbor many genes responsible for metal transport/resistance, such as: copper-translocating P-type ATPases, ABC transporter, and cobalt-zinc-cadmium resistance protein. In addition, detoxification enzymes and secondary metabolites are also identified. The results show strain AS1, as compared to the other strains, is more adapted to heavy metals and may be used in the bioremediation of multi-metal contaminated environments. This study highlights the presence of several commercially valuable bioproducts (carotenoids, retinal proteins, exopolysaccharide, stress proteins, squalene, and siderophores) and enzymes (protease, sulfatase, phosphatase, phosphoesterase, and chitinase) that can be used in many industrial applications.
Collapse
|
8
|
Jia J, Liu M, Feng L, Wang Z. Comparative genomic analysis reveals the evolution and environmental adaptation of Acinetobacter johnsonii. Gene 2022; 808:145985. [PMID: 34600047 DOI: 10.1016/j.gene.2021.145985] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 11/04/2022]
Abstract
Genome plasticity is a key determinant that Acinetobacter johnsonii could widely distribute in natural and clinical environments. However, little attention has been paid to figure out the changes in the genome during A. johnsonii's evolution. Here, a comparative genomic analysis of A. johnsonii isolated from clinical and environmental sources was conducted. In this study, we found A. johnsonii has an open pan-genome and has great adaptability to different environments. Based on the results of the phylogenetic tree, ANI value and the distribution of accessory genes, we found that strains from the same habitat had a high degree of similarity. Though genes associated with the fundamental process were mostly conserved in evolution, clinical-derived isolates accumulate more genes associated with translational modification, β-lactamase and defense mechanisms, whereas environmental-derived isolates enriched more genes related to substances degradation. In addition, clinical-derived strains harbored some "strong" virulence islands and resistance islands. This study highlights the evolutionary relationship of A. johnsonii isolates from clinical and environmental sources.
Collapse
Affiliation(s)
- Jia Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyu Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Leilei Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Wang S, Narsing Rao MP, Wei D, Sun L, Fang BZ, Li WQ, Yu LH, Li WJ. Complete genome sequencing and comparative genome analysis of the extremely halophilic archaea, Haloterrigena daqingensis. Biotechnol Appl Biochem 2021; 69:1482-1488. [PMID: 34245190 DOI: 10.1002/bab.2220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/04/2021] [Indexed: 11/10/2022]
Abstract
In the present study, we report the complete genome sequencing of Haloterrigena daqingensis species. The genome of H. daqingensis JX313T consisted of a circular chromosome with three plasmids. The genome size and G+C content were estimated to be 3835796 bp and 61.7%, respectively. A total of 4158 genes were predicted with six rRNAs and 45 tRNAs. Metabolic pathway analysis suggests that H. daqingensis JX313T codes for all the necessary genes responsible to sustain its life at saline environment. The pan-genome analysis suggests that the number of singleton-gene between H. daqingensis and other Haloterrigena species varied. The study not only helps us understand H. daqingensis strategy for dealing with high stress, but it also provides an overview of its genomic makeup.
Collapse
Affiliation(s)
- Shuang Wang
- Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Key Lab of Soil Environment and Plant Nutrition of Heilongjiang Province, Heilongjiang Fertilizer Engineering Research Center, Harbin, PR China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Lei Sun
- Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Key Lab of Soil Environment and Plant Nutrition of Heilongjiang Province, Heilongjiang Fertilizer Engineering Research Center, Harbin, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Wei-Qun Li
- Institute of Soil Fertilizer and Environment Resources, Heilongjiang Academy of Agricultural Sciences, Key Lab of Soil Environment and Plant Nutrition of Heilongjiang Province, Heilongjiang Fertilizer Engineering Research Center, Harbin, PR China
| | - Li-Hong Yu
- Liaoning Green Agricultural Technology Center, Shen Yang, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
10
|
Wambua S, Gourlé H, de Villiers EP, Karlsson-Lindsjö O, Wambiji N, Macdonald A, Bongcam-Rudloff E, de Villiers S. Cross-Sectional Variations in Structure and Function of Coral Reef Microbiome With Local Anthropogenic Impacts on the Kenyan Coast of the Indian Ocean. Front Microbiol 2021; 12:673128. [PMID: 34248882 PMCID: PMC8260691 DOI: 10.3389/fmicb.2021.673128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Coral reefs face an increased number of environmental threats from anthropomorphic climate change and pollution from agriculture, industries and sewage. Because environmental changes lead to their compositional and functional shifts, coral reef microbial communities can serve as indicators of ecosystem impacts through development of rapid and inexpensive molecular monitoring tools. Little is known about coral reef microbial communities of the Western Indian Ocean (WIO). We compared taxonomic and functional diversity of microbial communities inhabiting near-coral seawater and sediments from Kenyan reefs exposed to varying impacts of human activities. Over 19,000 species (bacterial, viral and archaeal combined) and 4,500 clusters of orthologous groups of proteins (COGs) were annotated. The coral reefs showed variations in the relative abundances of ecologically significant taxa, especially copiotrophic bacteria and coliphages, corresponding to the magnitude of the neighboring human impacts in the respective sites. Furthermore, the near-coral seawater and sediment metagenomes had an overrepresentation of COGs for functions related to adaptation to diverse environments. Malindi and Mombasa marine parks, the coral reef sites closest to densely populated settlements were significantly enriched with genes for functions suggestive of mitigation of environment perturbations including the capacity to reduce intracellular levels of environmental contaminants and repair of DNA damage. Our study is the first metagenomic assessment of WIO coral reef microbial diversity which provides a much-needed baseline for the region, and points to a potential area for future research toward establishing indicators of environmental perturbations.
Collapse
Affiliation(s)
- Sammy Wambua
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya.,Department of Biological Sciences, Pwani University, Kilifi, Kenya
| | - Hadrien Gourlé
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Etienne P de Villiers
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Oskar Karlsson-Lindsjö
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Nina Wambiji
- Kenya Marine and Fisheries Research Institute, Mombasa, Kenya
| | - Angus Macdonald
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Santie de Villiers
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, Kenya.,Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
| |
Collapse
|
11
|
Kırtel O, Versluys M, Van den Ende W, Toksoy Öner E. Fructans of the saline world. Biotechnol Adv 2018; 36:1524-1539. [DOI: 10.1016/j.biotechadv.2018.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/08/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
|
12
|
Babilonia J, Conesa A, Casaburi G, Pereira C, Louyakis AS, Reid RP, Foster JS. Comparative Metagenomics Provides Insight Into the Ecosystem Functioning of the Shark Bay Stromatolites, Western Australia. Front Microbiol 2018; 9:1359. [PMID: 29988640 PMCID: PMC6027182 DOI: 10.3389/fmicb.2018.01359] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022] Open
Abstract
Stromatolites are organosedimentary build-ups that have formed as a result of the sediment trapping, binding and precipitating activities of microbes. Today, extant systems provide an ideal platform for understanding the structure, composition, and interactions between stromatolite-forming microbial communities and their respective environments. In this study, we compared the metagenomes of three prevalent stromatolite-forming microbial mat types in the Spaven Province of Hamelin Pool, Shark Bay located in Western Australia. These stromatolite-forming mat types included an intertidal pustular mat as well as a smooth and colloform mat types located in the subtidal zone. Additionally, the metagenomes of an adjacent, non-lithifying mat located in the upper intertidal zone were also sequenced for comparative purposes. Taxonomic and functional gene analyses revealed distinctive differences between the lithifying and non-lithifying mat types, which strongly correlated with water depth. Three distinct populations emerged including the upper intertidal non-lithifying mats, the intertidal pustular mats associated with unlaminated carbonate build-ups, and the subtidal colloform and smooth mat types associated with laminated structures. Functional analysis of metagenomes revealed that amongst stromatolite-forming mats there was an enrichment of photosynthesis pathways in the pustular stromatolite-forming mats. In the colloform and smooth stromatolite-forming mats, however, there was an increase in the abundance of genes associated with those heterotrophic metabolisms typically associated with carbonate mineralization, such as sulfate reduction. The comparative metagenomic analyses suggest that stromatolites of Hamelin Pool may form by two distinctive processes that are highly dependent on water depth. These results provide key insight into the potential adaptive strategies and synergistic interactions between microbes and their environments that may lead to stromatolite formation and accretion.
Collapse
Affiliation(s)
- Joany Babilonia
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Ana Conesa
- Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,Genomics of Gene Expression Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Giorgio Casaburi
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Cecile Pereira
- Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States.,EURA NOVA, Marseille, France
| | - Artemis S Louyakis
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - R Pamela Reid
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Jamie S Foster
- Space Life Science Lab, Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
13
|
Sforna MC, Daye M, Philippot P, Somogyi A, van Zuilen MA, Medjoubi K, Gérard E, Jamme F, Dupraz C, Braissant O, Glunk C, Visscher PT. Patterns of metal distribution in hypersaline microbialites during early diagenesis: Implications for the fossil record. GEOBIOLOGY 2017; 15:259-279. [PMID: 27935656 DOI: 10.1111/gbi.12218] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/28/2016] [Indexed: 06/06/2023]
Abstract
The use of metals as biosignatures in the fossil stromatolite record requires understanding of the processes controlling the initial metal(loid) incorporation and diagenetic preservation in living microbialites. Here, we report the distribution of metals and the organic fraction within the lithifying microbialite of the hypersaline Big Pond Lake (Bahamas). Using synchrotron-based X-ray microfluorescence, confocal, and biphoton microscopies at different scales (cm-μm) in combination with traditional geochemical analyses, we show that the initial cation sorption at the surface of an active microbialite is governed by passive binding to the organic matrix, resulting in a homogeneous metal distribution. During early diagenesis, the metabolic activity in deeper microbialite layers slows down and the distribution of the metals becomes progressively heterogeneous, resulting from remobilization and concentration as metal(loid)-enriched sulfides, which are aligned with the lamination of the microbialite. In addition, we were able to identify globules containing significant Mn, Cu, Zn, and As enrichments potentially produced through microbial activity. The similarity of the metal(loid) distributions observed in the Big Pond microbialite to those observed in the Archean stromatolites of Tumbiana provides the foundation for a conceptual model of the evolution of the metal distribution through initial growth, early diagenesis, and fossilization of a microbialite, with a potential application to the fossil record.
Collapse
Affiliation(s)
- M C Sforna
- Geobiosphère Actuelle & Primitive, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
- Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Modena, Italy
| | - M Daye
- Geobiosphère Actuelle & Primitive, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
- Synchrotron Soleil, Gif-sur-Yvette, France
| | - P Philippot
- Geobiosphère Actuelle & Primitive, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
| | - A Somogyi
- Synchrotron Soleil, Gif-sur-Yvette, France
| | - M A van Zuilen
- Geomicrobiologie, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
| | - K Medjoubi
- Synchrotron Soleil, Gif-sur-Yvette, France
| | - E Gérard
- Geomicrobiologie, Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France
| | - F Jamme
- Synchrotron Soleil, Gif-sur-Yvette, France
| | - C Dupraz
- Department of Geological Sciences, Stockholms Universitet, Stockholm, Sweden
| | - O Braissant
- Center for Biomechanics and Biocalorimetry, University of Basel, Basel, Switzerland
| | - C Glunk
- Societe Suisse des Explosifs SA, Brig, Switzerland
| | - P T Visscher
- Department of Marine Sciences, University of Connecticut, Groton, CT, USA
| |
Collapse
|
14
|
Williams TJ, Allen M, Tschitschko B, Cavicchioli R. Glycerol metabolism of haloarchaea. Environ Microbiol 2016; 19:864-877. [PMID: 27768817 DOI: 10.1111/1462-2920.13580] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Haloarchaea are heterotrophic members of the Archaea that thrive in hypersaline environments, often feeding off the glycerol that is produced as an osmolyte by eucaryotic Dunaliella during primary production. In this study we analyzed glycerol metabolism genes in closed genomes of haloarchaea and examined published data describing the growth properties of haloarchaea and experimental data for the enzymes involved. By integrating the genomic data with knowledge from the literature, we derived an understanding of the ecophysiology and evolutionary properties of glycerol catabolic pathways in haloarchaea.
Collapse
Affiliation(s)
- Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Michelle Allen
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Bernhard Tschitschko
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, 2052, New South Wales, Australia
| |
Collapse
|
15
|
Tian X, Zhang Z, Yang T, Chen M, Li J, Chen F, Yang J, Li W, Zhang B, Zhang Z, Wu J, Zhang C, Long L, Xiao J. Comparative Genomics Analysis of Streptomyces Species Reveals Their Adaptation to the Marine Environment and Their Diversity at the Genomic Level. Front Microbiol 2016; 7:998. [PMID: 27446038 PMCID: PMC4921485 DOI: 10.3389/fmicb.2016.00998] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 11/13/2022] Open
Abstract
Over 200 genomes of streptomycete strains that were isolated from various environments are available from the NCBI. However, little is known about the characteristics that are linked to marine adaptation in marine-derived streptomycetes. The particularity and complexity of the marine environment suggest that marine streptomycetes are genetically diverse. Here, we sequenced nine strains from the Streptomyces genus that were isolated from different longitudes, latitudes, and depths of the South China Sea. Then we compared these strains to 22 NCBI downloaded streptomycete strains. Thirty-one streptomycete strains are clearly grouped into a marine-derived subgroup and multiple source subgroup-based phylogenetic tree. The phylogenetic analyses have revealed the dynamic process underlying streptomycete genome evolution, and lateral gene transfer is an important driving force during the process. Pan-genomics analyses have revealed that streptomycetes have an open pan-genome, which reflects the diversity of these streptomycetes and guarantees the species a quick and economical response to diverse environments. Functional and comparative genomics analyses indicate that the marine-derived streptomycetes subgroup possesses some common characteristics of marine adaptation. Our findings have expanded our knowledge of how ocean isolates of streptomycete strains adapt to marine environments. The availability of streptomycete genomes from the South China Sea will be beneficial for further analysis on marine streptomycetes and will enrich the South China Sea's genetic data sources.
Collapse
Affiliation(s)
- Xinpeng Tian
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China
| | - Zhewen Zhang
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Tingting Yang
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of SciencesBeijing, China; University of Chinese Academy of SciencesBeijing, China
| | - Meili Chen
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Jie Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China
| | - Fei Chen
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Jin Yang
- Core Genomic Facility, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Wenjie Li
- Core Genomic Facility, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Zhang Zhang
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Jiayan Wu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China
| | - Lijuan Long
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology - Chinese Academy of Sciences Guangzhou, China
| | - Jingfa Xiao
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics - Chinese Academy of Sciences Beijing, China
| |
Collapse
|
16
|
Wong HL, Ahmed-Cox A, Burns BP. Molecular Ecology of Hypersaline Microbial Mats: Current Insights and New Directions. Microorganisms 2016; 4:microorganisms4010006. [PMID: 27681900 PMCID: PMC5029511 DOI: 10.3390/microorganisms4010006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022] Open
Abstract
Microbial mats are unique geobiological ecosystems that form as a result of complex communities of microorganisms interacting with each other and their physical environment. Both the microorganisms present and the network of metabolic interactions govern ecosystem function therein. These systems are often found in a range of extreme environments, and those found in elevated salinity have been particularly well studied. The purpose of this review is to briefly describe the molecular ecology of select model hypersaline mat systems (Guerrero Negro, Shark Bay, S’Avall, and Kiritimati Atoll), and any potentially modulating effects caused by salinity to community structure. In addition, we discuss several emerging issues in the field (linking function to newly discovered phyla and microbial dark matter), which illustrate the changing paradigm that is seen as technology has rapidly advanced in the study of these extreme and evolutionally significant ecosystems.
Collapse
Affiliation(s)
- Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia.
| | - Aria Ahmed-Cox
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
| | - Brendan Paul Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
17
|
Leuko S, Domingos C, Parpart A, Reitz G, Rettberg P. The Survival and Resistance of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae to Simulated Outer Space Solar Radiation. ASTROBIOLOGY 2015; 15:987-997. [PMID: 26539978 DOI: 10.1089/ast.2015.1310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Solar radiation is among the most prominent stress factors organisms face during space travel and possibly on other planets. Our analysis of three different halophilic archaea, namely Halobacterium salinarum NRC-1, Halococcus morrhuae, and Halococcus hamelinensis, which were exposed to simulated solar radiation in either dried or liquid state, showed tremendous differences in tolerance and survivability. We found that Hcc. hamelinensis is not able to withstand high fluences of simulated solar radiation compared to the other tested organisms. These results can be correlated to significant differences in genomic integrity following exposure, as visualized by random amplified polymorphic DNA (RAPD)-PCR. In contrast to the other two tested strains, Hcc. hamelinensis accumulates compatible solutes such as trehalose for osmoprotection. The addition of 100 mM trehalose to the growth medium of Hcc. hamelinensis improved its survivability following exposure. Exposure of cells in liquid at different temperatures suggests that Hbt. salinarum NRC-1 is actively repairing cellular and DNA damage during exposure, whereas Hcc. morrhuae exhibits no difference in survival. For Hcc. morrhuae, the high resistance against simulated solar radiation may be explained with the formation of cell clusters. Our experiments showed that these clusters shield cells on the inside against simulated solar radiation, which results in better survival rates at higher fluences when compared to Hbt. salinarum NRC-1 and Hcc. hamelinensis. Overall, this study shows that some halophilic archaea are highly resistant to simulated solar radiation and that they are of high astrobiological significance. KEY WORDS Halophiles-Solar radiation-Stress resistance-Survival.
Collapse
Affiliation(s)
- S Leuko
- 1 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Luft- und Raumfahrtmedizin , Abteilung Strahlenbiologie, Arbeitsgruppe Astrobiologie, Köln, Germany
| | - C Domingos
- 2 Faculty of Sciences, University of Lisbon , Lisbon, Portugal
| | - A Parpart
- 1 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Luft- und Raumfahrtmedizin , Abteilung Strahlenbiologie, Arbeitsgruppe Astrobiologie, Köln, Germany
| | - G Reitz
- 1 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Luft- und Raumfahrtmedizin , Abteilung Strahlenbiologie, Arbeitsgruppe Astrobiologie, Köln, Germany
| | - P Rettberg
- 1 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Luft- und Raumfahrtmedizin , Abteilung Strahlenbiologie, Arbeitsgruppe Astrobiologie, Köln, Germany
| |
Collapse
|
18
|
Ruvindy R, White RA, Neilan BA, Burns BP. Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. ISME JOURNAL 2015; 10:183-96. [PMID: 26023869 DOI: 10.1038/ismej.2015.87] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/31/2022]
Abstract
Modern microbial mats are potential analogues of some of Earth's earliest ecosystems. Excellent examples can be found in Shark Bay, Australia, with mats of various morphologies. To further our understanding of the functional genetic potential of these complex microbial ecosystems, we conducted for the first time shotgun metagenomic analyses. We assembled metagenomic next-generation sequencing data to classify the taxonomic and metabolic potential across diverse morphologies of marine mats in Shark Bay. The microbial community across taxonomic classifications using protein-coding and small subunit rRNA genes directly extracted from the metagenomes suggests that three phyla Proteobacteria, Cyanobacteria and Bacteriodetes dominate all marine mats. However, the microbial community structure between Shark Bay and Highbourne Cay (Bahamas) marine systems appears to be distinct from each other. The metabolic potential (based on SEED subsystem classifications) of the Shark Bay and Highbourne Cay microbial communities were also distinct. Shark Bay metagenomes have a metabolic pathway profile consisting of both heterotrophic and photosynthetic pathways, whereas Highbourne Cay appears to be dominated almost exclusively by photosynthetic pathways. Alternative non-rubisco-based carbon metabolism including reductive TCA cycle and 3-hydroxypropionate/4-hydroxybutyrate pathways is highly represented in Shark Bay metagenomes while not represented in Highbourne Cay microbial mats or any other mat forming ecosystems investigated to date. Potentially novel aspects of nitrogen cycling were also observed, as well as putative heavy metal cycling (arsenic, mercury, copper and cadmium). Finally, archaea are highly represented in Shark Bay and may have critical roles in overall ecosystem function in these modern microbial mats.
Collapse
Affiliation(s)
- Rendy Ruvindy
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, New South Wales, Australia
| | | | - Brett Anthony Neilan
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, New South Wales, Australia
| | - Brendan Paul Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, New South Wales, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|