1
|
Joseph A, Umamaheswari S, Vassou MC. Bacterial cellulose: A versatile biomaterial for biomedical application. Carbohydr Res 2025; 552:109350. [PMID: 40090210 DOI: 10.1016/j.carres.2024.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/17/2024] [Accepted: 11/30/2024] [Indexed: 03/18/2025]
Abstract
Bacterial cellulose, a unique biomaterial produced by several bacteria, has garnered biomedical interest to its versatility. This could be used in healthcare packaging, and textiles. Bacterial cellulose extraction is effective and affordable since it lacks lignin and hemicellulose. In wound healing, tissue engineering, drug delivery, and regenerative medicine, this material's unique properties have drawn interest. Bacterial cellulose has been studies as a skin substitute for severe burns and non-woven bandages for persistent wounds. In addition, bacterial cellulose has been used to make artificial skin, blood arteries, and wound dressings. Bacterial cellulose is ideal for biopolymer production due to its clean chemical composition, nano-fibrillar structure, and crystalline characteristics. This review explores the processing, content, characteristics, and applications of bacterial cellulose, revealing its function in tissue regeneration and disease resistance. Through careful inquiry and analysis, this work seeks to comprehend bacterial cellulose and its impact on biomedical research and technology.
Collapse
Affiliation(s)
- Anju Joseph
- Department of Zoology, Thanthai Periyar Government Arts and Science College, Affiliated to Bharathidasan University, Tiruchirapalli, Tamil Nadu, India
| | - S Umamaheswari
- Controller of Examinations, Tamil Nadu Open University, Tamil Nadu, India.
| | - Miriam Cecilia Vassou
- Department of Zoology, Thanthai Periyar Government Arts and Science College, Affiliated to Bharathidasan University, Tiruchirapalli, Tamil Nadu, India
| |
Collapse
|
2
|
Rebello S, Deepak A, Chandrababu K, Aneesh EM, Baby Chakrapani PS, Jisha MS. Microbial consortia-derived cellulose biomaterial: Synthesis, characterization, and utility in neural tissue regeneration. Int J Biol Macromol 2025; 288:138719. [PMID: 39672435 DOI: 10.1016/j.ijbiomac.2024.138719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Therapeutic application of bacterial cellulose, a polymer produced by fermentative growth of bacteria, is often challenged by low yields and absence of high yielding strains. The current study reports the synthesis and characterization of bacterial cellulose from a novel microbial consortium of Weissela confusa, Neobacillus drentensis, and Bacillus sp. isolated from mother of vinegar and identified by 16S rDNA typing. The bacterial cellulose was characterized by Scanning electron microscopy (SEM), Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray diffraction (X-RD), and thermogravimetric analysis (TGA). Optimization of bacterial cellulose production was carried out using modified Hestrin Schramm (HS) Media (with industrial waste glycerol) to attain a maximum yield of 17.2 g/l after 10 days of incubation. The cytotoxicity evaluation of bacterial cellulose in murine neuroblastoma Neuro 2a cell lines showed 90 % cell viability after 48 h. Bacterial cellulose facilitated cell attachment and three-dimensional growth of N2a cells, as confirmed by the SEM analysis. We propose that the bacterial cellulose produced by this consortium could serve as a scaffold for neural stem cell-based therapeutic applications.
Collapse
Affiliation(s)
- Sharrel Rebello
- National Institute of Plant Science Technology, Mahatma Gandhi University, Kottayam, India
| | - Anila Deepak
- Centre for Neuroscience, Cochin University of Science Technology, Kochi, India
| | | | - E M Aneesh
- Department of Zoology, University of Calicut, Thehnipalam, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Cochin University of Science Technology, Kochi, India; Centre for Excellence in Neurodegeneration and Brain Health (CENABH), Kochi, Kerala, India
| | - M S Jisha
- National Institute of Plant Science Technology, Mahatma Gandhi University, Kottayam, India; School of Biosciences, Mahatma Gandhi University, Kottayam, India; School of Food Science Technology, Mahatma Gandhi University, Kottayam, India.
| |
Collapse
|
3
|
Wang L, Zheng H, Wang W, Deng K, Tian H. Physicochemical properties of bacterial cellulose from a strain of Komagataeibacter intermedius and analytical studies on its application. Int J Biol Macromol 2024; 283:137472. [PMID: 39528203 DOI: 10.1016/j.ijbiomac.2024.137472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
A high bacterial cellulose (BC) producing Komagataeibacter intermedius (KEI6 strain) was isolated from water kefir grains in Xinjiang, China. Under optimized culture conditions, the KEI6 strain was able to produce BC (KEI6-BC) up to 7.03 g/L dry weight. In this study, the rheological properties, hydrophilicity, molar mass, and specific surface area of KEI6-BC were systematically evaluated and characterized by three different drying treatments (freeze-drying, drying at 50 °C, and high-pressure homogenization). The results showed that KEI6-BC has a storage modulus of 104 Pa and a weight average molecular weight of 4.19×105 g/mol, which exhibits a randomly curled conformational polymer structure. Interestingly, freeze-dried treated KEI6-BC exhibited a highly uniform fiber distribution as well as good functional group retention, crystallinity, and thermal stability. In addition, we used freeze-dried KEI6-BC as a carrier to load ampicillin sodium and evaluated its antibacterial activity. It was found that freeze-dried KEI6-BC was promising as a carrier for slow drug release as well as exhibited good antibacterial activity after drug loading, demonstrating its great potential as an efficient antibacterial composite film.
Collapse
Affiliation(s)
- Liang Wang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, PR China.
| | - Huanhuan Zheng
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, PR China
| | - Wenhao Wang
- School of Materials Science and Engineering, Dalian Jiaotong University, Huanghe Road 794, Dalian 116028, PR China
| | - Kaiwen Deng
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, PR China
| | - Huimin Tian
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, PR China
| |
Collapse
|
4
|
Mastrodimos M, Jain S, Badv M, Shen J, Montazerian H, Meyer CE, Annabi N, Weiss PS. Human Skeletal Muscle Myoblast Culture in Aligned Bacterial Nanocellulose and Commercial Matrices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47150-47162. [PMID: 39206938 PMCID: PMC11403597 DOI: 10.1021/acsami.4c07612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Bacterial nanocellulose (BNC) is a durable, flexible, and dynamic biomaterial capable of serving a wide variety of fields, sectors, and applications within biotechnology, healthcare, electronics, agriculture, fashion, and others. BNC is produced spontaneously in carbohydrate-rich bacterial culture media, forming a cellulosic pellicle via a nanonetwork of fibrils extruded from certain genera. Herein, we demonstrate engineering BNC-based scaffolds with tunable physical and mechanical properties through postprocessing. Human skeletal muscle myoblasts (HSMMs) were cultured on these scaffolds, and in vitro electrical stimulation was applied to promote cellular function for tissue engineering applications. We compared physiologic maturation markers of human skeletal muscle myoblast development using a 2.5-dimensional culture paradigm in fabricated BNC scaffolds, compared to two-dimensional (2D) controls. We demonstrate that the culture of human skeletal muscle myoblasts on BNC scaffolds developed under electrical stimulation produced highly aligned, physiologic morphology of human skeletal muscle myofibers compared to unstimulated BNC and standard 2D culture. Furthermore, we compared an array of metrics to assess the BNC scaffold in a rigorous head-to-head study with commercially available, clinically approved matrices, Kerecis Omega3 Wound Matrix (Marigen) and Phoenix as well as a gelatin methacryloyl (GelMA) hydrogel. The BNC scaffold outcompeted industry standard matrices as well as a 20% GelMA hydrogel in durability and sustained the support of human skeletal muscle myoblasts in vitro. This work offers a robust demonstration of BNC scaffold cytocompatibility with human skeletal muscle cells and sets the basis for future work in healthcare, bioengineering, and medical implant technological development.
Collapse
Affiliation(s)
- Melina Mastrodimos
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Saumya Jain
- Department
of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Maryam Badv
- Department
of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jun Shen
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Hossein Montazerian
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Terasaki
Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Claire E. Meyer
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Nasim Annabi
- Department
of Bioengineering, University of California,
Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- California
NanoSystems Institute, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Department
of Bioengineering, University of California,
Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
- Department
of Materials Science and Engineering, University
of California, Los Angeles, Los
Angeles, California 90095, United States
- Department
of Chemistry & Biochemistry, University
of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
5
|
Selvaraj S, Gurumurthy K. Metagenomic, organoleptic profiling, and nutritional properties of fermented kombucha tea substituted with recycled substrates. Front Microbiol 2024; 15:1367697. [PMID: 38873151 PMCID: PMC11169636 DOI: 10.3389/fmicb.2024.1367697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024] Open
Abstract
Kombucha fermentation yields a diverse range of beneficial macro and micronutrients. In our study, we examined the metabolites, antioxidant activity, organoleptic characteristics, and nutritional attributes of traditionally prepared kombucha tea, using black tea and sugar (control) as substrates, and compared them with tea made from tea dust and blackstrap molasses (test). Kombucha tea crafted from functional raw materials exhibited enhanced sensory qualities and improved health-promoting properties. The levels of tannins, flavonoids, and phenols play a crucial role in determining the antioxidant activity of kombucha tea. Using the DPPH and FRAP methods, we investigated the antioxidant activity throughout the fermentation period, ranging from day 0 to day 12, under optimized conditions. The results consistently demonstrated an initial increase in antioxidant activity from day 0 to 6, followed by a decline from day 6 to 12. Notably, statistical analysis revealed that the antioxidant activity of the test sample was significantly better (p > 0.001) compared to the control sample. The nutritional content of the kombucha from day 6 of the test sample is higher than the control sample provided sugars (fructose 0.4 ± 0.1, glucose 0.7 ± 0.1, sucrose 1.4 ± 0.1) g/100 mL, minerals (calcium, 19.4 ± 0.15, iron 23.1 ± 0.25, and potassium 28.3 ± 0.25) mg/100 mL, vitamins (B1 0.58 ± 0.01, B2 0.30 ± 0.02, B3 0.33 ± 0.02, B6 0.75 ± 0.02, B9 0.19 ± 0.03, B12 0.9 ± 0.03, and C 1.38 ± 0.06) mg/100 mL, sodium 4.35 ± 0.25 mg/100 mL, calories 14.85 ± 0.25 mg/100 mL, carbohydrates 3.135 ± 0.12, and acids (acetic acid 4.20 ± 0.02, glucuronic acid 1.78 ± 0.02) mg/100 mL on day 12. The predominant microbial species identified in both control and test samples included Komagataeibacter rhaeticus, Gluconobacter oxydans, Brettanomyces bruxellensis, and Zygosaccharomyces bailli, each with varying dominance levels. These microorganisms play essential roles in metabolizing sugars, generating acids, and contributing to the distinctive flavor profile of kombucha. Sensory evaluations of the control and test samples were analyzed, and the overall preference was 88% for the test sample with tea dust and molasses. The sensory characteristics of the test sample included a fruity smell (41%), fizzy texture (66%), bright color (47%), and a fruity taste (67%), with overall acceptability (56%) rating it as excellent. Our research contributes to a deeper understanding of the interplay between raw materials, microbial composition, and the resulting composition of bioactive compounds.
Collapse
Affiliation(s)
- Suriyapriya Selvaraj
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Kalaichelvan Gurumurthy
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
6
|
Núñez D, Oyarzún P, Cáceres R, Elgueta E, Gamboa M. Citrate-buffered Yamanaka medium allows to produce high-yield bacterial nanocellulose in static culture using Komagataeibacter strains isolated from apple cider vinegar. Front Bioeng Biotechnol 2024; 12:1375984. [PMID: 38812914 PMCID: PMC11133569 DOI: 10.3389/fbioe.2024.1375984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Bacterial nanocellulose (BNC) is a sustainable, renewable, and eco-friendly nanomaterial, which has gained great attentions in both academic and industrial fields. Two bacterial nanocellulose-producing strains (CVV and CVN) were isolated from apple vinegar sources, presenting high 16S rRNA gene sequence similarities (96%-98%) with Komagataeibacter species. The biofilm was characterized by scanning electron microscopy (SEM), revealing the presence of rod-shaped bacteria intricately embedded in the polymeric matrix composed of nanofibers of bacterial nanocellulose. FTIR spectrum and XRD pattern additionally confirmed the characteristic chemical structure associated with this material. The yields and productivities achieved during 10 days of fermentation were compared with Komagataeibacter xylinus ATCC 53524, resulting in low levels of BNC production. However, a remarkable increase in the BNC yield was achieved for CVV (690% increase) and CVN (750% increase) strains at day 6 of the fermentation upon adding 22 mM citrate buffer into the medium. This effect is mainly attributed to the buffering capacity of the modified Yakamana medium, which allowed to maintain pH close to 4.0 until day 6, though in combination with additional factors including stimulation of the gluconeogenesis pathway and citrate assimilation as a carbon source. In addition, the productivities determined for both isolated strains (0.850 and 0.917 g L-1 d-1) compare favorably to previous works, supporting current efforts to improve fermentation performance in static cultures and the feasibility of scaling-up BNC production in these systems.
Collapse
Affiliation(s)
- Dariela Núñez
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Patricio Oyarzún
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción, Chile
| | - Rodrigo Cáceres
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Elizabeth Elgueta
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Maribet Gamboa
- Centro de Investigación en Biodiversidad y Ambientes Sustentables (CIBAS), Universidad Católica de la Santísima Concepción, Concepción, Chile
- Departamento de Ecología, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
7
|
Hou S, Xia Z, Pan J, Wang N, Gao H, Ren J, Xia X. Bacterial Cellulose Applied in Wound Dressing Materials: Production and Functional Modification - A Review. Macromol Biosci 2024; 24:e2300333. [PMID: 37750477 DOI: 10.1002/mabi.202300333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/12/2023] [Indexed: 09/27/2023]
Abstract
In recent years, the development of new type wound dressings has gradually attracted more attention. Bacterial cellulose (BC) is a natural polymer material with various unique properties, such as ultrafine 3D nanonetwork structure, high water retention capacity, and biocompatibility. These properties allow BC to be used independently or in combination with different components (such as biopolymers and nanoparticles) to achieve diverse effects. This means that BC has great potential as a wound dressing. However, systematic summaries for the production and commercial application of BC-based wound dressings are still lacking. Therefore, this review provides a detailed introduction to the production fermentation process of BC, including various production strains and their biosynthetic mechanisms. Subsequently, with regard to the functional deficiencies of bacterial cellulose as a wound dressing, recent research progress in this area is enumerated. Finally, prospects are discussed for the low-cost production and high-value-added product development of BC-based wound dressings.
Collapse
Affiliation(s)
- Shuaiwen Hou
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Zhaopeng Xia
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jiajun Pan
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Ning Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hanchao Gao
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Jingli Ren
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Xuekui Xia
- Shandong Provincial Key Laboratory for Bio-Manufacturing, Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
8
|
Yang Y, Zhou B, Yu L, Song G, Ge J, Du R. Biosynthesis and characterization of antibacterial bacterial cellulose composite membrane composed of montmorillonite and exopolysaccharides. Int J Biol Macromol 2023; 253:127477. [PMID: 37863143 DOI: 10.1016/j.ijbiomac.2023.127477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Bacterial cellulose (BC), as a natural renewable polymer material, has the advantages of porous nanonetwork structure, high degree of polymerization, high purity, high crystallinity, excellent mechanical properties and biocompatibility. However, BC lacks antibacterial properties, which leads to the limitation of BC material in food packaging and medical materials. In this study, a new antibacterial material using the combination of montmorillonite (MMT), BC and exopolysaccharides (EPS) produced by Weissella confusa H2 was synthesized. Fourier infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) analysis showed that BC-EPS, BC-MMT and BC-EPS-MMT composite membranes conformed to the typical type I cellulose structure. Compared to BC membrane, scanning electron microscopy (SEM) showed that the porosity of BC-EPS, BC-MMT and BC-EPS-MMT composite membranes was low and compact. The physical properties of BC-EPS, BC-MTT and BC-EPS-MTT composite membranes showed lower water vapor transmittance. The BC-MTT and BC-EPS-MTT composite membranes exhibit a lower swelling ratio in 120 min. The thermal properties show that BC-EPS, BC-MTT and BC-EPS-MTT composite membranes have higher thermal stability (352 °C, 310 °C, 314 °C). Additionally, both BC-MMT and BC-EPS-MMT demonstrated strong inhibitory effects against various bacterial strains, including Staphylococcus aureus, Escherichia coli, Salmonella paratyphi A, and Bacillus subtilis. The exceptional properties exhibited by composite membranes establishes them as a highly promising option in the field of food packaging and medical material applications.
Collapse
Affiliation(s)
- Yi Yang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bosen Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Liansheng Yu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| | - Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China; Hebei University of Environmental Engineering, Hebei Key Laboratory of Agroecological Safety, Qinhuangdao 066102, China.
| |
Collapse
|
9
|
Tunsound V, Krasian T, Daranarong D, Punyodom W, Jantanasakulwong K, Ross S, Tipduangta P, Rachtanapun P, Ross G, Jantrawut P, Amnuaypanich S, Worajittiphon P. Enhanced mechanical properties and biocompatibility of bacterial cellulose composite films with inclusion of 2D MoS 2 and helical carbon nanotubes for use as antimicrobial drug carriers. Int J Biol Macromol 2023; 253:126712. [PMID: 37673164 DOI: 10.1016/j.ijbiomac.2023.126712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Bacterial cellulose (BC) is a biomaterial being investigated for a range of applications. Herein, BC films derived from nata de coco pieces are reinforced by two-dimensional molybdenum disulfide (MoS2) and helical carbon nanotubes (HCNTs) to enhance their tensile mechanical properties, and the biocompatibility of the BC composite films is demonstrated. A simple preparation is presented using a kitchen blender to disperse and blend the BC fibers and additives in a common fabrication medium, followed by vacuum filtration. The mechanical properties of the BC/MoS2/HCNTs composite films are enhanced due to the synergistic effect of MoS2 and HCNTs embedded in the BC films. The MoS2/HCNTs binary additive (1 phr) is capable of increasing the strength and Young's modulus by 148 % and 333 %, respectively, relative to the BC films. The cell cytotoxicity of the BC/MoS2/HCNTs films was assessed using an MTT assay. The composite films are biocompatible with a cell viability of L929 fibroblast cells >70 %, coupled with observations of direct cell attachment on the films. The composite films also exhibited good performance in absorbing and releasing gentamicin antibiotics to inhibit the growth of Escherichia coli and Staphylococcus aureus. The BC/MoS2/HCNTs films are thus potential BC-based candidates as biocompatible robust antibiotic carriers.
Collapse
Affiliation(s)
- Vasuphat Tunsound
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tharnthip Krasian
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Donraporn Daranarong
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sukunya Ross
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Gareth Ross
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pensak Jantrawut
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sittipong Amnuaypanich
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
10
|
Dong X, Wu W, Pan P, Zhang XZ. Engineered Living Materials for Advanced Diseases Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304963. [PMID: 37436776 DOI: 10.1002/adma.202304963] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Natural living materials serving as biotherapeutics exhibit great potential for treating various diseases owing to their immunoactivity, tissue targeting, and other biological activities. In this review, the recent developments in engineered living materials, including mammalian cells, bacteria, viruses, fungi, microalgae, plants, and their active derivatives that are used for treating various diseases are summarized. Further, the future perspectives and challenges of such engineered living material-based biotherapeutics are discussed to provide considerations for future advances in biomedical applications.
Collapse
Affiliation(s)
- Xue Dong
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Wei Wu
- Medical Center of Hematology, Xinqiao Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University, Chongqing, 400037, P. R. China
| | - Pei Pan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
11
|
Gayathri V, Lobo NP, Vikash VL, Kamini NR, Samanta D. Functionalization of Bacterial Cellulose and Related Surfaces Using a Facile Coupling Reaction by Thermoresponsive Catalyst. ACS Biomater Sci Eng 2023; 9:625-641. [PMID: 36632811 DOI: 10.1021/acsbiomaterials.2c01338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, bacterial cellulose and related materials attracted significant attention for applications such as leather-like materials, wound healing materials, etc., due to their abundance in pure form and excellent biocompatibility. Chemical modification of bacterial cellulose further helps to improve specific properties for practical utility and economic viability. However, in most cases, chemical modification of cellulose materials involves harsh experimental conditions such as higher temperatures or organic solvents, which may destroy the 3-dimensional network of bacterial cellulose, thereby altering its characteristic properties. Hence, in this work, we have adopted the Suzuki coupling methodology, which is relatively unexplored for chemically modifying cellulose materials. As the Suzuki coupling reaction is tolerable against air and water, modification can be done under mild conditions so that the covalently modified cellulose materials remain intact without destroying their 3-dimensional form. We performed Suzuki coupling reactions on cellulose surfaces using a recently developed thermoresponsive catalyst consisting of poly(N-isopropylacrylamide) (PNIPAM)-tagged N-heterocyclic carbene (NHC)-based palladium(II) complex. The thermoresponsive nature of the catalyst particularly helped to perform reactions in a water medium under mild conditions considering the biological nature of the substrates, where separation of the catalyst can be easily achieved by tuning temperature. The boronic acid derivatives have been chosen to alter the wettability behavior of bacterial cellulose. Bacterial cellulose (BC) obtained from fermentation on a lab scale using a cellulose-producing bacterium called Gluconacetobacter kombuchae (MTCC 6913) under Hestrin-Schramm (HS) medium, or kombucha-derived bacterial cellulose (KBC) obtained from kombucha available in the market or cotton-cellulose (CC) was chosen for the surface functionalization to find the methodology's diversity. Movie files in the Supporting Information and figures in the manuscript demonstrated the utility of the methodology for fluorescent labeling of bacterial cellulose and related materials. Finally, contact angle analysis of the surfaces showed the hydrophobic natures of some functionalized BC-based materials, which are important for the practical use of biomaterials in wet climatic conditions.
Collapse
Affiliation(s)
- Varnakumar Gayathri
- Polymer Science & Technology division, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Nitin P Lobo
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Centre For Analysis, Testing, Evaluation & Reporting Services (CATERS), Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600 020, India
| | - Vijan Lal Vikash
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Biochemistry & Biotechnology Department, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600020, India
| | - Numbi Ramudu Kamini
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India.,Biochemistry & Biotechnology Department, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600020, India
| | - Debasis Samanta
- Polymer Science & Technology division, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Adyar, Chennai600020, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
12
|
Mendonça I, Sousa J, Cunha C, Faria M, Ferreira A, Cordeiro N. Solving urban water microplastics with bacterial cellulose hydrogels: Leveraging predictive computational models. CHEMOSPHERE 2023; 314:137719. [PMID: 36592831 DOI: 10.1016/j.chemosphere.2022.137719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The prevalence of microplastics (MPs) in both urban and aquatic ecosystems is concerning, with wastewater treatment plants being considered one of the major sources of the issue. As the focus on developing sustainable solutions increases, unused remnants from bacterial cellulose (BC) membranes were ground to form BC hydrogels as potential bioflocculants of MPs. The influence of operational parameters such as BC:MPs ratio, hydrogel grinding, immersion and mixing time, temperature, pH, ionic strength, and metal cations on MPs flocculation and dispersion were evaluated. A response surface methodology based on experimental data sets was computed to understand how these parameters influence the flocculation process. Further, both the BC hydrogel and the hetero-aggregation of MPs were characterised by UV-Vis, ATR-FTIR, IGC, water uptake assays, fluorescence, and scanning electron microscopy. These highlights that the BC hydrogel would be fully effective at hetero-aggregating MPs in naturally-occurring concentrations, thereby not constituting a limiting performance factor for MPs' optimal flocculation and aggregation. Even considering exceptionally high concentrations of MPs (2 g/L) that far exceed naturally-occurring concentrations, the BC hydrogel was shown to have elevated MPs flocculation activity (reaching 88.6%: 1.77 g/L). The computation of bioflocculation activity showed high reliability in predicting flocculation performance, unveiling that the BC:MPs ratio and grinding times were the most critical variables modulating flocculation rates. Also, short exposure times (5 min) were sufficient to drive robust particle aggregation. The microporous nature of the hydrogel revealed by electron microscopy is the likely driver of strong MPs bioflocculant activity, far outperforming dispersive commercial bioflocculants like xanthan gum and alginate. This pilot study provides convincing evidence that even BC remainings can be used to produce highly potent and circular bioflocculators of MPs, with prospective application in the wastewater treatment industry.
Collapse
Affiliation(s)
- Ivana Mendonça
- LB3 - Faculty of Science and Engineering, University of Madeira, 9020-105 Funchal, Portugal
| | - Jessica Sousa
- LB3 - Faculty of Science and Engineering, University of Madeira, 9020-105 Funchal, Portugal
| | - César Cunha
- LB3 - Faculty of Science and Engineering, University of Madeira, 9020-105 Funchal, Portugal
| | - Marisa Faria
- LB3 - Faculty of Science and Engineering, University of Madeira, 9020-105 Funchal, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Artur Ferreira
- CICECO - Aveiro Institute of Materials and Águeda School of Technology and Management, University of Aveiro, 3754-909, Águeda, Portugal
| | - Nereida Cordeiro
- LB3 - Faculty of Science and Engineering, University of Madeira, 9020-105 Funchal, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
13
|
Chaiyachet OA, Wongtham K, Sangkasame K. Bacterial cellulose production from Komagataeibacter xylinus TISTR 1011 and Komagataeibacter nataicola TISTR 975 using yam bean juice as a nutrient source. J GEN APPL MICROBIOL 2023; 68:225-231. [PMID: 35691844 DOI: 10.2323/jgam.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study investigated the efficacy of bacterial cellulose production by K. xylinus TISTR 1011 and K. nataicola TISTR 975 using yam bean juice as a nutrient source, and the physicochemical and sensory characteristics of bacterial cellulose were examined. Bacterial cellulose content, production yield, and production rate were significantly higher when K. xylinus TISTR 1011 rather than K. nataicola TISTR 975 was used as the bacterial strain. The analysis of physicochemical characteristics revealed that bacterial cellulose produced by K. xylinus TISTR 1011 using yam bean juice medium had higher scores for CIE L*, a*, and b* values, wet weight, moisture content, firmness, and gel strength than bacterial cellulose produced by K. nataicola TISTR 975. In contrast, sensory evaluation showed that the acceptability scores and preference of all attributes of bacterial cellulose produced by K. nataicola TISTR 975 using yam bean juice medium were higher than those of bacterial cellulose produced by K. xylinus TISTR 1011. The results of this study indicate that yam bean juice from yam bean tubers, an alternative raw material agricultural product, can be used as a nutrient source for producing bacterial cellulose or nata by Komagataeibacter strains.
Collapse
Affiliation(s)
- Orn Anong Chaiyachet
- Division of Biology, Faculty of Science and Technology, Rajabhat Maha Sarakham University.,Division of Biotechnology, Faculty of Science and Technology, Rajabhat Maha Sarakham University
| | - Ketsara Wongtham
- Division of Biology, Faculty of Education, Rajabhat Maha Sarakham University
| | - Komsan Sangkasame
- Division of Biology, Faculty of Education, Rajabhat Maha Sarakham University
| |
Collapse
|
14
|
Selvaraj S, Gurumurthy K. An overview of probiotic health booster-kombucha tea. CHINESE HERBAL MEDICINES 2023; 15:27-32. [PMID: 36875441 PMCID: PMC9975612 DOI: 10.1016/j.chmed.2022.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/10/2022] [Accepted: 06/27/2022] [Indexed: 12/23/2022] Open
Abstract
Traditional herbal medicine (THM) is a significant division of traditional Chinese medicine (TCM) that plays an important role in maintaining health and disease prevention. WHO has consistently highlighted the significance of traditional, complementary, and alternative medicine in human healthcare. Most people in Eastern Asia will start their day with a cup of tea. The tea provides a nourishing effect, and it has become an inevitable part of life. There are several types of tea, like black tea, green tea, oolong tea, white tea, and herbal tea. Besides the refreshments, it is important to consume beverages that benefit health. One such alternative is a healthy probiotic drink called kombucha, a fermented tea. Kombucha tea is aerobically fermented by infusing sweetened tea with a cellulose mat/ pellicle called SCOBY (symbiotic culture of bacteria and yeast). Kombucha is a source of bioactive compounds that include organic acids and amino acids, vitamins, probiotics, sugars, polyphenols, and antioxidants. Currently, studies on kombucha tea and SCOBY are gaining attention for their remarkable properties and applications in the food and health industries. The review gives an overview of the production, fermentation, microbial diversity, and metabolic products of kombucha. The possible implications for human health are also discussed.
Collapse
Affiliation(s)
- Suriyapriya Selvaraj
- School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore 632014, India
| | - Kalaichelvan Gurumurthy
- School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore 632014, India
| |
Collapse
|
15
|
Naik ML, Sajjan AM, M A, Achappa S, Khan TMY, Banapurmath NR, Kalahal PB, Ayachit NH. Nanobacterial Cellulose Production and Its Antibacterial Activity in Biodegradable Poly(vinyl alcohol) Membranes for Food Packaging Applications. ACS OMEGA 2022; 7:43559-43573. [PMID: 36506209 PMCID: PMC9730313 DOI: 10.1021/acsomega.2c04336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Nanobacterial cellulose (NBC) was produced and incorporated into biodegradable poly(vinyl alcohol) (PVA) in different weight ratios to obtain polymer nanocomposite membranes. The physicochemical properties of the membranes were studied using Fourier transform infrared (FTIR) spectroscopy, a universal testing machine (UTM), thermogravimetric analysis (TGA), wide-angle X-ray diffraction (WAXD) techniques, and field emission scanning electron microscopy (FESEM). FTIR confirmed the consolidation of NBC into PVA by exhibiting significant changes in the peaks compared to NBC and PVA individually. The highest tensile strength of 53.33 MPa and 235.30% elongation at break of the membrane M-10 mass % NBC was obtained, illuminating that NBC provides stiffness and PVA imparts elasticity. WAXD revealed that the crystalline nature of the membrane increases up to 10 mass % and decreases beyond it. The effect of NBC on the poly(vinyl alcohol) membranes for food packaging was investigated systematically. Among all the membranes, M-10 mass % NBC was found to be the most suitable for packaging applications. Membranes had antimicrobial activity against food microbes and showed degradability behavior in the soil. The tests on membranes for packaging revealed that fruits were protected from spoilage caused by microorganisms. Hence, the prepared membranes could be used as an alternative to conventional plastics for packaging applications.
Collapse
Affiliation(s)
- Manu L. Naik
- Department
of Chemistry, KLE Technological University, Hubballi580031, India
| | - Ashok M. Sajjan
- Department
of Chemistry, KLE Technological University, Hubballi580031, India
- Center
of Excellence in Material Science, KLE Technological
University, Hubballi580031, India
| | - Ashwini M
- AICRP
on EAAI (Bioconversion Technology), University
of Agricultural Sciences, Dharwad580005, India
| | - Sharanappa Achappa
- Department
of Biotechnology, KLE Technological University, Hubballi580031, India
| | - T. M. Yunus Khan
- Department
of Mechanical Engineering, College of Engineering, King Khalid University, Abha61421, Saudi Arabia
| | - Nagaraj R. Banapurmath
- Center
of Excellence in Material Science, KLE Technological
University, Hubballi580031, India
| | - Prakash B. Kalahal
- Department
of Chemistry, KLE Technological University, Hubballi580031, India
| | - Narasimha H. Ayachit
- Center
of Excellence in Material Science, KLE Technological
University, Hubballi580031, India
| |
Collapse
|
16
|
Srivastava S, Mathur G. Komagataeibacter saccharivorans strain BC-G1: an alternative strain for production of bacterial cellulose. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Fluorescent cellulosic composites based on carbon dots: Recent advances, developments, and applications. Carbohydr Polym 2022; 294:119768. [DOI: 10.1016/j.carbpol.2022.119768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
18
|
Tang KY, Heng JZX, Chai CHT, Chan CY, Low BQL, Chong SME, Loh HY, Li Z, Ye E, Loh XJ. Modified Bacterial Cellulose for Biomedical Applications. Chem Asian J 2022; 17:e202200598. [DOI: 10.1002/asia.202200598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/30/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Karen Yuanting Tang
- Institute of Materials Research and Engineering Strategic Research Initiative 2 Fusionopolis Way, Innovis, #08-03 138634 Singapore SINGAPORE
| | - Jerry Zhi Xiong Heng
- Institute of Materials Research and Engineering Strategic Research Initiative 2 Fusionopolis Way, Innovis, #08-03 138634 Singapore SINGAPORE
| | - Casandra Hui Teng Chai
- Institute of Materials Research and Engineering Strategic Research Initiative 2 Fusionopolis Way, Innovis, #08-03 138634 Singapore SINGAPORE
| | - Chui Yu Chan
- Institute of Materials Research and Engineering Strategic Research Initiative 2 Fusionopolis Way, Innovis, #08-03 138634 Singapore SINGAPORE
| | - Beverly Qian Ling Low
- National University of Singapore Department of Materials Science and Engineering SINGAPORE
| | - Serene Ming En Chong
- Singapore Institute of Technology Food, Chemical and Biotechnology Cluster SINGAPORE
| | - Hong Yi Loh
- Nanyang Technological University Department of Materials Science and Engineering SINGAPORE
| | - Zibiao Li
- Institute of Materials Research and Engineering Strategic Research Initiative 2 Fusionopolis Way, Innovis, #08-03 138634 Singapore SINGAPORE
| | - Enyi Ye
- Institute of Materials Research and Engineering Strategic Research Initiative 2 Fusionopolis Way, Innovis, #8-03 138634 Singapore SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering Strategic Research Initiative 2 Fusionopolis Way, Innovis, #08-03 138634 Singapore SINGAPORE
| |
Collapse
|
19
|
Stoichiometric Analysis and Production of Bacterial Cellulose by Gluconacetobacter liquefaciens using Borassus flabellifer L. Jaggery. Appl Biochem Biotechnol 2022; 194:3645-3667. [PMID: 35482222 DOI: 10.1007/s12010-022-03896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
The objective of the work is to examine the potential utilization of Palmyra palm jaggery (PPJ) for the enhancement of bacterial cellulose (BC) production by Gluconacetobacter liquefaciens. To evaluate the culturing condition, the production of BC fermentation was carried out in batch mode using different carbon sources namely glucose, sucrose and PPJ. PPJ in the HS medium (PHS medium) resulted maximum concentration of BC (14.35 ± 0.18 g/L) under shaking condition than other carbon sources in HS medium. The influence of different medium variables including initial pH and nitrogen sources on BC production was investigated using PHS medium under shaking condition. The maximum BC concentration of 17.79 ± 2.4 g/L was obtained in shaking condition at an initial pH of 5.6 using yeast extract as nitrogen source. Stoichiometric equation for the cell growth and BC synthesis was developed using elemental balance approach. The metabolic heat of reaction (40 kcal generated per liter of medium) was evaluated using electron balance approach. Based on the process economic analysis and the yield of BC during the fermentation, PHS medium without nitrogen source could be a promising cost-effective nutrient than HS medium. Thermal stability, crystallinity index and structural characterizations of produced BC using PPJ medium were evaluated using TGA, XRD and FTIR and the obtained results were compared with HS medium containing glucose and sucrose.
Collapse
|
20
|
Hussain MH, Mohsin MZ, Zaman WQ, Yu J, Zhao X, Wei Y, Zhuang Y, Mohsin A, Guo M. Multiscale engineering of microbial cell factories: A step forward towards sustainable natural products industry. Synth Syst Biotechnol 2022; 7:586-601. [PMID: 35155840 PMCID: PMC8816652 DOI: 10.1016/j.synbio.2021.12.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 01/09/2023] Open
Abstract
Microbial cell factories (bacteria and fungi) are the leading producers of beneficial natural products such as lycopene, carotene, herbal medicine, and biodiesel etc. These microorganisms are considered efficient due to their effective bioprocessing strategy (monoculture- and consortial-based approach) under distinct processing conditions. Meanwhile, the advancement in genetic and process optimization techniques leads to enhanced biosynthesis of natural products that are known functional ingredients with numerous applications in the food, cosmetic and medical industries. Natural consortia and monoculture thrive in nature in a small proportion, such as wastewater, food products, and soils. In similitude to natural consortia, it is possible to engineer artificial microbial consortia and program their behaviours via synthetic biology tools. Therefore, this review summarizes the optimization of genetic and physicochemical parameters of the microbial system for improved production of natural products. Also, this review presents a brief history of natural consortium and describes the functional properties of monocultures. This review focuses on synthetic biology tools that enable new approaches to design synthetic consortia; and highlights the syntropic interactions that determine the performance and stability of synthetic consortia. In particular, the effect of processing conditions and advanced genetic techniques to improve the productibility of both monoculture and consortial based systems have been greatly emphasized. In this context, possible strategies are also discussed to give an insight into microbial engineering for improved production of natural products in the future. In summary, it is concluded that the coupling of genomic modifications with optimum physicochemical factors would be promising for producing a robust microbial cell factory that shall contribute to the increased production of natural products.
Collapse
Affiliation(s)
- Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Waqas Qamar Zaman
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Junxiong Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Xueli Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yanlong Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Corresponding author. East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, PR China.
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
- Corresponding author. P.O. box 329#, East China University of Science and Technology, 130 Meilong Rd., Shanghai, 200237, PR China.
| |
Collapse
|
21
|
Thongwai N, Futui W, Ladpala N, Sirichai B, Weechan A, Kanklai J, Rungsirivanich P. Characterization of Bacterial Cellulose Produced by Komagataeibacter maltaceti P285 Isolated from Contaminated Honey Wine. Microorganisms 2022; 10:microorganisms10030528. [PMID: 35336103 PMCID: PMC8955979 DOI: 10.3390/microorganisms10030528] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Bacterial cellulose (BC), a biopolymer, is synthesized by BC-producing bacteria. Almost all producing strains are classified in the family Acetobacteraceae. In this study, bacterial strain P285 was isolated from contaminated honey wine in a honey factory in northern Thailand. Based on 16S rRNA gene sequence identification, the strain P285 revealed 99.8% identity with Komagataeibacter maltaceti LMG 1529 T. K. maltaceti P285 produced the maximum BC production at 20–30 °C and an initial media pH of 9.0. The highest BC production in modified mineral salt medium (MSM) was exhibited when glucose (16%, w/v) and yeast extract (3.2%, w/v) were applied as carbon and nitrogen sources, respectively. When sugarcane (8–16%, w/v) or honey (ratio of honey to water = 1: 4) supplemented with yeast extract was used, the BC production was greater. The characterization of BC synthesized by K. maltaceti P285 was undertaken using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectrometry. Meanwhile, X-ray diffraction results confirmed the presence of crystalline cellulose (2θ = 18.330, 21.390 and 22.640°). The maximum temperature of BC degradation was observed at 314 °C. Tensile properties analysis of hydrated and dried BC showed breaking strength of 1.49 and 0.66 MPa, respectively. These results demonstrated that K. maltaceti P285 has a high potential for BC production especially when grown in high initial media pH. Therefore, the strain would be suitable as an agent to make BC, the value-added product in the related factories.
Collapse
Affiliation(s)
- Narumol Thongwai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.T.); (P.R.); Tel.: +66-53-941-946-50 (N.T. & P.R.); Fax: +66-53-892-259 (N.T. & P.R.)
| | - Wirapong Futui
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nanthiwa Ladpala
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
| | - Benjamat Sirichai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
| | - Anuwat Weechan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
| | - Jirapat Kanklai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patthanasak Rungsirivanich
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (W.F.); (N.L.); (B.S.); (A.W.); (J.K.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (N.T.); (P.R.); Tel.: +66-53-941-946-50 (N.T. & P.R.); Fax: +66-53-892-259 (N.T. & P.R.)
| |
Collapse
|
22
|
Li G, Wang L, Deng Y, Wei Q. Research progress of the biosynthetic strains and pathways of bacterial cellulose. J Ind Microbiol Biotechnol 2022; 49:kuab071. [PMID: 34549273 PMCID: PMC9113090 DOI: 10.1093/jimb/kuab071] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/17/2021] [Indexed: 11/14/2022]
Abstract
Bacterial cellulose is a glucose biopolymer produced by microorganisms and widely used as a natural renewable and sustainable resource in the world. However, few bacterial cellulose-producing strains and low yield of cellulose greatly limited the development of bacterial cellulose. In this review, we summarized the 30 cellulose-producing bacteria reported so far, including the physiological functions and the metabolic synthesis mechanism of bacterial cellulose, and the involved three kinds of cellulose synthases (type I, type II, and type III), which are expected to provide a reference for the exploration of new cellulose-producing microbes.
Collapse
Affiliation(s)
- Guohui Li
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Li Wang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
23
|
Mali P, Sherje AP. Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydr Polym 2022; 275:118668. [PMID: 34742407 DOI: 10.1016/j.carbpol.2021.118668] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/29/2021] [Accepted: 09/12/2021] [Indexed: 12/19/2022]
Abstract
The present review explores the recent developments of cellulose nanocrystals, a class of captivating nanomaterials in variety of applications. CNCs are made by acid hydrolysing cellulosic materials like wood, cotton, tunicate, flax fibers by sonochemistry. It has many desirable properties, including a high tensile strength, wide surface area, stiffness, exceptional colloidal stability, and the ability to be modified. CNCs are colloidally stable, hydrophilic, and rigid rod-shaped bio-based nanomaterials in the form of rigid rods with high strength and surface area that has a diverse set of applications and properties. The intriguing features emerging from numerous fibers studies, such as renewable character and biodegradability, piqued the curiosity of many researchers who worked on lowering the size of these fibers. Physicochemical properties such as rheological, mechanical, thermal, lipid crystalline, swelling capacity, microstructural properties result in affecting surface-area to volume ratio and crystallinity of cellulose nanocrystals. The present article highlights the fundamentals of cellulose nanocrystals such as sources, isolation, fabrication, properties and surface modification with an emphasis on plethora of biomedical applications. Selected nanocellulose studies with significant findings on cellular labelling and bioimaging, tissue engineering, biosensors, gene delivery, anti-viral property, anti-bacterial property, ocular delivery, modified drug release, anti-cancer activity and enzyme immobilization are emphasized.
Collapse
Affiliation(s)
- Prajakta Mali
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Atul P Sherje
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India.
| |
Collapse
|
24
|
Cielecka I, Ryngajłło M, Maniukiewicz W, Bielecki S. Highly Stretchable Bacterial Cellulose Produced by Komagataeibacter hansenii SI1. Polymers (Basel) 2021; 13:4455. [PMID: 34961006 PMCID: PMC8707637 DOI: 10.3390/polym13244455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022] Open
Abstract
A new strain of bacteria producing cellulose was isolated from Kombucha and identified as Komagataeibacter hansenii, named SI1. In static conditions, the strain synthesises bacterial nanocellulose with an improved ability to stretch. In this study, utilisation of various carbon and nitrogen sources and the impact of initial pH was assessed in terms of bacterial nanocellulose yield and properties. K. hansenii SI1 produces cellulose efficiently in glycerol medium at pH 5.0-6.0 with a yield of 3.20-3.60 g/L. Glucose medium led to the synthesis of membrane characterised by a strain of 77%, which is a higher value than in the case of another Komagataeibacter species. Supplementation of medium with vitamin C results in an enhanced porosity and improves the ability of bacterial nanocellulose to stretch (up to 123%). The properties of modified membranes were studied by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and mechanical tests. The results show that bacterial nanocellulose produced in SH medium and vitamin C-supplemented medium has unique properties (porosity, tensile strength and strain) without changing the chemical composition of cellulose. The method of production BNC with altered properties was the issue of Polish patent application no. P.431265.
Collapse
Affiliation(s)
- Izabela Cielecka
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Łódź, Poland; (M.R.); (S.B.)
| | - Małgorzata Ryngajłło
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Łódź, Poland; (M.R.); (S.B.)
| | - Waldemar Maniukiewicz
- Institute of General and Ecological Chemistry, Lodz University of Technology, 90-924 Łódź, Poland;
| | - Stanisław Bielecki
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, 90-573 Łódź, Poland; (M.R.); (S.B.)
| |
Collapse
|
25
|
Utilization of bio-polymeric additives for a sustainable production strategy in pulp and paper manufacturing: A comprehensive review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
26
|
Bacterial Cellulose: Production, Characterization, and Application as Antimicrobial Agent. Int J Mol Sci 2021; 22:ijms222312984. [PMID: 34884787 PMCID: PMC8657668 DOI: 10.3390/ijms222312984] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial cellulose (BC) is recognized as a multifaceted, versatile biomaterial with abundant applications. Groups of microorganisms such as bacteria are accountable for BC synthesis through static or agitated fermentation processes in the presence of competent media. In comparison to static cultivation, agitated cultivation provides the maximum yield of the BC. A pure cellulose BC can positively interact with hydrophilic or hydrophobic biopolymers while being used in the biomedical domain. From the last two decades, the reinforcement of biopolymer-based biocomposites and its applicability with BC have increased in the research field. The harmony of hydrophobic biopolymers can be reduced due to the high moisture content of BC in comparison to hydrophilic biopolymers. Mechanical properties are the important parameters not only in producing green composite but also in dealing with tissue engineering, medical implants, and biofilm. The wide requisition of BC in medical as well as industrial fields has warranted the scaling up of the production of BC with added economy. This review provides a detailed overview of the production and properties of BC and several parameters affecting the production of BC and its biocomposites, elucidating their antimicrobial and antibiofilm efficacy with an insight to highlight their therapeutic potential.
Collapse
|
27
|
Vadaye Kheiry E, Fazly Bazzaz BS, Kerachian MA. Implantation of stem cells on synthetic or biological scaffolds: an overview of bone regeneration. Biotechnol Genet Eng Rev 2021; 37:238-268. [PMID: 34789069 DOI: 10.1080/02648725.2021.2003590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Humans are exposed to a wide range of bone tissue injuries. In severe cases, bone damages could be only treated with transplantation of autologous or allogeneic grafting.In recent years, tissue engineering has become a promising strategy for repairing damaged organs and tissues, providing a great opportunity to cure several diseases. Bone tissue engineering consists of three components: scaffold, cells, and growth factors. Current bone tissue engineering strategies combine the use of stem cells with biologically active materials and gene therapy to mimic the natural microenvironment of bone. The combination of the scaffold with growth factors and extracellular matrix protein molecules can promote cell attachment, proliferation, and induce osteogenesis, which could provide signals for cell migration to begin the healing process during repair and bone formation.This article reviews the principles of bone regeneration and the most current developments of bone tissue engineering related to bone growth factors, the biologically active materials, such as bacterial cellulose, and stem cells.
Collapse
Affiliation(s)
- Elahe Vadaye Kheiry
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
He W, Wu J, Xu J, Mosselhy DA, Zheng Y, Yang S. Bacterial Cellulose: Functional Modification and Wound Healing Applications. Adv Wound Care (New Rochelle) 2021; 10:623-640. [PMID: 32870775 PMCID: PMC8392072 DOI: 10.1089/wound.2020.1219] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Significance: Wound dressings are frequently used for wound covering and healing. Ideal wound dressings should provide a moist environment for wounds and actively promote wound healing and skin recovery. The materials used as ideal wound dressings should possess specific properties, thus accelerating skin tissue regeneration process. Recent Advances: Bacterial cellulose (BC) is a natural polymer synthesized by some bacteria. As a kind of natural biopolymer, BC shows good biological activity, biodegradability, and biological adaptability. It has many unique physical, chemical, and biological properties, such as ultrafine nanofiber network, high crystallinity, high water absorption and retention capacity, and high tensile strength and elastic modulus. These excellent properties of BC have laid the foundation for its application as dressing in wound healing. Critical Issues: To optimize the biocompatibility and antimicrobial activity of BC, different methods including microbial fermentation, physical modification, chemical modification, and compound modification have been adopted to modify BC to ensure a better application in wound healing. BC-based wound dressings have been applied in infected wounds, acute traumatic injuries, burns, and diabetic wounds, showing remarkable therapeutic effects on promoting wound healing. Furthermore, there have been some commercial BC-based dressings and they have been utilized in clinical practice. Future Directions: Because of its excellent physicochemical characteristics and biological properties, BC shows high clinical value to be used as a wound dressing for skin tissue regeneration.
Collapse
Affiliation(s)
- Wei He
- School of Materials Science and Engineering, University of Science and Technology, Beijing, China
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd., Suzhou, China
| | - Jian Wu
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd., Suzhou, China
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
- Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang, China
| | - Jin Xu
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Dina A. Mosselhy
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology, Beijing, China
| | - Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, Chinese PLA General Hospital, Medical College of PLA, Beijing, China
| |
Collapse
|
29
|
Danial WH, Md Bahri NF, Abdul Majid Z. Preparation, Marriage Chemistry and Applications of Graphene Quantum Dots-Nanocellulose Composite: A Brief Review. Molecules 2021; 26:6158. [PMID: 34684739 PMCID: PMC8537986 DOI: 10.3390/molecules26206158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/03/2022] Open
Abstract
Graphene quantum dots (GQDs) are zero-dimensional carbon-based materials, while nanocellulose is a nanomaterial that can be derived from naturally occurring cellulose polymers or renewable biomass resources. The unique geometrical, biocompatible and biodegradable properties of both these remarkable nanomaterials have caught the attention of the scientific community in terms of fundamental research aimed at advancing technology. This study reviews the preparation, marriage chemistry and applications of GQDs-nanocellulose composites. The preparation of these composites can be achieved via rapid and simple solution mixing containing known concentration of nanomaterial with a pre-defined composition ratio in a neutral pH medium. They can also be incorporated into other matrices or drop-casted onto substrates, depending on the intended application. Additionally, combining GQDs and nanocellulose has proven to impart new hybrid nanomaterials with excellent performance as well as surface functionality and, therefore, a plethora of applications. Potential applications for GQDs-nanocellulose composites include sensing or, for analytical purposes, injectable 3D printing materials, supercapacitors and light-emitting diodes. This review unlocks windows of research opportunities for GQDs-nanocellulose composites and pave the way for the synthesis and application of more innovative hybrid nanomaterials.
Collapse
Affiliation(s)
- Wan Hazman Danial
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Nur Fathanah Md Bahri
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Zaiton Abdul Majid
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| |
Collapse
|
30
|
Kadier A, Ilyas RA, Huzaifah MRM, Harihastuti N, Sapuan SM, Harussani MM, Azlin MNM, Yuliasni R, Ibrahim R, Atikah MSN, Wang J, Chandrasekhar K, Islam MA, Sharma S, Punia S, Rajasekar A, Asyraf MRM, Ishak MR. Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers (Basel) 2021; 13:3365. [PMID: 34641185 PMCID: PMC8512337 DOI: 10.3390/polym13193365] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
Collapse
Affiliation(s)
- Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; (A.K.); (J.W.)
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - M. R. M. Huzaifah
- Faculty of Agricultural Science and Forestry, Bintulu Campus, Universiti Putra Malaysia, Bintulu 97000, Sarawak, Malaysia
| | - Nani Harihastuti
- Centre of Industrial Pollution Prevention Technology, The Ministry of Industry, Jawa Tengah 50136, Indonesia; (N.H.); (R.Y.)
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (M.M.H.)
- Laboratory of Technology Biocomposite, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - M. M. Harussani
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (M.M.H.)
| | - M. N. M. Azlin
- Laboratory of Technology Biocomposite, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Department of Textile Technology, School of Industrial Technology, Universiti Teknologi MARA, Universiti Teknologi Mara Negeri Sembilan, Kuala Pilah 72000, Negeri Sembilan, Malaysia
| | - Rustiana Yuliasni
- Centre of Industrial Pollution Prevention Technology, The Ministry of Industry, Jawa Tengah 50136, Indonesia; (N.H.); (R.Y.)
| | - R. Ibrahim
- Innovation & Commercialization Division, Forest Research Institute Malaysia, Kepong 52109, Selangor Darul Ehsan, Malaysia;
| | - M. S. N. Atikah
- Department of Chemical and Environmental Engineering Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Junying Wang
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; (A.K.); (J.W.)
| | - K. Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea;
| | - M Amirul Islam
- Laboratory for Quantum Semiconductors and Photon-Based BioNanotechnology, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Shubham Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Jalandhar 144001, India;
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
| | - M. R. M. Asyraf
- Department of Aerospace Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.R.M.A.); (M.R.I.)
| | - M. R. Ishak
- Department of Aerospace Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.R.M.A.); (M.R.I.)
| |
Collapse
|
31
|
Optimization of Moist and Oven-Dried Bacterial Cellulose Production for Functional Properties. Polymers (Basel) 2021; 13:polym13132088. [PMID: 34202870 PMCID: PMC8272063 DOI: 10.3390/polym13132088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial cellulose (BC) is a natural polymer with properties suitable for tissue engineering and possible applications in scaffold production. However, current procedures have limitations in obtaining BC pellicles with the desired structural, physical, and mechanical properties. Thus, this study analyzed the optimal culture conditions of BC membranes and two types of processing: draining and oven-drying. The aim was to obtain BC membranes with properties suitable for a wound dressing material. Two studies were carried out. In the preliminary study, the medium (100 mL) was inoculated with varying volumes (1, 2, 3, 4, and 5 mL) and incubated statically for different periods (3, 6, 9, 12, and 18 days), using a full factorial experimental design. Thickness, uniformity, weight, and yield were evaluated. In the optimization study, a Box–Behnken design was used. Two independent variables were used: inoculum volume (X1: 1, 3, and 5 mL) and fermentation period (X2: 6, 12, and 18 d) to determine the target response variables: thickness, swelling ratio, drug release, fiber diameter, tensile strength, and Young’s modulus for both dry and moist BC membranes. The mathematical modelling of the effect of the two independent variables was performed by response surface methodology (RSM). The obtained models were validated with new experimental values and confirmed for all tested properties, except Young’s modulus of oven-dried BC. Thus, the optimal properties in terms of a scaffold material of the moist BC were obtained with an inoculum volume of 5% (v/v) and 16 d of fermentation. While, for the oven-dried membranes, optimal properties were obtained with a 4% (v/v) and 14 d of fermentation.
Collapse
|
32
|
Production of Bacterial Cellulose from Acetobacter Species and Its Applications – A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial cellulose (BC) is a natural polymer secreted as a protective cell covering of certain bacterial species. In contrary to plant cellulose, BC possesses some unique features like high moisture-holding capacity, high durability, high liquid absorbing capabilities, biostability, and biodegradability, makes BC an excellent raw material in wide-ranging areas like biomedical, food, agriculture, paper, textile industries and electronics. The main objective of this review is to discuss various aspects of BC production (different sources for bacterial strain isolation, culture media and, its alternatives also major culture techniques). In addition, various applications of BC are also reviewed.
Collapse
|
33
|
Divya, Mahapatra S, Srivastava VR, Chandra P. Nanobioengineered Sensing Technologies Based on Cellulose Matrices for Detection of Small Molecules, Macromolecules, and Cells. BIOSENSORS 2021; 11:168. [PMID: 34073910 PMCID: PMC8225109 DOI: 10.3390/bios11060168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/08/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Recent advancement has been accomplished in the field of biosensors through the modification of cellulose as a nano-engineered matrix material. To date, various techniques have been reported to develop cellulose-based matrices for fabricating different types of biosensors. Trends of involving cellulosic materials in paper-based multiplexing devices and microfluidic analytical technologies have increased because of their disposable, portable, biodegradable properties and cost-effectiveness. Cellulose also has potential in the development of cytosensors because of its various unique properties including biocompatibility. Such cellulose-based sensing devices are also being commercialized for various biomedical diagnostics in recent years and have also been considered as a method of choice in clinical laboratories and personalized diagnosis. In this paper, we have discussed the engineering aspects of cellulose-based sensors that have been reported where such matrices have been used to develop various analytical modules for the detection of small molecules, metal ions, macromolecules, and cells present in a diverse range of samples. Additionally, the developed cellulose-based biosensors and related analytical devices have been comprehensively described in tables with details of the sensing molecule, readout system, sensor configuration, response time, real sample, and their analytical performances.
Collapse
Affiliation(s)
| | | | | | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, Uttar Pradesh, India; (D.); (S.M.); (V.R.S.)
| |
Collapse
|
34
|
Effects of Bacterial Nanocellulose Loaded with Curcumin and Its Degradation Products on Human Dermal Fibroblasts. MATERIALS 2020; 13:ma13214759. [PMID: 33113763 PMCID: PMC7663456 DOI: 10.3390/ma13214759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/25/2023]
Abstract
Bacterial nanocellulose has found applications in tissue engineering, in skin tissue repair, and in wound healing. Its large surface area enables the adsorption of various substances. Bacterial nanocellulose with adsorbed substances can serve as a substrate for drug-delivery of specific bioactive healing agents into wounds. In this study, we loaded a bacterial nanocellulose hydrogel with curcumin, i.e., an important anti-bacterial and healing agent, and its degradation products. These products were prepared by thermal decomposition of curcumin (DC) at a temperature of 180 °C (DC 180) or of 300 °C (DC 300). The main thermal decomposition products were tumerone, vanillin, and feruloylmethane. Curcumin and its degradation products were loaded into the bacterial nanocellulose by an autoclaving process. The increased temperature during autoclaving enhanced the solubility and the penetration of the agents into the nanocellulose. The aim of this study was to investigate the cytotoxicity and the antimicrobial activity of pure curcumin, its degradation products, and finally of bacterial nanocellulose loaded with these agents. In vitro tests performed on human dermal fibroblasts revealed that the degradation products of curcumin, i.e., DC 180 and DC 300, were more cytotoxic than pure curcumin. However, if DC 300 was loaded into nanocellulose, the cytotoxic effect was not as strong as in the case of DC 300 powder added into the culture medium. DC 300 was found to be the least soluble product in water, which probably resulted in the poor loading of this agent into the nanocellulose. Nanocellulose loaded with pure curcumin or DC 180 exhibited more antibacterial activity than pristine nanocellulose.
Collapse
|
35
|
Aswini K, Gopal NO, Uthandi S. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnol 2020; 20:46. [PMID: 32843009 PMCID: PMC7448454 DOI: 10.1186/s12896-020-00639-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cellulose, the most versatile biomolecule on earth, is available in large quantities from plants. However, cellulose in plants is accompanied by other polymers like hemicellulose, lignin, and pectin. On the other hand, pure cellulose can be produced by some microorganisms, with the most active producer being Acetobacter xylinum. A. senengalensis is a gram-negative, obligate aerobic, motile coccus, isolated from Mango fruits in Senegal, capable of utilizing a variety of sugars and produce cellulose. Besides, the production is also influenced by other culture conditions. Previously, we isolated and identified A. senengalensis MA1, and characterized the bacterial cellulose (BC) produced. Results The maximum cellulose production by A. senengalensis MA1 was pre-optimized for different parameters like carbon, nitrogen, precursor, polymer additive, pH, temperature, inoculum concentration, and incubation time. Further, the pre-optimized parameters were pooled, and the best combination was analyzed by using Central Composite Design (CCD) of Response Surface Methodology (RSM). Maximum BC production was achieved with glycerol, yeast extract, and PEG 6000 as the best carbon and nitrogen sources, and polymer additive, respectively, at 4.5 pH and an incubation temperature of 33.5 °C. Around 20% of inoculum concentration gave a high yield after 30 days of inoculation. The interactions between culture conditions optimized by CCD included alterations in the composition of the HS medium with 50 mL L− 1 of glycerol, 7.50 g L− 1 of yeast extract at pH 6.0 by incubating at a temperature of 33.5 °C along with 7.76 g L− 1 of PEG 6000. This gave a BC yield of wet weight as 469.83 g L− 1. Conclusion The optimized conditions of growth medium resulted in enhanced production of bacterial cellulose by A. senegalensis MA1, which is around 20 times higher than that produced using an unoptimized HS medium. Further, the cellulose produced can be used in food and pharmaceuticals, for producing high-quality paper, wound dressing material, and nanocomposite films for food packaging.
Collapse
Affiliation(s)
- K Aswini
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - N O Gopal
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Sivakumar Uthandi
- Biocatalysts Laboratory, Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India.
| |
Collapse
|
36
|
Athinarayanan J, Alshatwi AA, Subbarayan Periasamy V. Biocompatibility analysis of Borassus flabellifer biomass-derived nanofibrillated cellulose. Carbohydr Polym 2020; 235:115961. [DOI: 10.1016/j.carbpol.2020.115961] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/22/2023]
|
37
|
Molina-Ramírez C, Cañas-Gutiérrez A, Castro C, Zuluaga R, Gañán P. Effect of production process scale-up on the characteristics and properties of bacterial nanocellulose obtained from overripe Banana culture medium. Carbohydr Polym 2020; 240:116341. [PMID: 32475595 DOI: 10.1016/j.carbpol.2020.116341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 11/26/2022]
Abstract
In this study, the effect of bioreactor size was evaluated with respect to the production and characteristics of the nanocellulose membranes produced by two different bioreactors: one with an 1800 cm2 cross-sectional area (BC-B44) and a lab-scale bioreactor with a 41 cm2 cross-sectional area (BC-B1). The culture conditions were kept the same, and the substrate consisted of overripe bananas, which are inexpensive because they are unsuitable for human consumption. The X-ray diffraction pattern showed that the two samples had similar crystalline structures, but changes were observed at the morphological level in the nanofibers that make up the BNC membranes. These changes generated, in turn, variations in the mechanical and thermal properties of the samples. This result represents a novel scale-up effect related to the static mode fermentation of BNC.
Collapse
Affiliation(s)
- Carlos Molina-Ramírez
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, Colombia
| | - Ana Cañas-Gutiérrez
- Facultad de Ingeniería Textil, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, Colombia
| | - Cristina Castro
- Facultad de Ingeniería Textil, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, Colombia
| | - Robin Zuluaga
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, Colombia.
| | - Piedad Gañán
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín, Colombia
| |
Collapse
|
38
|
Bacterial cellulose micro-nano fibres for wound healing applications. Biotechnol Adv 2020; 41:107549. [PMID: 32302653 DOI: 10.1016/j.biotechadv.2020.107549] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/02/2023]
Abstract
Bacterial cellulose (BC) is cellulose produced by a few limited species of bacteria in given conditions. BC has many remarkable properties such as its attractive mechanical properties, water uptake ability and biocompatibility which makes it a very desirable material to be used for wound healing. Inherently due to these important properties, the material is very resistant to easy processing and thus difficult to produce into useful entities. Additionally, being rate limited by the dependency on bacterial production, high yield is difficult to obtain and thus secondary material processing is sought after. In this review, BC is explained in terms of synthesis, structure and properties. These beneficial properties are directly related to the material's great potential in wound healing where it has also been trialled commercially but ultimately failed due to processing issues. However, more recently there has been increased frequency in scientific work relating to BC processing into hybrid polymeric fibres using common laboratory fibre forming techniques such as electrospinning and pressurised gyration. This paper summarises current progress in BC fibre manufacturing, its downfalls and also gives a future perspective on how the landscape should change to allow BC to be utilised in wound care in the current environment.
Collapse
|
39
|
Abstract
Bacterial cellulose as polysaccharide possessing outstanding chemical purity and a unique structure compared with wood cellulose, attracts great attention as a hydrocolloid system. It was shown, that at intense mechanical action on a neat bacterial cellulose film in presence of water, the gel-like dispersions are obtained. They retain stability in time (at least, up to several months) and temperature (at least, up to 60 °C) without macro-phase separation on aqueous and cellulose phases. The main indicator of the stability is constant viscosity values in time, as well as fulfilling the Arrhenius dependence for temperature dependence of viscosity. Flow curves of diluted dispersions (BC content less than 1.23%) show strong non-Newtonian behavior over the entire range of shear rates. It is similar with dispersions of micro- and nanocrystalline cellulose, but the absolute viscosity value is much higher in the case of BC due to more long fibrils forming more dense entanglements network than in other cases. Measuring the viscosity in increase and decrease shear rate modes indicate an existence of hysteresis loop, i.e., thixotropic behavior with time lag for recovering the structural network. MCC and NCC dispersions even at cellulose content more than 5% do not demonstrate such behavior. According to oscillatory measurements, viscoelastic behavior of dispersions corresponds to gel-like systems with almost total independence of moduli on frequency and essentially higher values of the storage modulus compared with the loss modulus.
Collapse
|
40
|
Rastogi A, Banerjee R. Statistical optimization of bacterial cellulose production by Leifsonia soli and its physico-chemical characterization. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.12.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Blanco Parte FG, Santoso SP, Chou CC, Verma V, Wang HT, Ismadji S, Cheng KC. Current progress on the production, modification, and applications of bacterial cellulose. Crit Rev Biotechnol 2020; 40:397-414. [PMID: 31937141 DOI: 10.1080/07388551.2020.1713721] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adoption of biomass for the development of biobased products has become a routine agenda in evolutionary metabolic engineering. Cellulose produced by bacteria is a "rising star" for this sustainable development. Unlike plant cellulose, bacterial cellulose (BC) shows several unique properties like a high degree of crystallinity, high purity, high water retention, high mechanical strength, and enhanced biocompatibility. Favored with those extraordinary properties, BC could serve as ideal biomass for the development of various industrial products. However, a low yield and the requirement for large growth media have been a persistent challenge in mass production of BC. A significant number of techniques has been developed in achieving efficient BC production. This includes the modification of bioreactors, fermentation parameters, and growth media. In this article, we summarize progress in metabolic engineering in order to solve BC growth limitation. This article emphasizes current engineered BC production by using various bioreactors, as well as highlighting the structure of BC fermented by different types of engineered-bioreactors. The comprehensive overview of the future applications of BC, aims to provide readers with insight into new economic opportunities of BC and their modifiable properties for various industrial applications. Modifications in chemical composition, structure, and genetic regulation, which preceded the advancement of BC applications, were also emphasized.
Collapse
Affiliation(s)
- Francisco German Blanco Parte
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Chih-Chan Chou
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India.,Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, India
| | - Hsueh-Ting Wang
- Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Surabaya, Indonesia.,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
42
|
Comparison of bacterial nanocellulose produced by different strains under static and agitated culture conditions. Carbohydr Polym 2019; 227:115323. [PMID: 31590841 DOI: 10.1016/j.carbpol.2019.115323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
Abstract
Bacterial nanocellulose (BNC) has many advantages over plant cellulose, which make it widely used in many fields, especially in the food industry. In this study, three strains including BCA263, BCC529, and P1 were selected for characteristics analysis of BNCs under static and agitated culture conditions. The BNCs produced under static culture condition were in the shape of uniform membrane, while BNCs produced under agitated culture were in form of small agglomerates and fragments. BCA263 and BCC529 strains were more suitable for static culture, while P1 strain was more suitable for agitated culture. BNCs produced under static culture condition exhibited higher crystallinity, stronger tensile strength, denser network structure, higher temperature resistance and good flame retardancy; while BNCs produced under agitated culture condition exhibited larger porous and lower crystallinity. Furthermore, BNCs produced under agitated culture condition were more suitable as a stabilizer of coffee milk beverage.
Collapse
|
43
|
Nóbrega V, Faria M, Quintana A, Kaufmann M, Ferreira A, Cordeiro N. From a Basic Microalga and an Acetic Acid Bacterium Cellulose Producer to a Living Symbiotic Biofilm. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2275. [PMID: 31311139 PMCID: PMC6678410 DOI: 10.3390/ma12142275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/25/2022]
Abstract
Bacterial cellulose (BC) has recently been the subject of a considerable amount of research, not only for its environmentally friendly biosynthesis, but also for its high potential in areas such as biomedicine or biomaterials. A symbiotic relationship between a photosynthetic microalga, Chlamydomonas debaryana, and a cellulose producer bacterium, Komagataeibacter saccharivorans, was established in order to obtain a viable and active biofilm. The effect of the growth media composition ratio on the produced living material was investigated, as well as the microalgae biomass quantity, temperature, and incubation time. The optimal temperature for higher symbiotic biofilm production was 30 °C with an incubation period of 14 days. The high microalgae presence, 0.75% w/v, and 60:40 HS:BG-11 medium (v/v) induced a biofilm microalgae incorporation rate of 85%. The obtained results report, for the first time, a successful symbiotic interaction developed in situ between an alkaline photosynthetic microalga and an acetic acid bacterium. These results are promising and open a new window to BC living biofilm applications in medical fields that have not yet been explored.
Collapse
Affiliation(s)
- Vítor Nóbrega
- LB3, Faculty of Science and Engineering, University of Madeira, 9000-390 Funchal, Portugal
| | - Marisa Faria
- LB3, Faculty of Science and Engineering, University of Madeira, 9000-390 Funchal, Portugal
- Oceanic Observatory of Madeira (OOM), ARDITI, Madeira Tecnopolo, 9020-105 Funchal, Portugal
| | - Antera Quintana
- Banco Español de Algas, Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, 35214 Telde, Spain
| | - Manfred Kaufmann
- Marine Biology Station of Funchal, Faculty of Life Sciences, University of Madeira, 9000-107 Funchal, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Artur Ferreira
- CICECO, Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nereida Cordeiro
- LB3, Faculty of Science and Engineering, University of Madeira, 9000-390 Funchal, Portugal.
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal.
| |
Collapse
|
44
|
Lavasani PS, Motevaseli E, Sanikhani NS, Modarressi MH. Komagataeibacter xylinus as a novel probiotic candidate with high glucose conversion rate properties. Heliyon 2019; 5:e01571. [PMID: 31183432 PMCID: PMC6488717 DOI: 10.1016/j.heliyon.2019.e01571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/27/2019] [Accepted: 04/23/2019] [Indexed: 11/24/2022] Open
Abstract
Promoting general health in terms of obesity and diabetes prevention is recommended by health care systems. The objectives of this study were to isolate an efficient glucose-converting Komagataeibacter xylinus to cellulose and to evaluate the safety of the selected strain as a new generation of probiotics in the fight against obesity. Of the 97 samples, 43 K xylinus strains were isolated and evaluated for their glucose conversion rate and 5 strains were examined for probiotic activities by in vitro assays. A strain with significant performance was fed to rats in order to determine its safety status in vivo. The results revealed that the strain K.X.1 had high level of glucose conversion rate and significant survival rate in acidic pH and bile salt. No adverse clinical signs and bacterial translocation to rats' organs were observed. The results showed that the strain of K. xylinus K.X.1 has suitable probiotic properties.
Collapse
Affiliation(s)
- Paria Sadat Lavasani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Sadat Sanikhani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
45
|
“Deceived” Concentrated Immobilized Cells as Biocatalyst for Intensive Bacterial Cellulose Production from Various Sources. Catalysts 2018. [DOI: 10.3390/catal8010033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A new biocatalyst in the form of Komagataeibacter xylinum B-12429 cells immobilized in poly(vinyl alcohol) cryogel for production of bacterial cellulose was demonstrated. Normally, the increased bacteria concentration causes an enlarged bacterial cellulose synthesis while cells push the polysaccharide out to pack themselves into this polymer and go into a stasis. Immobilization of cells into the poly(vinyl alcohol) cryogel allowed “deceiving” them: bacteria producing cellulose pushed it out, which further passed through the pores of cryogel matrix and was accumulated in the medium while not covering the cells; hence, the latter were deprived of a possible transition to inactivity and worked on the synthesis of bacterial cellulose even more actively. The repeated use of immobilized cells retaining 100% of their metabolic activity for at least 10 working cycles (60 days) was performed. The immobilized cells produce bacterial cellulose with crystallinity and porosity similar to polysaccharide of free cells, but having improved stiffness and tensile strength. Various media containing sugars and glycerol, based on hydrolysates of renewable biomass sources (aspen, Jerusalem artichoke, rice straw, microalgae) were successfully applied for bacterial cellulose production by immobilized cells, and the level of polysaccharide accumulation was 1.3–1.8-times greater than suspended cells could produce.
Collapse
|
46
|
Effect of Temperature and Gamma Radiation on Salmonella Hadar Biofilm Production on Different Food Contact Surfaces. J FOOD QUALITY 2018. [DOI: 10.1155/2018/9141540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Salmonella is a pathogen transmitted by foods and it is one of the most important target bacteria in food irradiation studies. Few works were carried out on the effectiveness of gamma radiation against biofilms formed by this bacterium. Salmonella can form a biofilm on different material surfaces. The physicochemical properties of surfaces and environmental factors influence the adhesion of this pathogen. The present study investigated the effect of gamma radiation (1 and 2 kGy) and temperature (28°C and 37°C) on the development of Salmonella Hadar biofilm on polyvinyl chloride (PVC), glass, cellophane paper (CELLO), and polystyrene (POLY). The obtained results indicated that biofilm production is surface and temperature dependent. In addition, biofilm formation decreased significantly after gamma irradiation at either 1 or 2 kGy doses. However, the agfD and adrA genes expression did not demonstrate significant decrease. This work highlighted that gamma radiation treatment could reduce the biofilm formation of Salmonella enterica serovar Hadar on different food contact surfaces.
Collapse
|
47
|
FTIR Spectral and Microarchitectural Analysis of Cellulose Produced by Lactococcus lactis Under Agitated Condition. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.4.38] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Costa AFS, Almeida FCG, Vinhas GM, Sarubbo LA. Production of Bacterial Cellulose by Gluconacetobacter hansenii Using Corn Steep Liquor As Nutrient Sources. Front Microbiol 2017; 8:2027. [PMID: 29089941 PMCID: PMC5651021 DOI: 10.3389/fmicb.2017.02027] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
Cellulose is mainly produced by plants, although many bacteria, especially those belonging to the genus Gluconacetobacter, produce a very peculiar form of cellulose with mechanical and structural properties that can be exploited in numerous applications. However, the production cost of bacterial cellulose (BC) is very high to the use of expensive culture media, poor yields, downstream processing, and operating costs. Thus, the purpose of this work was to evaluate the use of industrial residues as nutrients for the production of BC by Gluconacetobacter hansenii UCP1619. BC pellicles were synthesized using the Hestrin-Schramm (HS) medium and alternative media formulated with different carbon (sugarcane molasses and acetylated glucose) and nitrogen sources [yeast extract, peptone, and corn steep liquor (CSL)]. A jeans laundry was also tested. None of the tested sources (beside CSL) worked as carbon and nutrient substitute. The alternative medium formulated with 1.5% glucose and 2.5% CSL led to the highest yield in terms of dry and hydrated mass. The BC mass produced in the alternative culture medium corresponded to 73% of that achieved with the HS culture medium. The BC pellicles demonstrated a high concentration of microfibrils and nanofibrils forming a homogenous, compact, and three-dimensional structure. The biopolymer produced in the alternative medium had greater thermal stability, as degradation began at 240°C, while degradation of the biopolymer produced in the HS medium began at 195°C. Both biopolymers exhibited high crystallinity. The mechanical tensile test revealed the maximum breaking strength and the elongation of the break of hydrated and dry pellicles. The dry BC film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The dry film supported up to 48 MPa of the breaking strength and exhibited greater than 96.98% stiffness in comparison with the hydrated film. The values obtained for the Young's modulus in the mechanical tests in the hydrated samples indicated low values for the variable rigidity. The presence of water in the interior and between the nanofibers of the hydrated BC only favored the results for the elasticity, which was 56.37% higher when compared to the dry biomaterial.
Collapse
Affiliation(s)
- Andrea F S Costa
- Northeast Biotechnology Network, Federal Rural University of Pernambuco, Recife, Brazil.,Design and Communication Center, Academic Region Agreste Center, Federal University of Pernambuco, Caruaru, Brazil
| | - Fabíola C G Almeida
- Center of Sciences and Technology, Catholic University of Pernambuco, Recife, Brazil.,Advanced Institute of Technology and Innovation, Recife, Brazil
| | - Glória M Vinhas
- Department of Chemical Engineering, Technology and Geosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Leonie A Sarubbo
- Center of Sciences and Technology, Catholic University of Pernambuco, Recife, Brazil.,Advanced Institute of Technology and Innovation, Recife, Brazil
| |
Collapse
|