1
|
Abstract
Findings of preclinical studies and recent phase I/II clinical trials have shown that mesenchymal stem cells (MSCs) play a significant role in the development of diabetic kidney disease (DKD). Thus, MSCs have attracted increasing attention as a novel regenerative therapy for kidney diseases. This review summarizes recent literature on the roles and potential mechanisms, including hyperglycemia regulation, anti-inflammation, anti-fibrosis, pro-angiogenesis, and renal function protection, of MSC-based treatment methods for DKD. This review provides novel insights into understanding the pathogenesis of DKD and guiding the development of biological therapies.
Collapse
Affiliation(s)
- Ning Xu
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, China
| | - Jie Liu
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, 261053, China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| |
Collapse
|
2
|
The therapeutic potential of Camel Wharton jelly mesenchymal stem cells (CWJ-MSCs) in canine chronic kidney disease model. Stem Cell Res Ther 2022; 13:387. [PMID: 35908006 PMCID: PMC9338563 DOI: 10.1186/s13287-022-03076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chronic kidney disease (CKD) is a worldwide health problem that its incidence increases nowadays with the increase in the risk of environmental pollution. CKD can progress to end-stage renal disease (ESRD) which usually ends fatally. This study aimed to examine the therapeutic potential of Camel Wharton jelly-mesenchymal stem cells (CWJ-MSCs) in chronic kidney disease model induced in dogs. Methods CWJ-MSCs were injected directed to the kidney with ultrasonographic guidance in dogs with 5/6 nephrectomy to evaluate its therapeutic potency in such cases. Analysis of variance was applied in normally distributed quantitative variables while a non-parametric Mann–Whitney test was used for non-normally distributed quantitative variables. Results The serum urea and creatinine in the treated group were significantly decreased transferring dogs in the treated group from stage 3 to stage 2 CKD according to the IRIS staging system. Histopathology of renal tissue revealed improving CKD lesions by increasing regeneration of degenerated tubules, maintaining the integrity of glomeruli. New vascularization with blood vessels remodeling were common findings. Periodic acid Schiff stain of renal tissue showed the integrity of renal tubules and thickness of the glomerular basement membrane. Fibrosis of cortex and medulla was lower in the treated group than in the CKD model as monitored by Mallory’s trichrome stain (MTC). NGAL and KIM-1 genes expression were decreased while VEGF and EGF genes expression were increased indicating renal tissue repair. Conclusions CWJ-MSCs have a therapeutic potential in the CKD model induced in dogs.
Collapse
|
3
|
Yang F, Zhao S, Zhang X, Ding S, Xu Y. RNF6 Targeted by miR-26a-5p Protects Pancreatic β-Cell Function Against Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:93-102. [PMID: 35046680 PMCID: PMC8761081 DOI: 10.2147/dmso.s335088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is characterized by progressive β-cell dysfunction. Regulatory microRNAs (miRNAs) may be associated with this. METHODS Serum miR-26a-5p and RNF6 levels were detected in T2D patients and healthy volunteers via qRT-PCR. Subsequently, the role of specific dysregulated miR-26a-5p or RNF6 in regulating insulin content, cell proliferation, and apoptosis was studied in INS-1 cells. The targeting correlation between miR-26a-5p and RNF6 was detected using a luciferase assay. RESULTS RNF6 expression was significantly decreased in T2D individuals and INS-1 cells treated with high glucose, while miR-26a-5p expression was increased. In INS-1 cells, RNF6 overexpression or miR-26a-5p downregulation significantly increased insulin content and secretion, induced proliferation, and inhibited apoptosis. RNF6 has been identified as an miR-26a-5p target, which negatively regulates RNF6 to worsen INS-1 cell function. CONCLUSION RNF6 promoted insulin secretion and induced cell proliferation in INS-1 cells. This may be related to miR-26a-5p targeting and negatively regulating T2D pathogenesis.
Collapse
Affiliation(s)
- Fan Yang
- Department of Endocrinology, Wuhan University Zhongnan Hospital, Wuhan, 430000, Hubei, People’s Republic of China
| | - Shengxun Zhao
- Department of Geriatrics, The First Hospital of Wuhan, Wuhan, 430000, Hubei, People’s Republic of China
| | - Xuyan Zhang
- Department of Endocrinology, The Central Hospital of Wuhan, Wuhan, 430014, Hubei, People’s Republic of China
| | - Sheng Ding
- Department of Endocrinology, The Central Hospital of Wuhan, Wuhan, 430014, Hubei, People’s Republic of China
| | - Yancheng Xu
- Department of Endocrinology, Wuhan University Zhongnan Hospital, Wuhan, 430000, Hubei, People’s Republic of China
- Correspondence: Yancheng Xu Department of Endocrinology, Wuhan University Zhongnan Hospital, No. 169, Donghu Road, Wuchang District, Wuhan, 430000, Hubei, People’s Republic of ChinaTel +86 13907116967 Email
| |
Collapse
|
4
|
Liau LL, Ruszymah BHI, Ng MH, Law JX. Characteristics and clinical applications of Wharton's jelly-derived mesenchymal stromal cells. Curr Res Transl Med 2019; 68:5-16. [PMID: 31543433 DOI: 10.1016/j.retram.2019.09.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022]
Abstract
Mesenchymal stromal cells (MSCs) are widely used in the clinic because they involve fewer ethical issues and safety concerns compared to other stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). MSCs derived from umbilical cord Wharton's jelly (WJ-MSCs) have excellent proliferative potential and a faster growth rate and can retain their multipotency for more passages in vitro compared to adult MSCs from bone marrow or adipose tissue. WJ-MSCs are used clinically for repairing tissue injuries of the spinal cord, liver and heart with the aim of regenerating tissue. On the other hand, WJ-MSCs are also used clinically to ameliorate immune-mediated diseases based on their ability to modulate immune responses. In the field of tissue engineering, WJ-MSCs capable of differentiating into multiple cell lineages have been used to produce a variety of engineered tissues in vitro that can then be transplanted in vivo. This review discusses the characteristics of WJ-MSCs, the differences between WJ-MSCs and adult MSCs, clinical studies involving WJ-MSCs and future perspectives of WJ-MSC research and clinical applications. To summarize, WJ-MSCs have shown promise in treating a variety of diseases clinically. However, most clinical trials/studies reported thus far are relatively smaller in scale. The collected evidence is insufficient to support the routine use of WJ-MSC therapy in the clinic. Thus, rigorous clinical trials are needed in the future to obtain more information on WJ-MSC therapy safety and efficacy.
Collapse
Affiliation(s)
- L L Liau
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - B H I Ruszymah
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - M H Ng
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia
| | - J X Law
- Tissue Engineering Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, 56000 Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Current Status of Stem Cell Treatment for Type I Diabetes Mellitus. Tissue Eng Regen Med 2018; 15:699-709. [PMID: 30603589 DOI: 10.1007/s13770-018-0143-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a major health concern in current scenario which has been found to affect people of almost all ages. The disease has huge impact on global health; therefore, alternate methods apart from insulin injection are being explored to cure diabetes. Therefore, this review mainly focuses on the current status and therapeutic potential of stem cells mainly mesenchymal stem cells (MSCs) for Type 1 diabetes mellitus in preclinical animal models as well as humans. METHODS Current treatment for Type 1 diabetes mellitus mainly includes use of insulin which has its own limitations and also the underlying mechanism of diseases is still not explored. Therefore, alternate methods to cure diabetes are being explored. Stem cells are being investigated as an alternative therapy for treatment of various diseases including diabetes. Few preclinical studies have also been conducted using undifferentiated MSCs as well as in vitro MSCs differentiated into β islet cells. RESULTS These stem cell transplant studies have highlighted the benefits of MSCs, which have shown promising results. Few human trials using stem cells have also affirmed the potential of these cells in alleviating the symptoms. CONCLUSION Stem cell transplantation may prove to be a safe and effective treatment for patients with Type 1 diabetes mellitus.
Collapse
|
6
|
Macrin D, Joseph JP, Pillai AA, Devi A. Eminent Sources of Adult Mesenchymal Stem Cells and Their Therapeutic Imminence. Stem Cell Rev Rep 2018; 13:741-756. [PMID: 28812219 DOI: 10.1007/s12015-017-9759-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the recent times, stem cell biology has garnered the attention of the scientific fraternity and the general public alike due to the immense therapeutic potential that it holds in the field of regenerative medicine. A breakthrough in this direction came with the isolation of stem cells from human embryo and their differentiation into cell types of all three germ layers. However, the isolation of mesenchymal stem cells from adult tissues proved to be advantageous over embryonic stem cells due to the ethical and immunological naivety. Mesenchymal Stem Cells (MSCs) isolated from the bone marrow were found to differentiate into multiple cell lineages with the help of appropriate differentiation factors. Furthermore, other sources of stem cells including adipose tissue, dental pulp, and breast milk have been identified. Newer sources of stem cells have been emerging recently and their clinical applications are also being studied. In this review, we examine the eminent sources of Mesenchymal Stem Cells (MSCs), their immunophenotypes, and therapeutic imminence.
Collapse
Affiliation(s)
- Dannie Macrin
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India
| | - Joel P Joseph
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India
| | | | - Arikketh Devi
- Department of Genetic Engineering, SRM University, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
7
|
Cui Y, Yao Y, Zhao Y, Xiao Z, Cao Z, Han S, Li X, Huan Y, Pan J, Dai J. Functional collagen conduits combined with human mesenchymal stem cells promote regeneration after sciatic nerve transection in dogs. J Tissue Eng Regen Med 2018; 12:1285-1296. [PMID: 29499096 DOI: 10.1002/term.2660] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 01/08/2018] [Accepted: 02/17/2018] [Indexed: 12/20/2022]
Abstract
Numerous studies have focused on the development of novel and innovative approaches for the treatment of peripheral nerve injury using artificial nerve guide conduits. In this study, we attempted to bridge 3.5-cm defects of the sciatic nerve with a longitudinally oriented collagen conduit (LOCC) loaded with human umbilical cord mesenchymal stem cells (hUC-MSCs). The LOCC contains a bundle of longitudinally aligned collagenous fibres enclosed in a hollow collagen tube. Our previous studies showed that an LOCC combined with neurotrophic factors enhances peripheral nerve regeneration. However, it remained unknown whether an LOCC seeded with hUC-MSCs could also promote regeneration. In this study, using various histological and electrophysiological analyses, we found that an LOCC provides mechanical support to newly growing nerves and functions as a structural scaffold for cells, thereby stimulating sciatic nerve regeneration. The LOCC and hUC-MSCs synergistically promoted regeneration and improved the functional recovery in a dog model of sciatic nerve injury. Therefore, the combined use of an LOCC and hUC-MSCs might have therapeutic potential for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China.,Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yao Yao
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yannan Zhao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhifeng Xiao
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zongfu Cao
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, China
| | - Sufang Han
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xing Li
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yong Huan
- State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Juli Pan
- Department of Prosthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Jianwu Dai
- Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Mesenchymal Stem and Progenitor Cells in Regeneration: Tissue Specificity and Regenerative Potential. Stem Cells Int 2017; 2017:5173732. [PMID: 28286525 PMCID: PMC5327785 DOI: 10.1155/2017/5173732] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/07/2016] [Indexed: 12/15/2022] Open
Abstract
It has always been an ambitious goal in medicine to repair or replace morbid tissues for regaining the organ functionality. This challenge has recently gained momentum through considerable progress in understanding the biological concept of the regenerative potential of stem cells. Routine therapeutic procedures are about to shift towards the use of biological and molecular armamentarium. The potential use of embryonic stem cells and invention of induced pluripotent stem cells raised hope for clinical regenerative purposes; however, the use of these interventions for regenerative therapy showed its dark side, as many health concerns and ethical issues arose in terms of using these cells in clinical applications. In this regard, adult stem cells climbed up to the top list of regenerative tools and mesenchymal stem cells (MSC) showed promise for regenerative cell therapy with a rather limited level of risk. MSC have been successfully isolated from various human tissues and they have been shown to offer the possibility to establish novel therapeutic interventions for a variety of hard-to-noncurable diseases. There have been many elegant studies investigating the impact of MSC in regenerative medicine. This review provides compact information on the role of stem cells, in particular, MSC in regeneration.
Collapse
|
9
|
Dang LTT, Bui ANT, Le-Thanh Nguyen C, Truong NC, Bui ATV, Kim NP, Truong KD, Van Pham P. Intravenous Infusion of Human Adipose Tissue-Derived Mesenchymal Stem Cells to Treat Type 1 Diabetic Mellitus in Mice: An Evaluation of Grafted Cell Doses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1083:145-156. [PMID: 29423674 DOI: 10.1007/5584_2017_127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cell (MSC) transplantation is a novel treatment for diabetes mellitus, especially type 1 diabetes. Many recent publications have demonstrated the efficacy of MSC transplantation on reducing blood glucose and increasing insulin production in both preclinical and clinical trials. However, the investigation of grafted cell doses has been lacking. Therefore, this study aimed to evaluate the different doses of MSCs on treatment of type 1 diabetes in mouse models. MSCs were isolated and expanded from human adipose tissue. Streptozotocin (STZ)-induced diabetic mice were divided into two groups that were intravenously transfused with two different doses of human MSCs: 106 or 2.106 cells/mouse. After transplantation, both grafted and placebo mice were monitored weekly for their blood glucose levels, glucose and insulin tolerance, pancreatic structural changes, and insulin production for 56 days after transplantation. The results showed that the higher dose of MSCs (2.106 cells/mouse) remarkably reduced death rate. The death rates were 50%, 66%, and 0% in placebo group, low-dose (1.106 MSCs) group, and high-dose (2.106 MSCs) group, respectively, after 56 days of treatment. Moreover, blood glucose levels were lower for the high-dose group compared to other groups. Glucose and insulin tolerance, as well as insulin production, were significantly improved in mice transplanted with 2.106 cells. The histochemical analyses also support these results. Thus, a higher (e.g., 2.106) dose of MSCs may be an effective dose for treatment of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Loan Thi-Tung Dang
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
| | - Anh Nguyen-Tu Bui
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
| | - Cong Le-Thanh Nguyen
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
- Laboratory of Stem Cell Research and Application, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
| | - Nhat Chau Truong
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
- Laboratory of Stem Cell Research and Application, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
| | - Anh Thi-Van Bui
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
- Laboratory of Stem Cell Research and Application, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
| | - Ngoc Phan Kim
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam
| | | | - Phuc Van Pham
- Stem Cell Institute, University of Science, VNUHCM, Ho Chi Minh city, Vietnam.
- Laboratory of Stem Cell Research and Application, University of Science, VNUHCM, Ho Chi Minh city, Vietnam.
| |
Collapse
|
10
|
Infusion with Human Bone Marrow-derived Mesenchymal Stem Cells Improves β-cell Function in Patients and Non-obese Mice with Severe Diabetes. Sci Rep 2016; 6:37894. [PMID: 27905403 PMCID: PMC5131346 DOI: 10.1038/srep37894] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/01/2016] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) transplantation is a promising therapeutic strategy for type 1 diabetes (T1D). However, little is known on whether MSC transplantation can benefit T1D patients with ketoacidosis and its potential actions. Here, we show that infusion with bone marrow MSCs preserves β-cell function in some T1D patients with ketoacidosis by decreasing exogenous insulin requirement and increasing plasma C-peptide levels up to 1–2 years. MSC transplantation increased plasma and islet insulin contents in non-obese diabetic (NOD) mice with severe diabetes. In comparison with severe diabetes controls, MSC infusion reduced insulitis, decreased pancreatic TNF-α, and increased IL-10 and TGF-β1 expression in NOD mice. MSC infusion increased the percentages of splenic Tregs and levels of plasma IL-4, IL-10 and TGF-β1, but reduced the percentages of splenic CD8+ T and levels of plasma IFN-γ, TNF-α and IL-17A in NOD mice. Finally, infused MSCs predominantly accumulated in pancreatic tissues at 28 days post infusion. The effects of MSCs on preserving β-cell function and modulating inflammation tended to be dose-dependent and multiple doses of MSCs held longer effects in NOD mice. Hence, MSC transplantation preserved β-cell function in T1D patients and NOD mice with severe diabetes by enhancing Treg responses.
Collapse
|
11
|
Zou Q, Wu M, Zhong L, Fan Z, Zhang B, Chen Q, Ma F. Development of a Xeno-Free Feeder-Layer System from Human Umbilical Cord Mesenchymal Stem Cells for Prolonged Expansion of Human Induced Pluripotent Stem Cells in Culture. PLoS One 2016; 11:e0149023. [PMID: 26882313 PMCID: PMC4755601 DOI: 10.1371/journal.pone.0149023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.
Collapse
Affiliation(s)
- Qing Zou
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
- Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Mingjun Wu
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
| | - Liwu Zhong
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
| | - Zhaoxin Fan
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
| | - Bo Zhang
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
| | - Qiang Chen
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
- Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
- * E-mail: (FM); (QC)
| | - Feng Ma
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech INC., Chengdu, Sichuan, China
- Center for Stem Cell Research & Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
- State Key Laboratory of Experimental Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (FM); (QC)
| |
Collapse
|