1
|
Zhang X, Zhou H, Liu H, Xu P. Role of Oxidative Stress in the Occurrence and Development of Cognitive Dysfunction in Patients with Obstructive Sleep Apnea Syndrome. Mol Neurobiol 2024; 61:5083-5101. [PMID: 38159196 DOI: 10.1007/s12035-023-03899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS) causes recurrent apnea and intermittent hypoxia at night, leading to several complications such as cognitive dysfunction. However, the molecular mechanisms underlying cognitive dysfunction in OSAS are unclear, and oxidative stress mediated by intermittent hypoxia is an important mechanism. In addition, the improvement of cognitive dysfunction in patients with OSAS varies by different treatment regimens; among them, continuous positive airway pressure therapy (CPAP) is mostly recognized for improving cognitive dysfunction. In this review, we discuss the potential mechanisms of oxidative stress in OSAS, the common factors of affecting oxidative stress and the Links between oxidative stress and inflammation in OSAS, focusing on the potential links between oxidative stress and cognitive dysfunction in OSAS and the potential therapies for neurocognitive dysfunction in patients with OSAS mediated by oxidative stress. Therefore, further analysis on the relationship between oxidative stress and cognitive dysfunction in patients with OSAS will help to clarify the etiology and discover new treatment options, which will be of great significance for early clinical intervention.
Collapse
Affiliation(s)
- XiaoPing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - HaiJun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Breuillard C, Moulin S, Bouyon S, Couchet M, Moinard C, Belaidi E. Chronic intermittent hypoxia due to obstructive sleep apnea slightly alters nutritional status: a pre-clinical study. Front Nutr 2023; 10:1250529. [PMID: 37964925 PMCID: PMC10642957 DOI: 10.3389/fnut.2023.1250529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is associated with chronic intermittent hypoxia (cIH) that causes disturbances in glucose and lipid metabolism. Animals exposed to cIH show lower body weight and food intake, but the protein-energy metabolism has never been investigated. Here, to address the gap, we studied the impact of cIH on nutritional status in rats. A total of 24 male Wistar rats were randomized into 3 groups (n = 8): a control group (Ctrl), a cIH group (cIH) exposed to cIH (30 s 21-30 s 5% fraction of inspired oxygen, 8 h per day, for 14 days), and a pair-fed group (PF) exposed to normoxia with food intake adjusted to the intake of the cIH group rats with anorexia. Body weight and food intake were measured throughout the study. After 14 days, the rats were euthanized, the organs were collected, weighed, and the liver, intestine mucosa, and muscles were snap-frozen to measure total protein content. Food intake was decreased in the cIH group. Body weight was significantly lower in the cIH group only (-11%, p < 0.05). Thymus and liver weight as well as EDL protein content tended to be lower in the cIH group than in the Ctrl and PF groups. Jejunum and ileum mucosa protein contents were lower in the cIH group compared to the PF group. cIH causes a slight impairment of nutritional status and immunity. This pre-clinical work argues for greater consideration of malnutrition in care for OSAS patients. Further studies are warranted to devise an adequate nutritional strategy.
Collapse
Affiliation(s)
- Charlotte Breuillard
- Université Grenoble Alpes, Inserm, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble, France
| | - Sophie Moulin
- Université Grenoble Alpes, Inserm, Laboratory HP2, Grenoble, France
| | - Sophie Bouyon
- Université Grenoble Alpes, Inserm, Laboratory HP2, Grenoble, France
| | - Morgane Couchet
- Université Grenoble Alpes, Inserm, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble, France
| | - Christophe Moinard
- Université Grenoble Alpes, Inserm, Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble, France
| | - Elise Belaidi
- Université Grenoble Alpes, Inserm, Laboratory HP2, Grenoble, France
| |
Collapse
|
3
|
Hypoxia as a Double-Edged Sword to Combat Obesity and Comorbidities. Cells 2022; 11:cells11233735. [PMID: 36496995 PMCID: PMC9736735 DOI: 10.3390/cells11233735] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
The global epidemic of obesity is tightly associated with numerous comorbidities, such as type II diabetes, cardiovascular diseases and the metabolic syndrome. Among the key features of obesity, some studies have suggested the abnormal expansion of adipose-tissue-induced local endogenous hypoxic, while other studies indicated endogenous hyperoxia as the opposite trend. Endogenous hypoxic aggravates dysfunction in adipose tissue and stimulates secretion of inflammatory molecules, which contribute to obesity. In contrast, hypoxic exposure combined with training effectively generate exogenous hypoxic to reduce body weight and downregulate metabolic risks. The (patho)physiological effects in adipose tissue are distinct from those of endogenous hypoxic. We critically assess the latest advances on the molecular mediators of endogenous hypoxic that regulate the dysfunction in adipose tissue. Subsequently we propose potential therapeutic targets in adipose tissues and the small molecules that may reverse the detrimental effect of local endogenous hypoxic. More importantly, we discuss alterations of metabolic pathways in adipose tissue and the metabolic benefits brought by hypoxic exercise. In terms of therapeutic intervention, numerous approaches have been developed to treat obesity, nevertheless durability and safety remain the major concern. Thus, a combination of the therapies that suppress endogenous hypoxic with exercise plans that augment exogenous hypoxic may accelerate the development of more effective and durable medications to treat obesity and comorbidities.
Collapse
|
4
|
Yang C, Zhou Y, Liu H, Xu P. The Role of Inflammation in Cognitive Impairment of Obstructive Sleep Apnea Syndrome. Brain Sci 2022; 12:brainsci12101303. [PMID: 36291237 PMCID: PMC9599901 DOI: 10.3390/brainsci12101303] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) has become a major worldwide public health concern, given its global prevalence. It has clear links with multiple comorbidities and mortality. Cognitive impairment is one related comorbidity causing great pressure on individuals and society. The clinical manifestations of cognitive impairment in OSAS include decline in attention/vigilance, verbal–visual memory loss, visuospatial/structural ability impairment, and executive dysfunction. It has been proven that chronic intermittent hypoxia (CIH) may be a main cause of cognitive impairment in OSAS. Inflammation plays important roles in CIH-induced cognitive dysfunction. Furthermore, the nuclear factor kappa B and hypoxia-inducible factor 1 alpha pathways play significant roles in this inflammatory mechanism. Continuous positive airway pressure is an effective therapy for OSAS; however, its effect on cognitive impairment is suboptimal. Therefore, in this review, we address the role inflammation plays in the development of neuro-impairment in OSAS and the association between OSAS and cognitive impairment to provide an overview of its pathophysiology. We believe that furthering the understanding of the inflammatory mechanisms involved in OSAS-associated cognitive impairment could lead to the development of appropriate and effective therapy.
Collapse
|
5
|
Santos-Laso A, Gutiérrez-Larrañaga M, Alonso-Peña M, Medina JM, Iruzubieta P, Arias-Loste MT, López-Hoyos M, Crespo J. Pathophysiological Mechanisms in Non-Alcoholic Fatty Liver Disease: From Drivers to Targets. Biomedicines 2021; 10:biomedicines10010046. [PMID: 35052726 PMCID: PMC8773141 DOI: 10.3390/biomedicines10010046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the excessive and detrimental accumulation of liver fat as a result of high-caloric intake and/or cellular and molecular abnormalities. The prevalence of this pathological event is increasing worldwide, and is intimately associated with obesity and type 2 diabetes mellitus, among other comorbidities. To date, only therapeutic strategies based on lifestyle changes have exhibited a beneficial impact on patients with NAFLD, but unfortunately this approach is often difficult to implement, and shows poor long-term adherence. For this reason, great efforts are being made to elucidate and integrate the underlying pathological molecular mechanism, and to identify novel and promising druggable targets for therapy. In this regard, a large number of clinical trials testing different potential compounds have been performed, albeit with no conclusive results yet. Importantly, many other clinical trials are currently underway with results expected in the near future. Here, we summarize the key aspects of NAFLD pathogenesis and therapeutic targets in this frequent disorder, highlighting the most recent advances in the field and future research directions.
Collapse
Affiliation(s)
- Alvaro Santos-Laso
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- Correspondence: (A.S.-L.); (J.C.)
| | - María Gutiérrez-Larrañaga
- Department of Immunology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.G.-L.); (M.L.-H.)
| | - Marta Alonso-Peña
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
| | - Juan M. Medina
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
| | - Paula Iruzubieta
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - María Teresa Arias-Loste
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Marcos López-Hoyos
- Department of Immunology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.G.-L.); (M.L.-H.)
| | - Javier Crespo
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
- Correspondence: (A.S.-L.); (J.C.)
| |
Collapse
|
6
|
Lamadrid P, Alonso-Peña M, San Segundo D, Arias-Loste M, Crespo J, Lopez-Hoyos M. Innate and Adaptive Immunity Alterations in Metabolic Associated Fatty Liver Disease and Its Implication in COVID-19 Severity. Front Immunol 2021; 12:651728. [PMID: 33859644 PMCID: PMC8042647 DOI: 10.3389/fimmu.2021.651728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022] Open
Abstract
The coronavirus infectious disease 2019 (COVID-19) pandemic has hit the world, affecting health, medical care, economies and our society as a whole. Furthermore, COVID-19 pandemic joins the increasing prevalence of metabolic syndrome in western countries. Patients suffering from obesity, type II diabetes mellitus, cardiac involvement and metabolic associated fatty liver disease (MAFLD) have enhanced risk of suffering severe COVID-19 and mortality. Importantly, up to 25% of the population in western countries is susceptible of suffering from both MAFLD and COVID-19, while none approved treatment is currently available for any of them. Moreover, it is well known that exacerbated innate immune responses are key in the development of the most severe stages of MAFLD and COVID-19. In this review, we focus on the role of the immune system in the establishment and progression of MAFLD and discuss its potential implication in the development of severe COVID-19 in MAFLD patients. As a result, we hope to clarify their common pathology, but also uncover new potential therapeutic targets and prognostic biomarkers for further research.
Collapse
Affiliation(s)
- Patricia Lamadrid
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - Marta Alonso-Peña
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain
| | - David San Segundo
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Mayte Arias-Loste
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Javier Crespo
- Clinical and Translational Research in Digestive Pathology Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Gastroenterology and Hepatology Department, Marques de Valdecilla University Hospital, Santander, Spain
| | - Marcos Lopez-Hoyos
- Transplant and Autoimmunity Group, Research Institute Marques de Valdecilla (IDIVAL), Santander, Spain.,Immunology Department, Marques de Valdecilla University Hospital, Santander, Spain
| |
Collapse
|
7
|
Zhang CH, Sheng JQ, Xie WH, Luo XQ, Xue YN, Xu GL, Chen C. Mechanism and Basis of Traditional Chinese Medicine Against Obesity: Prevention and Treatment Strategies. Front Pharmacol 2021; 12:615895. [PMID: 33762940 PMCID: PMC7982543 DOI: 10.3389/fphar.2021.615895] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
In the last few decades, the incidences of obesity and related metabolic disorders worldwide have increased dramatically. Major pathophysiology of obesity is termed "lipotoxicity" in modern western medicine (MWM) or "dampness-heat" in traditional Chinese medicine (TCM). "Dampness-heat" is a very common and critically important syndrome to guild clinical treatment in TCM. However, the pathogenesis of obesity in TCM is not fully clarified, especially by MWM theories compared to TCM. In this review, the mechanism underlying the action of TCM in the treatment of obesity and related metabolic disorders was thoroughly discussed, and prevention and treatment strategies were proposed accordingly. Hypoxia and inflammation caused by lipotoxicity exist in obesity and are key pathophysiological characteristics of "dampness-heat" syndrome in TCM. "Dampness-heat" is prevalent in chronic low-grade systemic inflammation, prone to insulin resistance (IR), and causes variant metabolic disorders. In particular, the MWM theories of hypoxia and inflammation were applied to explain the "dampness-heat" syndrome of TCM, and we summarized and proposed the pathological path of obesity: lipotoxicity, hypoxia or chronic low-grade inflammation, IR, and metabolic disorders. This provides significant enrichment to the scientific connotation of TCM theories and promotes the modernization of TCM.
Collapse
Affiliation(s)
- Chang-Hua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jun-Qing Sheng
- College of Life Science, Nanchang University, Nanchang, China
| | - Wei-Hua Xie
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xiao-Quan Luo
- Experimental Animal Science and Technology Center of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ya-Nan Xue
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Guo-Liang Xu
- Research Center for Differentiation and Development of Basic Theory of TCM, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Fedele D, De Francesco A, Riso S, Collo A. Obesity, malnutrition, and trace element deficiency in the coronavirus disease (COVID-19) pandemic: An overview. Nutrition 2021; 81:111016. [PMID: 33059127 PMCID: PMC7832575 DOI: 10.1016/j.nut.2020.111016] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/24/2020] [Accepted: 08/29/2020] [Indexed: 02/06/2023]
Abstract
The world is currently facing the coronavirus disease (COVID-19) pandemic which places great pressure on health care systems and workers, often presents with severe clinical features, and sometimes requires admission into intensive care units. Derangements in nutritional status, both for obesity and malnutrition, are relevant for the clinical outcome in acute illness. Systemic inflammation, immune system impairment, sarcopenia, and preexisting associated conditions, such as respiratory, cardiovascular, and metabolic diseases related to obesity, could act as crucial factors linking nutritional status and the course and outcome of COVID-19. Nevertheless, vitamins and trace elements play an essential role in modulating immune response and inflammatory status. Overall, evaluation of the patient's nutritional status is not negligible for its implications on susceptibility, course, severity, and responsiveness to therapies, in order to perform a tailored nutritional intervention as an integral part of the treatment of patients with COVID-19. The aim of this study was to review the current data on the relevance of nutritional status, including trace elements and vitamin status, in influencing the course and outcome of the disease 3 mo after the World Health Organization's declaration of COVID-19 as a pandemic.
Collapse
Affiliation(s)
- Debora Fedele
- Dietetic and Clinical Nutrition Unit, San Giovanni Battista Hospital, Città della Salute e della Scienza, Turin, Italy.
| | - Antonella De Francesco
- Dietetic and Clinical Nutrition Unit, San Giovanni Battista Hospital, Città della Salute e della Scienza, Turin, Italy
| | - Sergio Riso
- Dietetic and Clinical Nutrition Unit, Maggiore della Carità Hospital, Novara, Italy
| | - Alessandro Collo
- Dietetic and Clinical Nutrition Unit, Maggiore della Carità Hospital, Novara, Italy
| |
Collapse
|
9
|
Zheng KI, Gao F, Wang XB, Sun QF, Pan KH, Wang TY, Ma HL, Chen YP, Liu WY, George J, Zheng MH. Letter to the Editor: Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism 2020; 108:154244. [PMID: 32320741 PMCID: PMC7166301 DOI: 10.1016/j.metabol.2020.154244] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Kenneth I Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Gao
- Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Bo Wang
- Department of Critical Care Medicine, Wenzhou Central Hospital, Wenzhou, China
| | - Qing-Feng Sun
- Department of Infectious Diseases, Ruian People's Hospital, Wenzhou, China
| | - Ke-Hua Pan
- Department of Radiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ting-Yao Wang
- Department of Nephrology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong-Lei Ma
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong-Ping Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Yue Liu
- Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Institute of Hepatology, Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
10
|
Intermittent Hypoxia Composite Abnormal Glucose Metabolism-Mediated Atherosclerosis In Vitro and In Vivo: The Role of SREBP-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4862760. [PMID: 30863480 PMCID: PMC6378806 DOI: 10.1155/2019/4862760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/31/2018] [Indexed: 11/18/2022]
Abstract
Objective The aim of this study was to establish a 3T3-L1 adipocyte model and ApoE−/− mouse model of intermittent hypoxia (IH) composite abnormal glucose metabolism (AGM) in vitro and in vivo and explore their synergistic damage effect leading to atherosclerosis (AS) and the influence of SREBP-1 signaling molecule-related mechanisms. Methods Mature 3T3-L1 adipocytes were cultured with complete culture medium containing DEX 1 × 106 mol/L for 96 h to establish an AGM-3T3-L1 adipocyte model. Then, AGM-3T3-L1 adipocytes were treated with IH for 0 cycles, 2 cycles, 4 cycles, 8 cycles, 16 cycles, and 32 cycles and sustained hypoxia (SH). ApoE−/− mice were treated with high-fat diet and injection of STZ solution to establish an AGM-ApoE−/− mouse model. A total of 16 AGM-ApoE−/− mice were randomly and averagely divided into the normoxic control group (NC) and model group (CIH). AGM-ApoE−/− mice of the CIH group were treated with IH, which meant that the oxygen concentration fell to 10 ± 0.5% in the first 90 seconds of one cycle and then increased to 21 ± 0.5% in the later 90 seconds, continuous for eight hours per day (09 : 00-17 : 00) with a total of eight weeks. Eight C57BL/6J mice were used as the blank control group (Con) which was fed with conventional diet. qPCR and Western blotting were used to detect the expression level of SREBP-1c, FAS, and IRS-1. Oil Red O staining was used to compare the plaque of the aorta among each mouse group. Results As a result, within 32 cycles of IH, mRNA and protein expression levels of SREBP-1c and FAS in AGM-3T3-L1 adipocytes were elevated with the increase in IH cycles; the mRNA expression of IRS-1 was decreased after IH 32 cycles and lower than that of the SH group. For the study in vivo, Oil Red O staining showed a more obvious AS aortic plaque in the CIH group. After CIH treatment of 4 w and 8 w, fasting blood glucose (FBG) of the NC group and CIH group was higher than that of the Con group, and the insulin level of the CIH group was higher than that of the Con group after IH treatment of 8 w. The expressions of the IRS-1 mRNA level in the aorta, skeletal muscle, and liver of the CIH group were lower than those in the Con group. The mRNA and protein expression of SREBP-1c and its downstream molecule FAS in the aorta, skeletal muscle, and liver significantly enhanced in the CIH group in contrast with those in the Con group. Conclusion The CIH composite AGM could promote the progress of AS, which might be related to the modulation of the expression of SREBP-1-related molecular pathways.
Collapse
|
11
|
Gaspar JM, Mendes NF, Corrêa-da-Silva F, Lima-Junior JCD, Gaspar RC, Ropelle ER, Araujo EP, Carvalho HM, Velloso LA. Downregulation of HIF complex in the hypothalamus exacerbates diet-induced obesity. Brain Behav Immun 2018; 73:550-561. [PMID: 29935943 DOI: 10.1016/j.bbi.2018.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/30/2018] [Accepted: 06/20/2018] [Indexed: 11/25/2022] Open
Abstract
Hypothalamic hypoxia-inducible factor-1 (HIF-1) can regulate whole-body energy homeostasis in response to changes in blood glucose, suggesting that it acts as a sensor for systemic energy stores. Here, we hypothesized that hypothalamic HIF-1 could be affected by diet-induced obesity (DIO). We used eight-week old, male C57Bl6 mice, fed normal chow diet or with high fat diet for 1, 3, 7, 14 and 28 days. The expression of HIF-1alpha and HIF-1beta was measured by PCR and western blotting and its hypothalamic distribution was evaluated by fluorescence microscopy. Inhibition of HIF-1beta in arcuate nucleus of hypothalamus was performed using stereotaxic injection of shRNA lentiviral particles and animals were grouped under normal chow diet or high fat diet for 14 days. Using bioinformatics, we show that in humans, the levels of HIF-1 transcripts are directly correlated with those of hypothalamic transcripts for proteins involved in inflammation, regulation of apoptosis, autophagy, and the ubiquitin/proteasome system; furthermore, in rodents, hypothalamic HIF-1 expression is directly correlated with the phenotype of increased energy expenditure. In mice, DIO was accompanied by increased HIF-1 expression. The inhibition of hypothalamic HIF-1 by injection of an shRNA resulted in a further increase in body mass, a decreased basal metabolic rate, increased hypothalamic inflammation, and glucose intolerance. Thus, hypothalamic HIF-1 is increased during DIO, and its inhibition worsens the obesity-associated metabolic phenotype. Thus, hypothalamic HIF-1 emerges as a target for therapeutic intervention against obesity.
Collapse
Affiliation(s)
- Joana M Gaspar
- Laboratory of Cell Signaling, University of Campinas, Obesity and Comorbidities Research Center, Campinas, São Paulo, Brazil
| | - Natália Ferreira Mendes
- Laboratory of Cell Signaling, University of Campinas, Obesity and Comorbidities Research Center, Campinas, São Paulo, Brazil; Faculty of Nursing, University of Campinas, Campinas, São Paulo, Brazil
| | - Felipe Corrêa-da-Silva
- Laboratory of Cell Signaling, University of Campinas, Obesity and Comorbidities Research Center, Campinas, São Paulo, Brazil
| | - José C de Lima-Junior
- Laboratory of Cell Signaling, University of Campinas, Obesity and Comorbidities Research Center, Campinas, São Paulo, Brazil
| | - Rodrigo C Gaspar
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eduardo R Ropelle
- Laboratory of Molecular Biology of Exercise, University of Campinas (UNICAMP), Limeira, São Paulo, Brazil
| | - Eliana P Araujo
- Laboratory of Cell Signaling, University of Campinas, Obesity and Comorbidities Research Center, Campinas, São Paulo, Brazil; Faculty of Nursing, University of Campinas, Campinas, São Paulo, Brazil
| | - Humberto M Carvalho
- Department of Physical Education, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lício A Velloso
- Laboratory of Cell Signaling, University of Campinas, Obesity and Comorbidities Research Center, Campinas, São Paulo, Brazil.
| |
Collapse
|
12
|
Hill DR, Huang S, Nagy MS, Yadagiri VK, Fields C, Mukherjee D, Bons B, Dedhia PH, Chin AM, Tsai YH, Thodla S, Schmidt TM, Walk S, Young VB, Spence JR. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium. eLife 2017; 6:29132. [PMID: 29110754 PMCID: PMC5711377 DOI: 10.7554/elife.29132] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/29/2017] [Indexed: 12/19/2022] Open
Abstract
The human gastrointestinal tract is immature at birth, yet must adapt to dramatic changes such as oral nutrition and microbial colonization. The confluence of these factors can lead to severe inflammatory disease in premature infants; however, investigating complex environment-host interactions is difficult due to limited access to immature human tissue. Here, we demonstrate that the epithelium of human pluripotent stem-cell-derived human intestinal organoids is globally similar to the immature human epithelium and we utilize HIOs to investigate complex host-microbe interactions in this naive epithelium. Our findings demonstrate that the immature epithelium is intrinsically capable of establishing a stable host-microbe symbiosis. Microbial colonization leads to complex contact and hypoxia driven responses resulting in increased antimicrobial peptide production, maturation of the mucus layer, and improved barrier function. These studies lay the groundwork for an improved mechanistic understanding of how colonization influences development of the immature human intestine.
Collapse
Affiliation(s)
- David R Hill
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Sha Huang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Melinda S Nagy
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Veda K Yadagiri
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Courtney Fields
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Dishari Mukherjee
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Brooke Bons
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Priya H Dedhia
- Department of Surgery, University of Michigan, Ann Arbor, United States
| | - Alana M Chin
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Yu-Hwai Tsai
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Shrikar Thodla
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Thomas M Schmidt
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Seth Walk
- Department of Microbiology and Immunology, Montana State University, Bozeman, United States
| | - Vincent B Young
- Division of Infectious Disease, Department of Internal Medicine, University of Michigan, Ann Arbor, United States
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, United States.,Department of Cell andDevelopmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
13
|
Caligiuri A, Gentilini A, Marra F. Molecular Pathogenesis of NASH. Int J Mol Sci 2016; 17:ijms17091575. [PMID: 27657051 PMCID: PMC5037841 DOI: 10.3390/ijms17091575] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is the main cause of chronic liver disease in the Western world and a major health problem, owing to its close association with obesity, diabetes, and the metabolic syndrome. NASH progression results from numerous events originating within the liver, as well as from signals derived from the adipose tissue and the gastrointestinal tract. In a fraction of NASH patients, disease may progress, eventually leading to advanced fibrosis, cirrhosis and hepatocellular carcinoma. Understanding the mechanisms leading to NASH and its evolution to cirrhosis is critical to identifying effective approaches for the treatment of this condition. In this review, we focus on some of the most recent data reported on the pathogenesis of NASH and its fibrogenic progression, highlighting potential targets for treatment or identification of biomarkers of disease progression.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze 50121, Italy.
| | - Alessandra Gentilini
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze 50121, Italy.
| | - Fabio Marra
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Firenze 50121, Italy.
| |
Collapse
|
14
|
Association of Hypoxia-Inducible Factor-2 Alpha Gene Polymorphisms with the Risk of Hepatitis B Virus-Related Liver Disease in Guangxi Chinese: A Case-Control Study. PLoS One 2016; 11:e0158241. [PMID: 27384772 PMCID: PMC4934873 DOI: 10.1371/journal.pone.0158241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/12/2016] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Hypoxia-inducible factor-2 alpha (HIF-2a) plays a major role in the progression of disease, although the role of HIF-2α gene polymorphisms in hepatitis B virus (HBV)-related diseases remains elusive. The aim of this study is to determine whether HIF-2a rs13419896 and rs6715787 single-nucleotide polymorphisms (SNPs) are associated with susceptibility to chronic hepatitis B (CHB), liver cirrhosis (LC), or hepatocellular carcinoma (HCC). METHOD A case-control study of 107 patients with CHB, 83 patients with LC, 234 patients with HCC, and 224 healthy control subjects was carried out, and the HIF-2a rs13419896 and rs6715787 SNPs were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). RESULTS No significant differences were observed in the genotype or allele frequency of two HIF-2a SNPs between the cases and controls (all p>0.05). However, in subgroup analysis by gender, the HIF-2a rs13419896 GA and AA genotypes were significantly associated with a risk of CHB (odds ratio [OR] = 3.565, 95% confidence interval [CI] = 1.123-11.314, p = 0.031 and OR = 12.506, 95% CI = 1.329-117.716, p = 0.027) in females, and the A allele of rs13419896 was associated with a risk of CHB (OR = 2.624, 95% CI = 1.244-5.537, p = 0.011) and LC (OR = 2.351, 95% CI = 1.002-5.518, p = 0.050) in females. The rs6715787 CG genotype polymorphism may contribute to a reduced risk of LC in the Guangxi Zhuang Chinese population (OR = 0.152, 95% CI = 0.028-0.807, p = 0.027), as determined via subgroup analysis by ethnicity. Moreover, binary logistic regression analyses that were adjusted by drinking status indicated that the AA genotype of rs13419896 may contribute to an increased risk of LC in the non-alcohol-drinking population (OR = 3.124, 95% CI = 1.091-8.947, p = 0.034). In haplotype analysis, GG haplotype was significantly associated with a reduced risk of LC (OR = 0.601, 95% CI = 0.419-0.862, p = 0.005). CONCLUSIONS The HIF-2a rs13419896 polymorphism is associated with an increased risk of CHB and LC in the Guangxi Chinese population, especially in females and in the non-alcohol-drinking population, while the HIF-2a gene rs6715787 polymorphism is associated with a decreased risk of LC in the Guangxi Zhuang population.
Collapse
|