1
|
Zhang C, Lan X, Wang Q, Zheng Y, Cheng J, Han J, Li C, Cheng F, Wang X. Decoding ischemic stroke: Perspectives on the endoplasmic reticulum, mitochondria, and their crosstalk. Redox Biol 2025; 82:103622. [PMID: 40188640 PMCID: PMC12001122 DOI: 10.1016/j.redox.2025.103622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/08/2025] Open
Abstract
Stroke is known for its high disability and mortality rates. Ischemic stroke (IS), the most prevalent form, imposes a considerable burden on affected individuals. Nevertheless, existing treatment modalities are hindered by limitations, including narrow therapeutic windows, substantial adverse effects, and suboptimal neurological recovery. Clarifying the pathological mechanism of IS is a prerequisite for developing new therapeutic strategies. In this context, the functional disruption of mitochondria, the endoplasmic reticulum (ER), and the crosstalk mechanisms between them have garnered increasing attention for their contributory roles in the progression of IS. Therefore, this review provides a comprehensive summary of the current pathomechanisms associated with the involvement of the ER and mitochondria in IS, emphasising Ca2+ destabilization homeostasis, ER stress, oxidative stress, disordered mitochondrial quality control, and mitochondrial transfer. Additionally, this article highlights the functional interaction between the ER and mitochondria, as well as the mitochondrial-ER contacts (MERCs) that structurally connect mitochondria and the ER, aiming to provide ideas and references for the research and treatment of IS.
Collapse
Affiliation(s)
- Chuxin Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xin Lan
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qingguo Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuxiao Zheng
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jialin Cheng
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinhua Han
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changxiang Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fafeng Cheng
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xueqian Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Powlowski P, Matheson J, Le Foll B, Andreazza AC, Ross RA. Acute Cannabis Administration Transiently Reduces Mitochondrial DNA in Young Adults: Findings from a Secondary Analysis of a Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Cannabis Cannabinoid Res 2025; 10:e314-e322. [PMID: 38923954 DOI: 10.1089/can.2023.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Background: Cannabis is one of the world's most commonly used substances; however, many questions remain unanswered as to how cannabis impacts the body. Recently, there has been a resurgence of research into the effects of plant-derived cannabinoids on mitochondrial health. In particular, a number of studies implicate mitochondrial-Δ9-tetrahydrocannabinol (Δ9-THC) interactions with altered memory, metabolism, and catalepsy in mice. Although the research in this field is expanding rapidly, there is little known about the effects of cannabis on mitochondria health in human subjects either in acute or chronic term use. Methods: Blood samples were obtained from a double-blind, placebo-controlled, parallel-group randomized clinical trial in which adults who regularly use cannabis (1-4 days/week) aged 19-25 years were randomized 2:1 to receive either an active (12.5% Δ9-THC) cigarette or placebo (<0.01% Δ9-THC) cigarette containing 750 mg of cannabis before driving simulator testing. DNA was extracted from whole blood using commercial spin columns, followed by measurement of mt-ND1, mt-ND4, and β2M using quantitative polymerase chain reaction. One-way repeated measures analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test was used to observe changes in mitochondrial DNA (mtDNA) copy number over time. A two-tailed Pearsons R test was used to assess correlations between mtDNA copy number and cannabinoid levels (Δ9-THC and metabolites) in blood. Results: We found that exposure to active cannabis containing Δ9-THC, as opposed to placebo, was associated with an acute reduction in mitochondrial DNA copy number in whole blood at 15 min and 1 h after smoking. The observed decrease in mtDNA copy number negatively correlated with blood concentrations of 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), the two primary metabolites of Δ9-THC, but not Δ9-THC itself. Further, the negative correlation between 11-OH THC and THC-COOH concentrations and mtDNA copy number was found in only a subgroup of participants who use cannabis infrequently, suggesting a tolerance effect. Conclusions: These results illuminate mitochondrial alterations attributed to Δ9-THC consumption, which may be mediated by metabolites. These results appear to suggest stronger effects in individuals who consume cannabis less frequently, suggesting some form of tolerance to the effects of Δ9-THC and its metabolites on mtDNA content in whole blood. Keywords: Mitochondria; mtDNA; cannabis; THC; THC metabolites; blood; THC-COOH; 11-OH-THC.
Collapse
Affiliation(s)
- Pavel Powlowski
- Department of Pharmacology & Toxicology, Medical Sciences Building, University of Toronto, Toronto, Canada
| | - Justin Matheson
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Canada
| | - Ana C Andreazza
- Department of Pharmacology & Toxicology, Medical Sciences Building, University of Toronto, Toronto, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, Medical Sciences Building, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Quenardelle V, Charles AL, Charloux A, Raul JS, Wolff V, Geny B. Young Age and Concomitant Cannabis (THC) and Ethanol (EtOH) Exposure Enhances Rat Brain Damage Through Decreased Cerebral Mitochondrial Respiration. Molecules 2025; 30:918. [PMID: 40005228 PMCID: PMC11858324 DOI: 10.3390/molecules30040918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
The reason why young people taking concomitantly cannabis (THC) and ethanol (EtOH) are more prone to stroke is underresearched. To investigate whether an underlying mechanism of increased brain damage could be an impaired mitochondrial function, this experiment determined the acute effects of EtOH, both alone and associated with THC, on mitochondrial respiration and oxidative stress (hydrogen peroxide H2O2) on young (11 weeks) and middle-aged (45 weeks) brain in rats, using a high-resolution oxygraph (Oxygraph-2K, Oroboros instruments). In young brains, EtOH decreased mitochondrial respiration by -51.76 ± 2.60% (from 32.76 ± 3.82 to 17.41 ± 1.42 pmol/s/mL, p < 0.0001). In 45-week-old brains, the decrease was lesser, but still significant -36.0 ± 2.80% (from 30.73 ± 7.72 to 20.59 ± 5.48 pmol/s/mL, p < 0.0001). Concomitant THC aggravated brain mitochondrial respiration decreases at 11 weeks (-86.86 ± 1.74%, p < 0.0001) and at 45 weeks (-73.95 ± 3.69%, p < 0.0001). Such additional injury was enhanced in young brains (p < 0.01). H2O2 production was similar in both age groups (1.0 ± 0.2 versus 1.1 ± 0.08 pmol O2/s/mL) and was not modified by THC addition. In conclusion, EtOH alone significantly impairs brain mitochondrial respiration and concomitant THC further aggravates such damage, particularly in young brains. These data support the hypothesis that enhanced mitochondrial dysfunction might participate in the increased occurrence of stroke in the young and urge for better prevention against EtOH and THC addictions in adolescents.
Collapse
Affiliation(s)
- Véronique Quenardelle
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (V.Q.); (A.-L.C.); (A.C.); (V.W.)
- Neuro-Vascular Department, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Anne-Laure Charles
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (V.Q.); (A.-L.C.); (A.C.); (V.W.)
| | - Anne Charloux
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (V.Q.); (A.-L.C.); (A.C.); (V.W.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Jean-Sébastien Raul
- Toxicology Laboratory, Institute of Legal Medicine, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
| | - Valérie Wolff
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (V.Q.); (A.-L.C.); (A.C.); (V.W.)
- Neuro-Vascular Department, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Bernard Geny
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (V.Q.); (A.-L.C.); (A.C.); (V.W.)
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| |
Collapse
|
4
|
Charles AL, Giannini M, Meyer A, Charloux A, Talha S, Vogel T, Raul JS, Wolff V, Geny B. Cannabis (THC) Aggravates the Deleterious Effects of Alcohol (EtOH) on Skeletal Muscles' Mitochondrial Respiration: Modulation by Age and Metabolic Phenotypes. BIOLOGY 2024; 13:1080. [PMID: 39765747 PMCID: PMC11673998 DOI: 10.3390/biology13121080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
The anti-inflammatory and analgesic properties of cannabis might be useful to treat muscle diseases, including those linked or not to alcohol. Nevertheless, delta 9 tetrahydrocannabinol (THC) and ethanol (EtOH), often used concomitantly, can have deleterious effects on cardiac mitochondria. We therefore determined whether EtOH, alone and associated with THC, impairs skeletal muscle mitochondrial respiration. Further, we investigated potential modulation by metabolic phenotype and age by analyzing predominantly glycolytic gastrocnemius and oxidative soleus muscles in young and middle-aged rats (12 and 49 weeks). Considering the gastrocnemius, EtOH impaired mitochondrial respiration in a similar manner in young- and middle-aged muscles (-34.97 ± 2.97% vs. -37.50 ± 6.03% at 2.1 × 10-5 M; p < 0.05). Interestingly, concomitant THC aggravated EtOH-related mitochondrial impairment in young gastrocnemius (-49.92 ± 1.69%, vs. -34.97 ± 2.97 p < 0.05). Concerning the soleus, EtOH alone mainly decreased young muscle mitochondrial respiration (-42.39 ± 2.42% vs. -17.09 ± 7.61% at 2.1 × 10-5 M, p < 0.001, at 12 and 49 weeks). The soleus was less impaired at 12 weeks by THC and EtOH association than the gastrocnemius (-49.92 ±1.69 vs. -27.22 ± 8.96% in gastrocnemius and soleus, respectively, p < 0.05). In conclusion, EtOH, alone and associated with THC, significantly impairs skeletal muscle mitochondrial respiration and THC aggravates EtOH-induced effects on young glycolytic muscle. Age and metabolic phenotypes modulate these deleterious effects, with the glycolytic muscles of young rats being more prone to impairments than oxidative muscles.
Collapse
Affiliation(s)
- Anne-Laure Charles
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
| | - Margherita Giannini
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Alain Meyer
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Anne Charloux
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Samy Talha
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| | - Thomas Vogel
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Geriatrics Department, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Jean-Sébastien Raul
- Toxicology Laboratory, Institute of Legal Medicine, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
| | - Valérie Wolff
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Neuro-Vascular Department, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Bernard Geny
- UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, Biomedicine Research Center of Strasbourg (CRBS), Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (M.G.); (A.M.); (A.C.); (S.T.); (T.V.); (V.W.)
- Physiology and Functional Explorations Department, University Hospital of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
5
|
Subramaniam P, Prescot A, Yancey J, McGlade E, Renshaw P, Yurgelun-Todd D. Lower distress intolerance is associated with higher glutathione levels in adolescent cannabis users. Pharmacol Biochem Behav 2024; 245:173861. [PMID: 39168376 PMCID: PMC11634053 DOI: 10.1016/j.pbb.2024.173861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/01/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Cannabis (CB) use and psychological stressors increase oxidative stress in the brain. Glutathione (GSH), the most abundant antioxidant in the brain, protects against oxidative stress. Furthermore, distress intolerance, the inability to tolerate psychological or physiological stress is a risk factor for CB use. The relationship between CB use, brain GSH levels and distress intolerance remains unknown. Therefore, we examined GSH levels in the anterior cingulate cortex (ACC), as a measure of oxidative stress, and its relationship with distress intolerance in adolescent CB users and healthy controls (HC). Sixteen HC and 17 CB-using adolescents were included in the analysis. GSH levels were measured in the ACC using a metabolite-edited proton magnetic resonance spectroscopy sequence on a 3T scanner. Distress intolerance was assessed using the Distress Intolerance Index (DII) and CB use was evaluated using a structured clinical interview. In the CB group, lower CSF-corrected GSH levels in the ACC were correlated with higher DII scores. However, no significant between group differences were observed for ACC CSF-corrected GSH levels or on DII scores. No significant correlations were observed in the HC group between GSH levels and DII. Our findings suggests that the association between lower GSH levels and greater distress intolerance in CB users might reflect alterations in the balance between protective and oxidative stress conditions linked to the ability to tolerate distress. Further examination into this relationship can provide important insights into neurobiological correlates and risk factors associated with CB use to help inform preventive and treatment targets in the future.
Collapse
Affiliation(s)
- Punitha Subramaniam
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | - Andrew Prescot
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA
| | - James Yancey
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; George E. Wahlen Department of Veteran Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT 84108, USA
| | - Erin McGlade
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; George E. Wahlen Department of Veteran Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT 84108, USA
| | - Perry Renshaw
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; George E. Wahlen Department of Veteran Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT 84108, USA
| | - Deborah Yurgelun-Todd
- Diagnostic Neuroimaging Laboratory, University of Utah, Salt Lake City, UT 84108, USA; Department of Psychiatry, Huntsman Mental Health Institute, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; George E. Wahlen Department of Veteran Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT 84108, USA
| |
Collapse
|
6
|
Ahrens E, Wachtendorf LJ, Hill KP, Schaefer MS. Considerations for Anesthesia in Older Adults with Cannabis Use. Drugs Aging 2024; 41:933-943. [PMID: 39617807 DOI: 10.1007/s40266-024-01161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/12/2024]
Abstract
Over the past decade, legislative changes occurred in the USA and the western world that were followed by a substantial increase in reported use of cannabis among the general population. Among patients undergoing anesthesia for surgery or interventional procedures, older patients-often defined as adults over 65 years-are one of the fastest-growing populations. Within this group, the prevalence of cannabis use almost tripled over the past decade. In addition to habitual cannabis use, recommendations for treatment of chronic pain with cannabinoids have become increasingly more common. The clinical relevance of cannabis use in older adults is supported by recent studies linking it to increased anesthetic requirements as well as respiratory, cardiovascular, and psychiatric complications following surgery. Still, evidence remains equivocal, as these associations may largely depend on the type, frequency, and route of cannabis administration, and current research is mostly limited to retrospective cohort studies. Multisystemic effects of cannabis can become especially relevant in patients of advanced age undergoing anesthesia, characterized by physiological and pharmacodynamic alterations as well as a higher risks of drug-to-drug interactions. Best-practice guidelines emphasize the need for detailed, systematic preoperative screening for habits of cannabis use, including the history, type, and frequency, to guide perioperative management in these patients. This review discusses considerations for anesthesia in older patients with habitual cannabis use while highlighting strategies and recommendations to ensure safe and effective anesthesia care.
Collapse
Affiliation(s)
- Elena Ahrens
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Luca J Wachtendorf
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kevin P Hill
- Division of Addiction Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Maximilian S Schaefer
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany.
| |
Collapse
|
7
|
Senese R, Petito G, Silvestri E, Ventriglia M, Mosca N, Potenza N, Russo A, Falvo S, Manfrevola F, Cobellis G, Chioccarelli T, Porreca V, Mele VG, Chianese R, de Lange P, Ricci G, Cioffi F, Lanni A. The impact of cannabinoid receptor 1 absence on mouse liver mitochondria homeostasis: insight into mitochondrial unfolded protein response. Front Cell Dev Biol 2024; 12:1464773. [PMID: 39512900 PMCID: PMC11541708 DOI: 10.3389/fcell.2024.1464773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction The contribution of Cannabinoid type 1 receptor (CB1) in mitochondrial energy transduction mechanisms and mitochondrial activities awaits deeper investigations. Our study aims to assess the impact of CB1 absence on the mitochondrial compartment in the liver, focusing on both functional aspects and remodeling processes. Methods We used CB1-/- and CB1+/+ male mice. Cytochrome C Oxidase activity was determined polarographically. The expression and the activities of separated mitochondrial complexes and supercomplexes were performed by using Blue-Native Page, Western blotting and histochemical staining for in-gel activity. Key players of Mitochondrial Quality Control processes were measured using RT-qPCR and Western blotting. Liver fine sub-cellular ultrastructural features were analyzed by TEM analysis. Results and discussion In the absence of CB1, several changes in the liver occur, including increased oxidative capacity, reduced complex I activity, enhanced complex IV activity, general upregulation of respiratory supercomplexes, as well as higher levels of oxidative stress. The mitochondria and cellular metabolism may be affected by these changes, increasing the risk of ROS-related damage. CB1-/- mice show upregulation of mitochondrial fusion, fission and biogenesis processes which suggests a dynamic response to the absence of CB1. Furthermore, oxidative stress disturbs mitochondrial proteostasis, initiating the mitochondrial unfolded protein response (UPRmt). We noted heightened levels of pivotal enzymes responsible for maintaining mitochondrial integrity, along with heightened expression of molecular chaperones and transcription factors associated with cellular stress reactions. Additionally, our discoveries demonstrate a synchronized reaction to cellular stress, involving both UPRmt and UPRER pathways.
Collapse
Affiliation(s)
- Rosalba Senese
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Giuseppe Petito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Elena Silvestri
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Maria Ventriglia
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Nicola Mosca
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Nicoletta Potenza
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Aniello Russo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Sara Falvo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Pieter de Lange
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Federica Cioffi
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Antonia Lanni
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, Italy
| |
Collapse
|
8
|
Sreenivasan S, Kaoutzani L, Ugiliweneza B, Boakye M, Schulder M, Sharma M. Cannabis and Craniotomy for Glioblastoma: Impact on Complications and Health Care Utilization. World Neurosurg 2024; 190:e707-e715. [PMID: 39111656 DOI: 10.1016/j.wneu.2024.07.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024]
Abstract
OBJECTIVE Despite advances in treatment of glioblastomas (GBMs), the median survival remains 14-16 months. In the United States, 52.5 million people ≥12 years of age used cannabis in 2021. We aim to elucidate differences in complications after craniotomy for resection of GBM between users and nonusers of cannabis. METHODS Merative MarketScan Research Data (2008-2019) (includes >265 million patients) were used to extract adults (≥18 years of age) with GBM diagnosis (International Classification of Diseases-9 code 191.x and International Classification of Diseases-10 code C71.x) who had a craniotomy (Current Procedure Terminology code 61510) from inpatient admission data. The inverse probability treatment weighted analysis balanced the groups of cannabis abuse disorder (CAD) and no CAD in terms of age, gender, insurance coverage, comorbidities, and prior 12-month opioid dependence. RESULTS Individuals with CAD were younger (median, 37 vs. 51 years; P < 0.0001). There was a lower percentage of women (19% vs. 45%; P < 0.0001). In the CAD group, opioid abuse pattern for ≥12 months was higher (16% vs. 5%; P = 0.001) and the rate of complications was higher (32% vs. 15%; P = 0.001) during index hospital stay. At 6 months postdischarge, neurologic complications were higher among the CAD group (27% vs. 8%; P < 0.001). At 1 year postdischarge, patients with CAD sought fewer outpatient services (P = 0.012). More neurologic complications were seen in the CAD group (31% vs. 12%; P < 0.001). CONCLUSIONS This retrospective population-based study sounds a higher rate of neurologic complications among patients using cannabis who also had a newly diagnosed GBM. This suggests the lack of a protective effect from use of cannabis in patients with primary malignant brain tumors.
Collapse
Affiliation(s)
- Sanjeev Sreenivasan
- Department of Neurosurgery, NorthShore University Hospital & Long Island Jewish Medical Centre, Northwell Health, New York, New York, USA
| | - Lydia Kaoutzani
- Department of Neurosurgery, Augusta University, Augusta, Georgia, USA
| | | | - Maxwell Boakye
- Department of Neurosurgery, University of Louisville, Louisville, Kentucky, USA
| | - Michael Schulder
- Department of Neurosurgery, NorthShore University Hospital & Long Island Jewish Medical Centre, Northwell Health, New York, New York, USA
| | - Mayur Sharma
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
9
|
Humayun M, Suarez JI, Shah VA. Neurological Complications of Cannabinoids. Semin Neurol 2024; 44:430-440. [PMID: 38914126 DOI: 10.1055/s-0044-1787570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cannabinoid use, particularly for recreational purposes, is increasing exponentially across all age groups, especially in younger populations, due to its perceived low risk and legalization. While cannabinoids may be largely considered as safe, there is mounting evidence of increased risk of systemic and neurological complications through their interaction with the poorly understood endocannabinoid receptor network within the central nervous system and other organ systems. Acute cannabinoid exposure can cause neuropsychiatric symptoms in addition to altering cerebral blood flow, leading to cerebrovascular complications such as ischemic stroke, subarachnoid hemorrhage, and reversible cerebral vasoconstriction syndrome (RCVS). Chronic use, particularly among adolescents, may be associated with increased risk of long-term cognitive deficits, schizophrenia, and other neuropsychiatric effects. Synthetic cannabinoids have increased potency, with reports of causing profound neurological complications including coma, seizures, posterior reversible encephalopathy syndrome, and RCVS. Despite increasing evidence, the quality of literature describing neurologic complications with cannabinoids remains limited to case series and retrospective cohort studies, with significant confounding factors such as concomitant use of other illicit drugs, limiting interpretation. In this review, we summarize the effect of cannabinoids on the neurologic system and associated neurological complications.
Collapse
Affiliation(s)
- Mariyam Humayun
- Department of Neurology, University of Illinois, Chicago, Illinois
| | - Jose I Suarez
- Departments of Neurology, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vishank A Shah
- Departments of Neurology, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Echeverria-Villalobos M, Guevara Y, Mitchell J, Ryskamp D, Conner J, Bush M, Periel L, Uribe A, Weaver TE. Potential perioperative cardiovascular outcomes in cannabis/cannabinoid users. A call for caution. Front Cardiovasc Med 2024; 11:1343549. [PMID: 38978789 PMCID: PMC11228818 DOI: 10.3389/fcvm.2024.1343549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/15/2024] [Indexed: 07/10/2024] Open
Abstract
Background Cannabis is one of the most widely used psychoactive substances. Its components act through several pathways, producing a myriad of side effects, of which cardiovascular events are the most life-threatening. However, only a limited number of studies address cannabis's perioperative impact on patients during noncardiac surgery. Methods Studies were identified by searching the PubMed, Medline, EMBASE, and Google Scholar databases using relevant keyword combinations pertinent to the topic. Results Current evidence shows that cannabis use may cause several cardiovascular events, including abnormalities in cardiac rhythm, myocardial infarction, heart failure, and cerebrovascular events. Additionally, cannabis interacts with anticoagulants and antiplatelet agents, decreasing their efficacy. Finally, the interplay of cannabis with inhalational and intravenous anesthetic agents may lead to adverse perioperative cardiovascular outcomes. Conclusions The use of cannabis can trigger cardiovascular events that may depend on factors such as the duration of consumption, the route of administration of the drug, and the dose consumed, which places these patients at risk of drug-drug interactions with anesthetic agents. However, large prospective randomized clinical trials are needed to further elucidate gaps in the body of knowledge regarding which patient population has a greater risk of perioperative complications after cannabis consumption.
Collapse
Affiliation(s)
| | - Yosira Guevara
- Department of Anesthesiology, St Elizabeth’s Medical Center, Brighton, MA, United States
| | - Justin Mitchell
- Department of Anesthesiology & Perioperative Medicine, UCLA Medical Center, Los Angeles, CA, United States
| | - David Ryskamp
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Joshua Conner
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Margo Bush
- University of Toledo, College of Medicine and Life Sciences, Toledo, OH, United States
| | - Luis Periel
- Touro College of Osteopathic Medicine, New York, NW, United States
| | - Alberto Uribe
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Tristan E. Weaver
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
11
|
Carter C, Laviolette L, Bietar B, Zhou J, Lehmann C. Cannabis, Cannabinoids, and Stroke: Increased Risk or Potential for Protection-A Narrative Review. Curr Issues Mol Biol 2024; 46:3122-3133. [PMID: 38666926 PMCID: PMC11048784 DOI: 10.3390/cimb46040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Worldwide, approximately 15 million people per year suffer from stroke. With about 5 million deaths, stroke is the second most common cause of death and a major cause of long-term disability. It is estimated that about 25% of people older than 85 years will develop stroke. Cannabis sativa and derived cannabinoids have been used for recreational and medical purposes for many centuries. However, due to the legal status in the past, research faced restrictions, and cannabis use was stigmatized for potential negative impacts on health. With the changes in legal status in many countries of the world, cannabis and cannabis-derived substances such as cannabinoids and terpenes have gained more interest in medical research. Several medical effects of cannabis have been scientifically proven, and potential risks identified. In the context of stroke, the role of cannabis is controversial. The negative impact of cannabis use on stroke has been reported through case reports and population-based studies. However, potential beneficial effects of specific cannabinoids are described in animal studies under certain conditions. In this narrative review, the existing body of evidence regarding the negative and positive impacts of cannabis use prior to stroke will be critically appraised.
Collapse
Affiliation(s)
| | | | | | | | - Christian Lehmann
- Department of Anesthesia, Dalhousie University, Halifax, NS B3H 4R2, Canada; (C.C.); (L.L.); (B.B.); (J.Z.)
| |
Collapse
|
12
|
Marsh DT, Sugiyama A, Imai Y, Kato R, Smid SD. The structurally diverse phytocannabinoids cannabichromene, cannabigerol and cannabinol significantly inhibit amyloid β-evoked neurotoxicity and changes in cell morphology in PC12 cells. Basic Clin Pharmacol Toxicol 2024; 134:293-309. [PMID: 37697481 DOI: 10.1111/bcpt.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Phytocannabinoids (pCBs) have been shown to inhibit the aggregation and neurotoxicity of the neurotoxic Alzheimer's disease protein beta amyloid (Aβ). We characterized the capacity of six pCBs-cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN), cannabidivarin (CBDV), cannabidiol (CBD) and Δ9 -tetrahydrocannabinol (Δ9 -THC)-to disrupt Aβ aggregation and protect against Aβ-evoked neurotoxicity in PC12 cells. METHODS Neuroprotection against lipid peroxidation and Aβ-induced cytotoxicity was assessed using the MTT assay. Transmission electron microscopy was used to visualize pCB effects on Aβ aggregation and fluorescence microscopy, with morphometrics and principal component analysis to assess PC12 cell morphology. RESULTS CBD inhibited lipid peroxidation with no significant effect on Aβ toxicity, whilst CBN, CBDV and CBG provided neuroprotection. CBC, CBG and CBN inhibited Aβ1-42 -induced neurotoxicity in PC12 cells, as did Δ9 -THC, CBD and CBDV. CBC, CBN and CBDV inhibited Aβ aggregation, whilst Δ9 -THC reduced aggregate density. Aβ1-42 induced morphological changes in PC12 cells, including a reduction in neuritic projections and rounded cell morphology. CBC and CBG inhibited this effect, whilst Δ9 -THC, CBD and CBDV did not alter Aβ1-42 effects on cell morphology. CONCLUSIONS These findings highlight the neuroprotective activity of CBC, CBG and CBN as novel pCBs associated with variable effects on Aβ-evoked neurite damage and inhibition of amyloid β aggregation.
Collapse
Affiliation(s)
- Dylan T Marsh
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Ayato Sugiyama
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Yuta Imai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
- Institute of Glyco-core Research (IGCORE), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Scott D Smid
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
Charles AL, Charloux A, Vogel T, Raul JS, Kindo M, Wolff V, Geny B. Cumulative Deleterious Effects of Tetrahydrocannabinoid (THC) and Ethanol on Mitochondrial Respiration and Reactive Oxygen Species Production Are Enhanced in Old Isolated Cardiac Mitochondria. Int J Mol Sci 2024; 25:1835. [PMID: 38339113 PMCID: PMC10855679 DOI: 10.3390/ijms25031835] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Delta 9 tetrahydrocannabinol (THC), the main component of cannabis, has adverse effects on the cardiovascular system, but whether concomitant ethanol (EtOH) and aging modulate its toxicity is unknown. We investigated dose responses of THC and its vehicle, EtOH, on mitochondrial respiration and reactive oxygen production in both young and old rat cardiac mitochondria (12 and 90 weeks). THC dose-dependently impaired mitochondrial respiration in both groups, and such impairment was enhanced in aged rats (-97.5 ± 1.4% vs. -75.6 ± 4.0% at 2 × 10-5 M, and IC50: 0.7 ± 0.05 vs. 1.3 ± 0.1 × 10-5 M, p < 0.01, for old and young rats, respectively). The EtOH-induced decrease in mitochondrial respiration was greater in old rats (-50.1 ± 2.4% vs. -19.8 ± 4.4% at 0.9 × 10-5 M, p < 0.0001). Further, mitochondrial hydrogen peroxide (H2O2) production was enhanced in old rats after THC injection (+46.6 ± 5.3 vs. + 17.9 ± 7.8%, p < 0.01, at 2 × 10-5 M). In conclusion, the deleterious cardiac effects of THC were enhanced with concomitant EtOH, particularly in old cardiac mitochondria, showing greater mitochondrial respiration impairment and ROS production. These data improve our knowledge of the mechanisms potentially involved in cannabis toxicity, and likely support additional caution when THC is used by elderly people who consume alcohol.
Collapse
Affiliation(s)
- Anne-Laure Charles
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
| | - Anne Charloux
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Thomas Vogel
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Geriatrics Department, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Jean-Sébastien Raul
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Toxicology Laboratory, Institute of Legal Medicine, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Michel Kindo
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Cardiovascular Surgery Department, University Hospital of Strasbourg, 67091 Strasbourg, France
| | - Valérie Wolff
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Neuro-Vascular Department, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - Bernard Geny
- Biomedicine Research Center of Strasbourg (CRBS), UR 3072, “Mitochondria, Oxidative Stress and Muscle Plasticity”, University of Strasbourg, 67000 Strasbourg, France; (A.-L.C.); (A.C.); (T.V.); (M.K.); (V.W.)
- Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France;
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, 67091 Strasbourg, France
| |
Collapse
|
14
|
Fang F, Quach B, Lawrence KG, van Dongen J, Marks JA, Lundgren S, Lin M, Odintsova VV, Costeira R, Xu Z, Zhou L, Mandal M, Xia Y, Vink JM, Bierut LJ, Ollikainen M, Taylor JA, Bell JT, Kaprio J, Boomsma DI, Xu K, Sandler DP, Hancock DB, Johnson EO. Trans-ancestry epigenome-wide association meta-analysis of DNA methylation with lifetime cannabis use. Mol Psychiatry 2024; 29:124-133. [PMID: 37935791 PMCID: PMC11078760 DOI: 10.1038/s41380-023-02310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cannabis is widely used worldwide, yet its links to health outcomes are not fully understood. DNA methylation can serve as a mediator to link environmental exposures to health outcomes. We conducted an epigenome-wide association study (EWAS) of peripheral blood-based DNA methylation and lifetime cannabis use (ever vs. never) in a meta-analysis including 9436 participants (7795 European and 1641 African ancestry) from seven cohorts. Accounting for effects of cigarette smoking, our trans-ancestry EWAS meta-analysis revealed four CpG sites significantly associated with lifetime cannabis use at a false discovery rate of 0.05 ( p < 5.85 × 10 - 7 ) : cg22572071 near gene ADGRF1, cg15280358 in ADAM12, cg00813162 in ACTN1, and cg01101459 near LINC01132. Additionally, our EWAS analysis in participants who never smoked cigarettes identified another epigenome-wide significant CpG site, cg14237301 annotated to APOBR. We used a leave-one-out approach to evaluate methylation scores constructed as a weighted sum of the significant CpGs. The best model can explain 3.79% of the variance in lifetime cannabis use. These findings unravel the DNA methylation changes associated with lifetime cannabis use that are independent of cigarette smoking and may serve as a starting point for further research on the mechanisms through which cannabis exposure impacts health outcomes.
Collapse
Affiliation(s)
- Fang Fang
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA.
| | - Bryan Quach
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jesse A Marks
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Sara Lundgren
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Mingkuan Lin
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
| | - Veronika V Odintsova
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ricardo Costeira
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Zongli Xu
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Linran Zhou
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Meisha Mandal
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Yujing Xia
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jacqueline M Vink
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Laura J Bierut
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jack A Taylor
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, West Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Dana B Hancock
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Eric O Johnson
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| |
Collapse
|
15
|
Abyadeh M, Gupta V, Liu X, Rossio V, Mirzaei M, Cornish J, Paulo JA, Haynes PA. Proteome-Wide Profiling Using Sample Multiplexing of a Human Cell Line Treated with Cannabidiol (CBD) and Tetrahydrocannabinol (THC). Proteomes 2023; 11:36. [PMID: 37987316 PMCID: PMC10661330 DOI: 10.3390/proteomes11040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
Cannabis has been used historically for both medicinal and recreational purposes, with the most notable cannabinoids being cannabidiol (CBD) and tetrahydrocannabinol (THC). Although their therapeutic effects have been well studied and their recreational use is highly debated, the underlying mechanisms of their biological effects remain poorly defined. In this study, we use isobaric tag-based sample multiplexed proteome profiling to investigate protein abundance differences in the human neuroblastoma SH-SY5Y cell line treated with CBD and THC. We identified significantly regulated proteins by each treatment and performed a pathway classification and associated protein-protein interaction analysis. Our findings suggest that these treatments may lead to mitochondrial dysfunction and induce endoplasmic reticulum stress. These data can potentially be interrogated further to investigate the potential role of CBD and THC in various biological and disease contexts, providing a foundation for future studies.
Collapse
Affiliation(s)
- Morteza Abyadeh
- ProGene Technologies Pty Ltd., Macquarie Park, NSW 2113, Australia;
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (V.G.); (M.M.)
| | - Xinyue Liu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; (X.L.); (V.R.); (J.A.P.)
| | - Valentina Rossio
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; (X.L.); (V.R.); (J.A.P.)
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (V.G.); (M.M.)
| | - Jennifer Cornish
- School of Psychological Sciences, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; (X.L.); (V.R.); (J.A.P.)
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
16
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic aging and dysregulation, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 2-Metabolome, immunome, synaptome. Front Psychiatry 2023; 14:1182536. [PMID: 37854446 PMCID: PMC10579598 DOI: 10.3389/fpsyt.2023.1182536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
The second part of this paper builds upon and expands the epigenomic-aging perspective presented in Part 1 to describe the metabolomic and immunomic bases of the epigenomic-aging changes and then considers in some detail the application of these insights to neurotoxicity, neuronal epigenotoxicity, and synaptopathy. Cannabinoids are well-known to have bidirectional immunomodulatory activities on numerous parts of the immune system. Immune perturbations are well-known to impact the aging process, the epigenome, and intermediate metabolism. Cannabinoids also impact metabolism via many pathways. Metabolism directly impacts immune, genetic, and epigenetic processes. Synaptic activity, synaptic pruning, and, thus, the sculpting of neural circuits are based upon metabolic, immune, and epigenomic networks at the synapse, around the synapse, and in the cell body. Many neuropsychiatric disorders including depression, anxiety, schizophrenia, bipolar affective disorder, and autistic spectrum disorder have been linked with cannabis. Therefore, it is important to consider these features and their complex interrelationships in reaching a comprehensive understanding of cannabinoid dependence. Together these findings indicate that cannabinoid perturbations of the immunome and metabolome are important to consider alongside the well-recognized genomic and epigenomic perturbations and it is important to understand their interdependence and interconnectedness in reaching a comprehensive appreciation of the true nature of cannabinoid pathophysiology. For these reasons, a comprehensive appreciation of cannabinoid pathophysiology necessitates a coordinated multiomics investigation of cannabinoid genome-epigenome-transcriptome-metabolome-immunome, chromatin conformation, and 3D nuclear architecture which therefore form the proper mechanistic underpinning for major new and concerning epidemiological findings relating to cannabis exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
17
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics. Front Psychiatry 2023; 14:1182535. [PMID: 37732074 PMCID: PMC10507876 DOI: 10.3389/fpsyt.2023.1182535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Much recent attention has been directed toward the spatial organization of the cell nucleus and the manner in which three-dimensional topologically associated domains and transcription factories are epigenetically coordinated to precisely bring enhancers into close proximity with promoters to control gene expression. Twenty lines of evidence robustly implicate cannabinoid exposure with accelerated organismal and cellular aging. Aging has recently been shown to be caused by increased DNA breaks. These breaks rearrange and maldistribute the epigenomic machinery to weaken and reverse cellular differentiation, cause genome-wide DNA demethylation, reduce gene transcription, and lead to the inhibition of developmental pathways, which contribute to the progressive loss of function and chronic immune stimulation that characterize cellular aging. Both cell lineage-defining superenhancers and the superanchors that control them are weakened. Cannabis exposure phenocopies the elements of this process and reproduces DNA and chromatin breakages, reduces the DNA, RNA protein and histone synthesis, interferes with the epigenomic machinery controlling both DNA and histone modifications, induces general DNA hypomethylation, and epigenomically disrupts both the critical boundary elements and the cohesin motors that create chromatin loops. This pattern of widespread interference with developmental programs and relative cellular dedifferentiation (which is pro-oncogenic) is reinforced by cannabinoid impairment of intermediate metabolism (which locks in the stem cell-like hyper-replicative state) and cannabinoid immune stimulation (which perpetuates and increases aging and senescence programs, DNA damage, DNA hypomethylation, genomic instability, and oncogenesis), which together account for the diverse pattern of teratologic and carcinogenic outcomes reported in recent large epidemiologic studies in Europe, the USA, and elsewhere. It also accounts for the prominent aging phenotype observed clinically in long-term cannabis use disorder and the 20 characteristics of aging that it manifests. Increasing daily cannabis use, increasing use in pregnancy, and exponential dose-response effects heighten the epidemiologic and clinical urgency of these findings. Together, these findings indicate that cannabinoid genotoxicity and epigenotoxicity are prominent features of cannabis dependence and strongly indicate coordinated multiomics investigations of cannabinoid genome-epigenome-transcriptome-metabolome, chromatin conformation, and 3D nuclear architecture. Considering the well-established exponential dose-response relationships, the diversity of cannabinoids, and the multigenerational nature of the implications, great caution is warranted in community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
18
|
Nunn AVW, Guy GW, Bell JD. Informing the Cannabis Conjecture: From Life's Beginnings to Mitochondria, Membranes and the Electrome-A Review. Int J Mol Sci 2023; 24:13070. [PMID: 37685877 PMCID: PMC10488084 DOI: 10.3390/ijms241713070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Before the late 1980s, ideas around how the lipophilic phytocannabinoids might be working involved membranes and bioenergetics as these disciplines were "in vogue". However, as interest in genetics and pharmacology grew, interest in mitochondria (and membranes) waned. The discovery of the cognate receptor for tetrahydrocannabinol (THC) led to the classification of the endocannabinoid system (ECS) and the conjecture that phytocannabinoids might be "working" through this system. However, the how and the "why" they might be beneficial, especially for compounds like CBD, remains unclear. Given the centrality of membranes and mitochondria in complex organisms, and their evolutionary heritage from the beginnings of life, revisiting phytocannabinoid action in this light could be enlightening. For example, life can be described as a self-organising and replicating far from equilibrium dissipating system, which is defined by the movement of charge across a membrane. Hence the building evidence, at least in animals, that THC and CBD modulate mitochondrial function could be highly informative. In this paper, we offer a unique perspective to the question, why and how do compounds like CBD potentially work as medicines in so many different conditions? The answer, we suggest, is that they can modulate membrane fluidity in a number of ways and thus dissipation and engender homeostasis, particularly under stress. To understand this, we need to embrace origins of life theories, the role of mitochondria in plants and explanations of disease and ageing from an adaptive thermodynamic perspective, as well as quantum mechanics.
Collapse
Affiliation(s)
- Alistair V. W. Nunn
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Geoffrey W. Guy
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
- The Guy Foundation, Beaminster DT8 3HY, UK
| | - Jimmy D. Bell
- Research Centre for Optimal Health, Department of Life Sciences, University of Westminster, London W1W 6UW, UK; (G.W.G.); (J.D.B.)
| |
Collapse
|
19
|
Reece AS, Bennett K, Hulse GK. Cannabis- and Substance-Related Carcinogenesis in Europe: A Lagged Causal Inferential Panel Regression Study. J Xenobiot 2023; 13:323-385. [PMID: 37489337 PMCID: PMC10366890 DOI: 10.3390/jox13030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Recent European data facilitate an epidemiological investigation of the controversial cannabis-cancer relationship. Of particular concern were prior findings associating high-dose cannabis use with reproductive problems and potential genetic impacts. Cancer incidence data age-standardised to the world population was obtained from the European Cancer Information System 2000-2020 and many European national cancer registries. Drug use data were obtained from the European Monitoring Centre for Drugs and Drug Addiction. Alcohol and tobacco consumption was sourced from the WHO. Median household income was taken from the World bank. Cancer rates in high-cannabis-use countries were significantly higher than elsewhere (β-estimate = 0.4165, p = 3.54 × 10-115). Eighteen of forty-one cancers (42,675 individual rates) were significantly associated with cannabis exposure at bivariate analysis. Twenty-five cancers were linked in inverse-probability-weighted multivariate models. Temporal lagging in panel models intensified these effects. In multivariable models, cannabis was a more powerful correlate of cancer incidence than tobacco or alcohol. Reproductive toxicity was evidenced by the involvement of testis, ovary, prostate and breast cancers and because some of the myeloid and lymphoid leukaemias implicated occur in childhood, indicating inherited intergenerational genotoxicity. Cannabis is a more important carcinogen than tobacco and alcohol and fulfills epidemiological qualitative and quantitative criteria for causality for 25/41 cancers. Reproductive and transgenerational effects are prominent. These findings confirm the clinical and epidemiological salience of cannabis as a major multigenerational community carcinogen.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Kellie Bennett
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- Faculty of Health Sciences, Curtin University, 208 Kent St., Bentley, Perth, WA 6102, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
20
|
Vassall M, Chakraborty S, Feng Y, Faheem M, Wang X, Bhandari RK. Transcriptional Alterations Induced by Delta-9 Tetrahydrocannabinol in the Brain and Gonads of Adult Medaka. J Xenobiot 2023; 13:237-251. [PMID: 37367494 DOI: 10.3390/jox13020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/28/2023] Open
Abstract
With the legalization of marijuana smoking in several states of the United States and many other countries for medicinal and recreational use, the possibility of its release into the environment cannot be overruled. Currently, the environmental levels of marijuana metabolites are not monitored on a regular basis, and their stability in the environment is not well understood. Laboratory studies have linked delta 9-tetrahydrocannabinol (Δ9-THC) exposure with behavioral abnormalities in some fish species; however, their effects on endocrine organs are less understood. To understand the effects of THC on the brain and gonads, we exposed adult medaka (Oryzias latipes, Hd-rR strain, both male and female) to 50 ug/L THC for 21 days spanning their complete spermatogenic and oogenic cycles. We examined transcriptional responses of the brain and gonads (testis and ovary) to Δ9-THC, particularly molecular pathways associated with behavioral and reproductive functions. The Δ9-THC effects were more profound in males than females. The Δ9-THC-induced differential expression pattern of genes in the brain of the male fish suggested pathways to neurodegenerative diseases and pathways to reproductive impairment in the testis. The present results provide insights into endocrine disruption in aquatic organisms due to environmental cannabinoid compounds.
Collapse
Affiliation(s)
- Marlee Vassall
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Sourav Chakraborty
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Yashi Feng
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Mehwish Faheem
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
| | - Xuegeng Wang
- Department of Biology, University of North Carolina, Greensboro, NC 27412, USA
- Institute of Modern Aquaculture Science and Engineering, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | | |
Collapse
|
21
|
Yinka OS, Olubunmi OP, Zabdiel AA, Oladele OJ, Taiye AS, Ayodele A, Adetutu FO, Afees OJ, Kayode AA. Peroral Exposure to Cannabis Sativa Ethanol Extract Caused Neuronal Degeneration and Astrogliosis in Wistar Rats' Prefrontal Cortex. Ann Neurosci 2023; 30:84-95. [PMID: 37706104 PMCID: PMC10496793 DOI: 10.1177/09727531221120988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/25/2022] [Indexed: 09/15/2023] Open
Abstract
Background Despite widespread concerns about its possible side effects, notably on the prefrontal cortex (PFC), which mediates cognitive processes, the use of Cannabis sativa as a medicinal and recreational drug is expanding exponentially. This study evaluated possible behavioral alterations, neurotransmitter levels, histological, and immunohistochemical changes in the PFC of Wistar rats exposed to Cannabis sativa. Purpose To evaluate the effect of graded doses of Cannabis sativa on the PFC using behavioural, histological, and immunohistochemical approaches. Methods Twenty-eight juvenile male Wistar rats weighing between 70 g and 100 g were procured and assigned into groups A-D (n = 7 each). Group A served as control which received distilled water only as a placebo; rats in groups B, C, and D which were the treatment groups were orally exposed to graded doses of Cannabis sativa (10 mg/kg, 50 mg/kg, and 100 mg/kg, respectively). Rats in all experimental groups were exposed to Cannabis sativa for 21 days, followed by behavioral tests using the open field test for locomotor, anxiety, and exploratory activities, while the Y-maze test was for spatial memory assessment. Rats for biochemical analysis were cervically dislocated and rats for tissue processing were intracardially perfused following neurobehavioral tests. Sequel to sacrifice, brain tissues were excised and prefrontal cortices were obtained for the neurotransmitter (glutamate, acetylcholine, and dopamine) and enzymatic assay (Cytochrome C oxidase (CcO) and Glucose 6- Phosphate Dehydrogenase-G-6-PDH). Brain tissues were fixed in 10% Neutral Buffered Formalin (NBF) for histological demonstration of the PFC cytoarchitecture using H&E and glial fibrillary acidic protein (GFAP) for astrocyte evaluation. Results Glutamate and dopamine levels were significantly increased (F = 24.44, P = .0132) in groups D, and B, C, and D, respectively, compared to control; likewise, the activities of CcO and G-6-PDH were also significantly elevated (F = 96.28, P = .0001) (F = 167.5, P = .0001) in groups C and D compared to the control. Cannabis sativa impaired locomotor activity and spatial memory in B and D and D, respectively. All Cannabis sativa exposed groups demonstrated evidence of neurodegeneration in the exposed groups; GFAP immunoexpression was evident in all groups with a marked increase in group D. Conclusion Cannabis sativa altered neurotransmitter levels, energy metabolism, locomotor, and exploratory activity, and spatial working memory, with neuronal degeneration as well as reactive astrogliosis in the PFC.
Collapse
Affiliation(s)
- Olatunji Sunday Yinka
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
- Anatomy Department, Adventist School of Medicine of East-Central Africa, Adventist University of Central Africa, Kigali, Rwanda
| | - Ogunnaike Philip Olubunmi
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
| | - Abijo Ayodeji Zabdiel
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
| | - Owolabi Joshua Oladele
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
- Anatomy Department, Division of Basic Medical Sciences, University of Global Health Equity, Kigali, Rwanda
| | - Adelodun Stephen Taiye
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
| | - Adeoye Ayodele
- Department of Education, School of Education and Humanities, Babcock University, Ilisan-Remo, Ogun State, Nigeria
| | - Fasesan Oluwatoyin Adetutu
- Department of Psychiatry, Ben Carson School of Medicine, Babcock University, Ilisan-Remo, Ogun State, Nigeria
| | - Olanrewaju John Afees
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
| | - Adegbite Ademola Kayode
- Department of Anatomy, School of Basic Medical Sciences, Benjamin Carson (Snr.) College of Medical and Health Sciences, Ilishan-Remo, Ogun State Nigeria
| |
Collapse
|
22
|
Sánchez-Sánchez L, García J, Fernández R, Noskova E, Egiguren-Ortiz J, Gulak M, Ochoa E, Laso A, Oiarbide M, Santos JI, Fe Andrés M, González-Coloma A, Adell A, Astigarraga E, Barreda-Gómez G. Characterization of the Antitumor Potential of Extracts of Cannabis sativa Strains with High CBD Content in Human Neuroblastoma. Int J Mol Sci 2023; 24:ijms24043837. [PMID: 36835247 PMCID: PMC9964014 DOI: 10.3390/ijms24043837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Cannabis has been used for decades as a palliative therapy in the treatment of cancer. This is because of its beneficial effects on the pain and nausea that patients can experience as a result of chemo/radiotherapy. Tetrahydrocannabinol and cannabidiol are the main compounds present in Cannabis sativa, and both exert their actions through a receptor-mediated mechanism and through a non-receptor-mediated mechanism, which modulates the formation of reactive oxygen species. These oxidative stress conditions might trigger lipidic changes, which would compromise cell membrane stability and viability. In this sense, numerous pieces of evidence describe a potential antitumor effect of cannabinoid compounds in different types of cancer, although controversial results limit their implementation. In order to further investigate the possible mechanism involved in the antitumoral effects of cannabinoids, three extracts isolated from Cannabis sativa strains with high cannabidiol content were analyzed. Cell mortality, cytochrome c oxidase activity and the lipid composition of SH-SY5Y cells were determined in the absence and presence of specific cannabinoid ligands, with and without antioxidant pre-treatment. The cell mortality induced by the extracts in this study appeared to be related to the inhibition of the cytochrome c oxidase activity and to the THC concentration. This effect on cell viability was similar to that observed with the cannabinoid agonist WIN55,212-2. The effect was partially blocked by the selective CB1 antagonist AM281, and the antioxidant α-tocopherol. Moreover, certain membrane lipids were affected by the extracts, which demonstrated the importance of oxidative stress in the potential antitumoral effects of cannabinoids.
Collapse
Affiliation(s)
- Laura Sánchez-Sánchez
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
- Instituto de Biología y Genética Molecular (IBGM), Unidad de Excelencia, Universidad de Valladolid-CSIC, 47011 Valladolid, Spain
| | - Javier García
- Institute of Agricultural Sciences (ICA), Spanish Research Council (CSIC), 28006 Madrid, Spain
| | - Roberto Fernández
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
| | - Ekaterina Noskova
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), University of Cantabria, 39011 Santander, Spain
| | - June Egiguren-Ortiz
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
- Pharmacology Department, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | | | - Eneko Ochoa
- Pharmacology Department, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Research and Development Division, AleoVitro, 48160 Derio, Spain
| | - Antonio Laso
- Research and Development Division, AleoVitro, 48160 Derio, Spain
| | - Mikel Oiarbide
- Pharmacology Department, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - José Ignacio Santos
- Pharmacology Department, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - María Fe Andrés
- Institute of Agricultural Sciences (ICA), Spanish Research Council (CSIC), 28006 Madrid, Spain
| | - Azucena González-Coloma
- Institute of Agricultural Sciences (ICA), Spanish Research Council (CSIC), 28006 Madrid, Spain
| | - Albert Adell
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), University of Cantabria, 39011 Santander, Spain
| | - Egoitz Astigarraga
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
| | - Gabriel Barreda-Gómez
- Research and Development Department, IMG Pharma Biotech S.L., 48160 Derio, Spain
- Correspondence: ; Tel.: +34-94-4316-577; Fax: +34-94-6013-455
| |
Collapse
|
23
|
Reece AS, Hulse GK. Patterns of Cannabis- and Substance-Related Congenital General Anomalies in Europe: A Geospatiotemporal and Causal Inferential Study. Pediatr Rep 2023; 15:69-118. [PMID: 36810339 PMCID: PMC9944887 DOI: 10.3390/pediatric15010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Recent series of congenital anomaly (CA) rates (CARs) have showed the close and epidemiologically causal relationship of cannabis exposure to many CARs. We investigated these trends in Europe where similar trends have occurred. METHODS CARs from EUROCAT. Drug use from European Monitoring Centre for Drugs and Drug Addiction. Income data from World Bank. RESULTS CARs were higher in countries with increasing daily use overall (p = 9.99 × 10-14, minimum E-value (mEV) = 2.09) and especially for maternal infections, situs inversus, teratogenic syndromes and VACTERL syndrome (p = 1.49 × 10-15, mEV = 3.04). In inverse probability weighted panel regression models the series of anomalies: all anomalies, VACTERL, foetal alcohol syndrome, situs inversus (SI), lateralization (L), and teratogenic syndromes (TS; AAVFASSILTS) had cannabis metric p-values from: p < 2.2 × 10-16, 1.52 × 10-12, 1.44 × 10-13, 1.88 × 10-7, 7.39 × 10-6 and <2.2 × 10-16. In a series of spatiotemporal models this anomaly series had cannabis metric p-values from: 8.96 × 10-6, 6.56 × 10-6, 0.0004, 0.0019, 0.0006, 5.65 × 10-5. Considering E-values, the cannabis effect size order was VACTERL > situs inversus > teratogenic syndromes > FAS > lateralization syndromes > all anomalies. 50/64 (78.1%) E-value estimates and 42/64 (65.6%) mEVs > 9. Daily cannabis use was the strongest predictor for all anomalies. CONCLUSION Data confirmed laboratory, preclinical and recent epidemiological studies from Canada, Australia, Hawaii, Colorado and USA for teratological links between cannabis exposure and AAVFASSILTS anomalies, fulfilled epidemiological criteria for causality and underscored importance of cannabis teratogenicity. VACTERL data are consistent with causation via cannabis-induced Sonic Hedgehog inhibition. TS data suggest cannabinoid contribution. SI&L data are consistent with results for cardiovascular CAs. Overall, these data show that cannabis is linked across space and time and in a manner which fulfills epidemiological criteria for causality not only with many CAs, but with several multiorgan teratologic syndromes. The major clinical implication of these results is that access to cannabinoids should be tightly restricted in the interests of safeguarding the community's genetic heritage to protect and preserve coming generations, as is done for all other major genotoxins.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
24
|
Scopetti M, Morena D, Manetti F, Santurro A, Fazio ND, D'Errico S, Padovano M, Frati P, Fineschi V. Cannabinoids and Brain Damage: A Systematic Review on a Frequently Overlooked Issue. Curr Pharm Biotechnol 2023; 24:741-757. [PMID: 35702797 DOI: 10.2174/1389201023666220614145535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/06/2022] [Accepted: 04/27/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although cannabinoid consumption represents a current social and health problem, especially in a historical context characterized by an open orientation for recreational and therapeutic purposes, risks regarding the neurotoxicity of such substances are frequently overlooked. OBJECTIVE The present systematic review aims to summarize the available evidence regarding the mechanism of cannabinoids-induced brain damage as a substrate of neurological, psychiatric, and behavioral effects. Another objective is to provide support for future investigations and legislative choices. METHODS The systematic literature search through PubMed and Scopus and a critical appraisal of the collected studies were conducted. Search terms were "(("Cannabinoids" OR "THC" OR "CBD") AND "Brain" AND ("Damage" OR "Toxicity"))" in the title and abstracts. Studies were included examining toxic effects on the brain potentially induced by cannabinoids on human subjects. RESULTS At the end of the literature selection process, 30 papers were considered for the present review. The consumption of cannabinoids is associated with the development of psychiatric, neurocognitive, neurological disorders and, in some cases of acute consumption, even death. In this sense, the greatest risks have been related to the consumption of high-potency synthetic cannabinoids, although the consumption of phytocannabinoids is not devoid of risks. CONCLUSION The research carried out has allowed to highlight some critical points to focus on, such as the need to reinforce the toxic-epidemiologic monitor of new substances market and the importance of information for both medical personnel and general population, with particular attention to the mostly involved age groups.
Collapse
Affiliation(s)
- Matteo Scopetti
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Donato Morena
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Federico Manetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessandro Santurro
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Nicola Di Fazio
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Stefano D'Errico
- Department of Medicine, Surgery and Health, University of Trieste, Trieste, Italy
| | - Martina Padovano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Malheiro RF, Carmo H, Carvalho F, Silva JP. Cannabinoid-mediated targeting of mitochondria on the modulation of mitochondrial function and dynamics. Pharmacol Res 2023; 187:106603. [PMID: 36516885 DOI: 10.1016/j.phrs.2022.106603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Mitochondria play a critical role in the regulation of several biological processes (e.g., programmed cell death, inflammation, neurotransmission, cell differentiation). In recent years, accumulating findings have evidenced that cannabinoids, a group of endogenous and exogenous (synthetic and plant-derived) psychoactive compounds that bind to cannabinoid receptors, may modulate mitochondrial function and dynamics. As such, mitochondria have gained increasing interest as central mediators in cannabinoids' pharmacological and toxicological signatures. Here, we review the mechanisms underlying the cannabinoids' modulation of mitochondrial activity and dynamics, as well as the potential implications of such mitochondrial processes' disruption on cell homeostasis and disease. Interestingly, cannabinoids may target different mitochondrial processes (e.g., regulation of intracellular calcium levels, bioenergetic metabolism, apoptosis, and mitochondrial dynamics, including mitochondrial fission and fusion, transport, mitophagy, and biogenesis), by modulating multiple and complex signaling pathways. Of note, the outcome may depend on the experimental models used, as well as the chemical structure, concentration, and exposure settings to the cannabinoid, originating equivocal data. Notably, this interaction seems to represent not only an important feature of cannabinoids' toxicological signatures, with potential implications for the onset of distinct pathological conditions (e.g., cancer, neurodegenerative diseases, metabolic syndromes), but also an opportunity to develop novel therapeutic strategies for such pathologies, which is also discussed in this review.
Collapse
Affiliation(s)
- Rui Filipe Malheiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Helena Carmo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - João Pedro Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
26
|
Reece AS, Hulse GK. Novel Insights into Potential Cannabis-Related Cancerogenesis from Recent Key Whole Epigenome Screen of Cannabis Dependence and Withdrawal: Epidemiological Commentary and Explication of Schrott et al. Genes (Basel) 2022; 14:32. [PMID: 36672773 PMCID: PMC9858221 DOI: 10.3390/genes14010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Whilst the cannabis-cancer link has been traditionally described as controversial recent whole nation and whole continent studies have demonstrated that well documented laboratory-based multimodal cannabinoid genotoxicity is indeed reflected in numerous cancer types in larger epidemiological series. A recent longitudinal human sperm epigenome-wide DNA methylation screen in both cannabis dependence and cannabis withdrawal has revealed remarkable insights into the manner in which widespread perturbations of DNA methylation may lead to cancerogenic changes in both the exposed and subsequent generations as a result of both cannabis exposure and withdrawal. These results therefore powerfully strengthen and further robustify the causal nature of the relationship between cannabinoid exposure and cancerous outcomes well beyond the previously published extensive mechanistic literature on cannabinoid genotoxicity. The reported epigenomic results are strongly hypothesis generating and call powerfully for further work to investigate oncogenic mechanisms in many tissues, organs and preclinical models. These epigenomic results provide an extraordinarily close predictive account for the epidemiologically observed pattern of cannabis-related malignant disease and indicate that malignant and multigenerational cannabinoid epigenotoxicity is potentially a significant and major public health concern.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, Perth, QLD 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Perth, QLD 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
27
|
Reece AS, Hulse GK. Epigenomic and Other Evidence for Cannabis-Induced Aging Contextualized in a Synthetic Epidemiologic Overview of Cannabinoid-Related Teratogenesis and Cannabinoid-Related Carcinogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16721. [PMID: 36554603 PMCID: PMC9778714 DOI: 10.3390/ijerph192416721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Twelve separate streams of empirical data make a strong case for cannabis-induced accelerated aging including hormonal, mitochondriopathic, cardiovascular, hepatotoxic, immunological, genotoxic, epigenotoxic, disruption of chromosomal physiology, congenital anomalies, cancers including inheritable tumorigenesis, telomerase inhibition and elevated mortality. METHODS Results from a recently published longitudinal epigenomic screen were analyzed with regard to the results of recent large epidemiological studies of the causal impacts of cannabis. We also integrate theoretical syntheses with prior studies into these combined epigenomic and epidemiological results. RESULTS Cannabis dependence not only recapitulates many of the key features of aging, but is characterized by both age-defining and age-generating illnesses including immunomodulation, hepatic inflammation, many psychiatric syndromes with a neuroinflammatory basis, genotoxicity and epigenotoxicity. DNA breaks, chromosomal breakage-fusion-bridge morphologies and likely cycles, and altered intergenerational DNA methylation and disruption of both the histone and tubulin codes in the context of increased clinical congenital anomalies, cancers and heritable tumors imply widespread disruption of the genome and epigenome. Modern epigenomic clocks indicate that, in cannabis-dependent patients, cannabis advances cellular DNA methylation age by 25-30% at age 30 years. Data have implications not only for somatic but also stem cell and germ line tissues including post-fertilization zygotes. This effect is likely increases with the square of chronological age. CONCLUSION Recent epigenomic studies of cannabis exposure provide many explanations for the broad spectrum of cannabis-related teratogenicity and carcinogenicity and appear to account for many epidemiologically observed findings. Further research is indicated on the role of cannabinoids in the aging process both developmentally and longitudinally, from stem cell to germ cell to blastocystoids to embryoid bodies and beyond.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
28
|
Laws JS, Smid SD. Evaluating Cannabis sativa L.'s neuroprotection potential: From bench to bedside. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154485. [PMID: 36209703 DOI: 10.1016/j.phymed.2022.154485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Neurodegenerative diseases and dementia pose a global health challenge in an aging population, exemplified by the increasing incidence and prevalence of its most common form, Alzheimer's disease. Although several approved treatments exist for Alzheimer's disease, they only afford transient symptomatic improvements and are not considered disease-modifying. The psychoactive properties of Cannabis sativa L. have been recognized for thousands of years and now with burgeoning access to medicinal formulations globally, research has turned to re-evaluate cannabis and its myriad phytochemicals as a potential treatment and adjunctive agent for neurodegenerative diseases. PURPOSE This review evaluated the neuroprotective potential of C. sativa's active constituents for potential therapeutic use in dementia and Alzheimer's disease, based on published studies demonstrating efficacy in experimental preclinical settings associated with neurodegeneration. STUDY DESIGN Relevant information on the neuroprotective potential of the C. sativa's phytoconstituents in preclinical studies (in vitro, in vivo) were included. The collated information on C. sativa's component bioactivity was organized for therapeutic applications against neurodegenerative diseases. METHODS The therapeutic use of C. sativa related to Alzheimer's disease relative to known phytocannabinoids and other phytochemical constituents were derived from online databases, including PubMed, Elsevier, The Plant List (TPL, www.theplantlist.org), Science Direct, as well as relevant information on the known pharmacological actions of the listed phytochemicals. RESULTS Numerous C. sativa -prevalent phytochemicals were evidenced in the body of literature as having efficacy in the treatment of neurodegenerative conditions exemplified by Alzheimer's disease. Several phytocannabinoids, terpenes and select flavonoids demonstrated neuroprotection through a myriad of cellular and molecular pathways, including cannabinoid receptor-mediated, antioxidant and direct anti-aggregatory actions against the pathological toxic hallmark protein in Alzheimer's disease, amyloid β. CONCLUSIONS These findings provide strong evidence for a role of cannabis constituents, individually or in combination, as potential neuroprotectants timely to the emergent use of medicinal cannabis as a novel treatment for neurodegenerative diseases. Future randomized and controlled clinical studies are required to substantiate the bioactivities of phytocannabinoids and terpenes and their likely synergies.
Collapse
Affiliation(s)
- John Staton Laws
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia
| | - Scott D Smid
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia, Australia.
| |
Collapse
|
29
|
Alzu’bi A, Zoubi MSA, Al-Trad B, AbuAlArjah MI, Shehab M, Alzoubi H, Albals D, Abdelhady GT, El-Huneidi W. Acute Hepatic Injury Associated with Acute Administration of Synthetic Cannabinoid XLR-11 in Mouse Animal Model. TOXICS 2022; 10:668. [PMID: 36355959 PMCID: PMC9692363 DOI: 10.3390/toxics10110668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The widespread recreational use of synthetic cannabinoids (SCs) has become a serious health issue. Reports of life-threatening intoxications related to SC consumption have markedly increased in recent years, including neurotoxicity, cardiotoxicity, nephrotoxicity, and hepatotoxicity. We investigated the impact of acute administration of the synthetic cannabinoid XLR-11 (3 mg/kg, i.p. for 5 consecutive days) on the liver in BALB/c mouse animal model. Using real-time quantitative RT-PCR, MDA assay, and TUNEL assay, we found consistent up-regulation of a variety of genes involved in oxidative stress (NOX2, NOX4, and iNOS), inflammation (TNF-α, IL-1β, IL-6), and apoptosis (Bax) in the liver of XLR-11 treated mice compared to control mice. These finding were supported with an elevation of MDA levels and TUNEL positive cells in the liver of XLR-11 treated mice which further confirm increased oxidative stress and apoptosis, respectively. Histopathological analysis of the liver of XLR-11 treated mice confirmed pronounced hepatic necrosis associated with inflammatory cell infiltration. Furthermore, elevated ALT and AST serum levels were also identified in XLR-11 treated mice indicating possible liver damage. Overall, SC-induced hepatotoxicity seems to be mainly mediated by activated oxidative stress and inflammatory processes in the liver, but the specific mechanisms involved require further investigations. However, the present study shed light on the potential deleterious role of acute administration of SCs in the progression to acute hepatic injury which enhances our understanding of the adverse effect of SC consumption.
Collapse
Affiliation(s)
- Ayman Alzu’bi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Mazhar Salim Al Zoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Bahaa Al-Trad
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Manal Isam AbuAlArjah
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Malek Shehab
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Hiba Alzoubi
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
| | - Dima Albals
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 211-63, Jordan
| | - Gamal T. Abdelhady
- Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 211-63, Jordan
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Waseem El-Huneidi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
30
|
Dabhi N, Mastorakos P, Sokolowski JD, Kellogg RT, Park MS. Effect of drug use in the treatment of acute ischemic stroke: A scoping review. Surg Neurol Int 2022; 13:367. [PMID: 36128166 PMCID: PMC9479649 DOI: 10.25259/sni_561_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 11/04/2022] Open
Abstract
Background Drugs of abuse have been associated with ischemic stroke; however, the clinical presentation, outcomes, and treatment data in this population are limited. The overall safety and efficacy of thrombolytic therapy and thrombectomy in these patients remain unclear. This scoping review summarizes published complications and clinical outcomes in patients with recent abuse of cocaine, methamphetamine (MA), cannabis, decongestant, opioids, alcohol, and 3,4-methylenedioxymethamphetamine (MDMA) presenting with acute ischemic stroke. Methods We conducted a scoping review of the primary literature that assessed outcomes data of thrombolytic therapy or thrombectomy in drug users with acute ischemic stroke. We searched PubMed, Ovid Medline, and Web of Science. Demographic and stroke characteristics, treatment, complications, and clinical outcomes at last follow-up were collected and summarized. Results We identified 51 studies in this review. Drugs of abuse of interest were cocaine (14 studies), MDMA (one study), MA (eight studies), cannabis (23 studies), alcohol (two studies), decongestants (one study), and opioids (two studies). Clinical presentation and stroke presentation were most commonly described features. Thrombectomy outcomes were reported for four patients total (two studies), all with history of cocaine use. Thrombolysis treatment and outcomes were reported for 8851 patients (five studies) with history of cocaine, alcohol, or cannabis. Both treatments were pursued in three patients (three studies). Treatment complications included intracerebral hemorrhage, vasospasm, and cerebral edema. Conclusion Evidence for thrombolytic and thrombectomy treatment in drug users remains limited. Controlled studies are needed to examine complication profile and outcomes following thrombolytic and thrombectomy treatment in this population.
Collapse
Affiliation(s)
- Nisha Dabhi
- Department of Neurosurgery, University of Virginia, Charlottesville, United States
| | | | | | | | | |
Collapse
|
31
|
Newman SD, Schnakenberg Martin AM, Raymond D, Cheng H, Wilson L, Barnes S, O’Donnell BF. The relationship between cannabis use and taurine: A MRS and metabolomics study. PLoS One 2022; 17:e0269280. [PMID: 35653401 PMCID: PMC9162360 DOI: 10.1371/journal.pone.0269280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Taurine is an essential amino acid. It has been shown to be neuroprotective including protecting against the neurotoxic effects of glutamate. The goal of the current study was to examine the relationship between CB use and taurine measured in brain using magnetic resonance spectroscopy (MRS), and peripherally from a urine sample. Two experiments are presented. The first is a reanalysis of published data that examined taurine and glutamate in the dorsal anterior cingulate of a CB user group and non-user group using MRS. The second experiment, in a separate CB user group, used metabolomics analysis to measure taurine levels in urine. Because body composition has been associated with the pharmacokinetics of cannabis and taurine levels, a moderation model was examined with body composition included as the covariate. The MRS study found taurine levels were correlated with glutamate in both groups and taurine was correlated with frequency of CB use in the CB user group. The moderation model demonstrated significant effects of CB use and BMI; the interaction was marginally significant with lower BMI individuals showing a positive relationship between CB use and taurine. A similar finding was observed for the urine analysis. Both CB use and weight, as well as the interaction were significant. In this case, individuals with higher weight showed an association between CB use and taurine levels. This study shows the feasibility and potential importance of examining the relationship between taurine and CB use as it may shed light on a mechanism that underlies the neuroprotective effects of CB.
Collapse
Affiliation(s)
- Sharlene D. Newman
- Alabama Life Research Institute, The University of Alabama, Tuscaloosa, Alabama, United States of America
- * E-mail:
| | - Ashley M. Schnakenberg Martin
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Psychology Service, VA Connecticut Healthcare System, West Haven, Connecticut, United States of America
| | - David Raymond
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Landon Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brian F. O’Donnell
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
32
|
Salimi A, Shabani M, Aylar EM. Inhibition of mitochondrial permeability transition pore and antioxidant effect of Delta-9-tetrahydrocannabinol reduces aluminium phosphide-induced cytotoxicity and dysfunction of cardiac mitochondria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105117. [PMID: 35715056 DOI: 10.1016/j.pestbp.2022.105117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Previous studies have demonstrated that phosphine gas (PH3) released from aluminium phosphide (AlP) can inhibit cytochrome oxidase in cardiac mitochondria and induce generation of free radicals, oxidative stress, alteration in antioxidant defense system and cardiotoxicity. Available evidence suggests that cannabinoids have protective effects in the reduction of oxidative stress, mitochondrial and cardiovascular damages. The objective of this study was to evaluate the effect of trans-Δ-9-tetrahydrocannabinol (THC) on AlP-induced toxicity in isolated cardiomyocytes and cardiac mitochondria. Rat heart isolated cardiomyocytes and mitochondria were cotreated with different concentrations of THC (10, 50 and 100 μM) and IC50 of AlP, then cellular and mitochondrial toxicity parameters were assayed. Treatment with AlP alone increased the cytotoxicity, depletion of cellular glutathione (GSH), mitochondrial reactive oxygen species (ROS) generation, lipid oxidation, mitochondria membrane potential (ΔΨm) collapse and mitochondrial swelling, when compared to control group. However, incubation with THC (10, 50 and 100 μM) attenuated the AlP-induced changes in all these parameters in a THC concentration-dependent manner. Interestingly, the obtained results showed remarkably significant protective effects of THC by attenuation the different parameters of cytotoxicity, mitochondrial toxicity and oxidative stress induced by ALP in isolated cardiomyocytes and cardiac mitochondria. It is the first report showing the protective effects of THC against AlP-induced toxicity, and these effects are related to antioxidant potential and inhibition of mitochondria permeability transition (MPT) pore. Based on these results, it was hypothesized that THC may be used as a potential therapeutic agent for the treatment of AlP-induced mitochondrial dysfunction and cardiotoxicity.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Iran.
| | - Mohammad Shabani
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Mojarad Aylar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
33
|
Epidemiological association of cannabinoid- and drug- exposures and sociodemographic factors with limb reduction defects across USA 1989–2016: A geotemporospatial study. Spat Spatiotemporal Epidemiol 2022; 41:100480. [DOI: 10.1016/j.sste.2022.100480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/08/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
|
34
|
James TR, Richards AA, Lowe DA, Reid WA, Watson CT, Pepple DJ. The in vitro effect of delta-9-tetrahydrocannabinol and cannabidiol on whole blood viscosity, elasticity and membrane integrity. J Cannabis Res 2022; 4:15. [PMID: 35382895 PMCID: PMC8981745 DOI: 10.1186/s42238-022-00126-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
Background The main biological activities of cannabis are due to the presence of several compounds known as cannabinoids. Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are two of the main cannabinoids. Studies have shown that the effects of THC can be modulated by CBD. Objective This study aims to look at the effect of different concentrations of THC and CBD separately and in combination, on blood viscosity, elasticity and membrane integrity. Methods Blood samples were collected from twenty-four healthy adult non-smokers. Blood viscosity and elasticity were determined using the Vilastic Scientific Bioprofiler for different concentrations (0, 2.5, 25, 50 and 100 ng/ml) of CBD and THC respectively, as well as in extracts with combinations of CBD and THC in 4:1 and 1:1 ratios respectively. Repeated measures analysis of variance (ANOVA) was used to determine the difference between the means of the groups. Results Blood viscosity increased significantly with increasing concentrations of both THC and CBD from 25 ng/ml up to 100 ng/ml ranging from 6.45 ± 0.36 mPa·s to 11.60 ± 1.12 mPa·s for THC and ranging from 5.46 ± 0.24 mPa·s to 9.91 ± 1.10 mPa·s for CBD respectively, being more pronounced in the extracts at 21.33 ± 2.17 mPa·s for the 4THC:1CBD extract and 21.76 ± 1.88 mPa·s for the 1THC:1CBD extract. There was no significant increase in elasticity for THC and CBD separately. However, a significant increase in elasticity was observed in the extracts. THC and CBD affected red cell morphology resulting in complete disintegration at the highest concentrations. Conclusions THC and CBD increased red blood cell viscosity and elasticity separately and in combination. They also adversely affected membrane integrity.
Collapse
|
35
|
Reece AS, Hulse GK. Geotemporospatial and causal inferential epidemiological overview and survey of USA cannabis, cannabidiol and cannabinoid genotoxicity expressed in cancer incidence 2003-2017: part 2 - categorical bivariate analysis and attributable fractions. Arch Public Health 2022; 80:100. [PMID: 35354495 PMCID: PMC8969377 DOI: 10.1186/s13690-022-00812-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/29/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND As the cannabis-cancer relationship remains an important open question epidemiological investigation is warranted to calculate key metrics including Rate Ratios (RR), Attributable Fractions in the Exposed (AFE) and Population Attributable Risks (PAR) to directly compare the implicated case burden between emerging cannabinoids and the established carcinogen tobacco. METHODS SEER*Stat software from Centres for Disease Control was used to access age-standardized state census incidence of 28 cancer types (including "All (non-skin) Cancer") from National Cancer Institute in US states 2001-2017. Drug exposures taken from the National Survey of Drug Use and Health 2003-2017, response rate 74.1%. Federal seizure data provided cannabinoid exposure. US Census Bureau furnished income and ethnicity. Exposure dichotomized as highest v. lowest exposure quintiles. Data processed in R. RESULTS Nineteen thousand eight hundred seventy-seven age-standardized cancer rates were returned. Based on these rates and state populations this equated to 51,623,922 cancer cases over an aggregated population 2003-2017 of 124,896,418,350. Fifteen cancers displayed elevated E-Values in the highest compared to the lowest quintiles of cannabidiol exposure, namely (in order): prostate, melanoma, Kaposi sarcoma, ovarian, bladder, colorectal, stomach, Hodgkins, esophagus, Non-Hodgkins lymphoma, All cancer, brain, lung, CLL and breast. Eleven cancers were elevated in the highest THC exposure quintile: melanoma, thyroid, liver, AML, ALL, pancreas, myeloma, CML, breast, oropharynx and stomach. Twelve cancers were elevated in the highest tobacco quintile confirming extant knowledge and study methodology. For cannabidiol RR declined from 1.397 (95%C.I. 1.392, 1.402), AFE declined from 28.40% (28.14, 28.66%), PAR declined from 15.3% (15.1, 15.5%) and minimum E-Values declined from 2.13. For THC RR declined from 2.166 (95%C.I. 2.153, 2.180), AFE declined from 53.8% (53.5, 54.1%); PAR declined from 36.1% (35.9, 36.4%) and minimum E-Values declined from 3.72. For tobacco, THC and cannabidiol based on AFE this implies an excess of 93,860, 91,677 and 48,510 cases; based on PAR data imply an excess of 36,450, 55,780 and 14,819 cases. CONCLUSION Data implicate 23/28 cancers as being linked with THC or cannabidiol exposure with epidemiologically-causal relationships comparable to those for tobacco. AFE-attributable cases for cannabinoids (91,677 and 48,510) compare with PAR-attributable cases for tobacco (36,450). Cannabinoids constitute an important multivalent community carcinogen.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia.
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
- , Brisbane, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
36
|
Low-Dose Delta-9-Tetrahydrocannabinol as Beneficial Treatment for Aged APP/PS1 Mice. Int J Mol Sci 2022; 23:ijms23052757. [PMID: 35269905 PMCID: PMC8910894 DOI: 10.3390/ijms23052757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Studies on the effective and safe therapeutic dosage of delta-9-tetrahydrocannabinol (THC) for the treatment of Alzheimer’s disease (AD) have been sparse due to the concern about THC’s psychotropic activity. The present study focused on demonstrating the beneficial effect of low-dose THC treatment in preclinical AD models. The effect of THC on amyloid-β (Aβ) production was examined in N2a/AβPPswe cells. An in vivo study was conducted in aged APP/PS1 transgenic mice that received an intraperitoneal injection of THC at 0.02 and 0.2 mg/kg every other day for three months. The in vitro study showed that THC inhibited Aβ aggregation within a safe dose range. Results of the radial arm water maze (RAWM) test demonstrated that treatment with 0.02 and 0.2 mg/kg of THC for three months significantly improved the spatial learning performance of aged APP/PS1 mice in a dose-dependent manner. Results of protein analyses revealed that low-dose THC treatment significantly decreased the expression of Aβ oligomers, phospho-tau and total tau, and increased the expression of Aβ monomers and phospho-GSK-3β (Ser9) in the THC-treated brain tissues. In conclusion, treatment with THC at 0.2 and 0.02 mg/kg improved the spatial learning of aged APP/PS1 mice, suggesting low-dose THC is a safe and effective treatment for AD.
Collapse
|
37
|
Greco A, Del Prete C, De Biase D, Palumbo V, Albanese S, Bruzzese D, Carotenuto D, Ciani F, Tafuri S, Meomartino L, Mancini M, Paciello O, Cocchia N. Effects of Oral Administration of Lepidium meyenii on Morphology of Mice Testis and Motility of Epididymal Sperm Cells After Tetrahydrocannabinol Exposure. Front Vet Sci 2021; 8:692874. [PMID: 34957272 PMCID: PMC8697607 DOI: 10.3389/fvets.2021.692874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Tetrahydrocannabinol (THC) administration is associated with testicular damage and reduced semen quality. Oral administration of Lepidium Meyenii (maca) improves spermatogenesis and sperm motility and count and reduces spermatogenic damage. Objectives: The aim of this study was to evaluate the effect of administration of THC, maca, and their combination on testicular tissue and semen parameters. Materials and Methods: Thirty-six-week-old male mice were classified into control, THC, Maca, and THC + Maca groups. The mice were subjected to Eco Color Doppler ultrasound examination of the testicles before and after treatment. After euthanasia, the epididymis, testes, liver, and kidney were collected for histological examination. For morphometry of the testis, tubular diameters and seminiferous epithelium height were measured. Sperm concentration and sperm motilities were assessed. Differences among the groups were assessed using the Kruskal-Wallis and Dunn's post-hoc test. Results: In all the groups, there were no significant changes in testicular morphology before and after treatment. Histological assessment of the testes showed no alterations in control, no significant alterations in Maca, mild to moderate alterations in THC, and mild alterations in THC + Maca groups. Histological examination of the other organs showed no significant differences among the groups. Tubular diameter showed significantly increased thickening for THC and THC + Maca compared with that for Maca and control. Moreover, seminiferous epithelium height decreased for THC compared with that in the control, Maca, and THC + Maca groups. No statistically significant reduction in the spermatogenic index was observed for THC compared with that for Maca and THC + Maca. Epididymal cross-sections of the groups showed no significant alterations. Sperm concentration and motility were higher for control and THC + Maca groups than in group THC and Maca. Conclusion: In vivo maca administration reduced the deleterious effect of THC on testicular parenchyma and semen production.
Collapse
Affiliation(s)
- Adelaide Greco
- Interdepartmental Center of Veterinary Radiology, University of Naples Federico II, Naples, Italy.,Institute of Biostructures and Bioimaging of the National Council of Research, Naples, Italy
| | - Chiara Del Prete
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Davide De Biase
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Veronica Palumbo
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Sandra Albanese
- Institute of Biostructures and Bioimaging of the National Council of Research, Naples, Italy
| | - Dario Bruzzese
- Department of Public Sanity, University of Naples Federico II, Naples, Italy
| | | | - Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Leonardo Meomartino
- Interdepartmental Center of Veterinary Radiology, University of Naples Federico II, Naples, Italy
| | - Marcello Mancini
- Institute of Biostructures and Bioimaging of the National Council of Research, Naples, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Natascia Cocchia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
38
|
Veerappa A, Pendyala G, Guda C. A systems omics-based approach to decode substance use disorders and neuroadaptations. Neurosci Biobehav Rev 2021; 130:61-80. [PMID: 34411560 PMCID: PMC8511293 DOI: 10.1016/j.neubiorev.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/23/2021] [Accepted: 08/14/2021] [Indexed: 11/15/2022]
Abstract
Substance use disorders (SUDs) are a group of neuropsychiatric conditions manifesting due to excessive dependence on potential drugs of abuse such as psychostimulants, opioids including prescription opioids, alcohol, inhalants, etc. Experimental studies have generated enormous data in the area of SUDs, but outcomes from such data have remained largely fragmented. In this review, we attempt to coalesce these data points providing an important first step towards our understanding of the etiology of SUDs. We propose and describe a 'core addictome' pathway that behaves central to all SUDs. Besides, we also have made some notable observations paving way for several hypotheses; MECP2 behaves as a master switch during substance use; five distinct gene clusters were identified based on respective substance addiction; a central cluster of genes serves as a hub of the addiction pathway connecting all other substance addiction clusters. In addition to describing these findings, we have emphasized the importance of some candidate genes that are of substantial interest for further investigation and serve as high-value targets for translational efforts.
Collapse
Affiliation(s)
- Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gurudutt Pendyala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
39
|
Pryimak N, Zaiachuk M, Kovalchuk O, Kovalchuk I. The Potential Use of Cannabis in Tissue Fibrosis. Front Cell Dev Biol 2021; 9:715380. [PMID: 34708034 PMCID: PMC8542845 DOI: 10.3389/fcell.2021.715380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023] Open
Abstract
Fibrosis is a condition characterized by thickening or/and scarring of various tissues. Fibrosis may develop in almost all tissues and organs, and it may be one of the leading causes of morbidity and mortality. It provokes excessive scarring that excels the usual wound healing response to trauma in numerous organs. Currently, very little can be done to prevent tissue fibrosis, and it is almost impossible to reverse it. Anti-inflammatory and immunosuppressive drugs are among the few treatments that may be efficient in preventing fibrosis. Numerous publications suggest that cannabinoids and extracts of Cannabis sativa have potent anti-inflammatory and anti-fibrogenic properties. In this review, we describe the types and mechanisms of fibrosis in various tissues and discuss various strategies for prevention and dealing with tissue fibrosis. We further introduce cannabinoids and their potential for the prevention and treatment of fibrosis, and therefore for extending healthy lifespan.
Collapse
Affiliation(s)
| | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
40
|
Shaheryar ZA, Khan MA, Adnan CS, Zaidi AA, Hänggi D, Muhammad S. Neuroinflammatory Triangle Presenting Novel Pharmacological Targets for Ischemic Brain Injury. Front Immunol 2021; 12:748663. [PMID: 34691061 PMCID: PMC8529160 DOI: 10.3389/fimmu.2021.748663] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is one of the leading causes of morbidity and mortality globally. Hundreds of clinical trials have proven ineffective in bringing forth a definitive and effective treatment for ischemic stroke, except a myopic class of thrombolytic drugs. That, too, has little to do with treating long-term post-stroke disabilities. These studies proposed diverse options to treat stroke, ranging from neurotropic interpolation to venting antioxidant activity, from blocking specific receptors to obstructing functional capacity of ion channels, and more recently the utilization of neuroprotective substances. However, state of the art knowledge suggests that more pragmatic focus in finding effective therapeutic remedy for stroke might be targeting intricate intracellular signaling pathways of the 'neuroinflammatory triangle': ROS burst, inflammatory cytokines, and BBB disruption. Experimental evidence reviewed here supports the notion that allowing neuroprotective mechanisms to advance, while limiting neuroinflammatory cascades, will help confine post-stroke damage and disabilities.
Collapse
Affiliation(s)
- Zaib A. Shaheryar
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
| | - Mahtab A. Khan
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | - Awais Ali Zaidi
- Faculty of Pharmacy, University of Lahore, Lahore, Pakistan
- Imran Idrees College of Pharmacy, Lahore, Pakistan
| | - Daniel Hänggi
- Department of Neurosurgery, Faculty of Medicine and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Neurosurgery, Faculty of Medicine and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
41
|
Bukke VN, Archana M, Villani R, Serviddio G, Cassano T. Pharmacological and Toxicological Effects of Phytocannabinoids and Recreational Synthetic Cannabinoids: Increasing Risk of Public Health. Pharmaceuticals (Basel) 2021; 14:ph14100965. [PMID: 34681189 PMCID: PMC8541640 DOI: 10.3390/ph14100965] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023] Open
Abstract
Synthetic Cannabinoids (CBs) are a novel class of psychoactive substances that have rapidly evolved around the world with the addition of diverse structural modifications to existing molecules which produce new structural analogues that can be associated with serious adverse health effects. Synthetic CBs represent the largest class of drugs detected by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) with a total of 207 substances identified from 2008 to October 2020, and 9 compounds being reported for the first time. Synthetic CBs are sprayed on natural harmless herbs with an aim to mimic the euphoric effect of Cannabis. They are sold under different brand names including Black mamba, spice, K2, Bombay Blue, etc. As these synthetic CBs act as full agonists at the CB receptors, they are much more potent than natural Cannabis and have been increasingly associated with acute to chronic intoxications and death. Due to their potential toxicity and abuse, the US government has listed some synthetic CBs under schedule 1 classification. The present review aims to provide a focused overview of the literature concerning the development of synthetic CBs, their abuse, and potential toxicological effects including renal toxicity, respiratory depression, hyperemesis syndrome, cardiovascular effects, and a range of effects on brain function.
Collapse
|
42
|
Salimi A, Niknejad M, Minouei M, Mojarad Aylar E. Analysis of toxicity effects of delta-9-tetrahydrocannabinol on isolated rat heart mitochondria. Toxicol Mech Methods 2021; 32:106-113. [PMID: 34431445 DOI: 10.1080/15376516.2021.1973168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mitochondria have the main roles in myocardial tissue homeostasis, through providing ATP for the vital enzymes in intermediate metabolism, contractile apparatus and maintaining ion homeostasis. Mitochondria-related cardiotoxicity results from the exposure with illicit drugs have previously reported. These illicit drugs interference with processes of normal mitochondrial homeostasis and lead to mitochondrial dysfunction and mitochondrial-related oxidative stress. Cannabis consumption has been shown to cause ventricular tachycardia, to increase the risk of myocardial infarction (MI) and potentially sudden death. Here, we investigated this hypothesis that delta-9-tetrahydrocannabinol (Delta-9-THC) as a main cannabinoid found in cannabis could directly cause mitochondrial dysfunction. Cardiac mitochondria were isolated with mechanical lysis and differential centrifugation form rat heart. The isolated cardiac mitochondria were treated with different concentrations of THC (1, 5, 10, 50, 100 and 500 µM) for 1 hour at 37 °C. Then, succinate dehydrogenase (SDH) activity, mitochondrial swelling, reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP) collapse and lipid peroxidation were measured in the treated and nontreated isolated cardiac mitochondria. Our observation showed that THC did not cause a deleterious alteration in mitochondrial functions, ROS production, MMP collapse, mitochondrial swelling, oxidative stress and lipid peroxidation in used concentrations (5-100 µM), even in several tests, toxicity showed a decreasing trend. Altogether, the results of the current study showed that THC is not directly toxic in isolated cardiac mitochondria, and even may be helpful in reducing mitochondrial toxicity.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohsen Niknejad
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Morteza Minouei
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Mojarad Aylar
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.,Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
43
|
Reece AS, Hulse GK. Cannabinoid exposure as a major driver of pediatric acute lymphoid Leukaemia rates across the USA: combined geospatial, multiple imputation and causal inference study. BMC Cancer 2021; 21:984. [PMID: 34479489 PMCID: PMC8414697 DOI: 10.1186/s12885-021-08598-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Acute lymphoid leukaemia (ALL) is the commonest childhood cancer whose incidence is rising in many nations. In the USA, between 1975 and 2016, ALL rates (ALLRs) rose 93.51% from 1.91 to 3.70/100,000 < 20 years. ALL is more common in Caucasian-Americans than amongst minorities. The cause of both the rise and the ethnic differential is unclear, however, prenatal cannabis exposure was previously linked with elevated childhood leukaemia rates. We investigated epidemiologically if cannabis use impacted nationally on ALLRs, its ethnic effects, and if the relationship was causal. METHODS State data on overall, and ethnic ALLR from the Surveillance Epidemiology and End Results databank of the Centre for Disease Control (CDC) and National Cancer Institute (NCI) were combined with drug (cigarettes, alcoholism, cannabis, analgesics, cocaine) use data from the National Survey of Drug Use and Health; 74.1% response rate. Income and ethnicity data was from the US Census bureau. Cannabinoid concentration was from the Drug Enforcement Agency Data. Data was analyzed in R by robust and spatiotemporal regression. RESULTS In bivariate analyses a dose-response relationship was demonstrated between ALLR and Alcohol Use Disorder (AUD), cocaine and cannabis exposure, with the effect of cannabis being strongest (β-estimate = 3.33(95%C.I. 1.97, 4.68), P = 1.92 × 10- 6). A strong effect of cannabis use quintile on ALLR was noted (Chi.Sq. = 613.79, P = 3.04 × 10- 70). In inverse probability weighted robust regression adjusted for other substances, income and ethnicity, cannabis was independently significant (β-estimate = 4.75(0.48, 9.02), P = 0.0389). In a spatiotemporal model adjusted for all drugs, income, and ethnicity, cannabigerol exposure was significant (β-estimate = 0.26(0.01, 0.52), P = 0.0444), an effect increased by spatial lagging (THC: β-estimate = 0.47(0.12, 0.82), P = 0.0083). After missing data imputation ethnic cannabis exposure was significant (β-estimate = 0.64(0.55, 0.72), P = 3.1 × 10- 40). 33/35 minimum e-Values ranged from 1.25 to 3.94 × 1036 indicative of a causal relationship. Relaxation of cannabis legal paradigms had higher ALLR (Chi.Squ.Trend = 775.12, P = 2.14 × 10- 112). Cannabis legal states had higher ALLR (2.395 ± 0.039 v. 2.127 ± 0.008 / 100,000, P = 5.05 × 10- 10). CONCLUSIONS Data show that ALLR is associated with cannabis consumption across space-time, is associated with the cannabinoids, THC, cannabigerol, cannabinol, cannabichromene, and cannabidiol, contributes to ethnic differentials, demonstrates prominent quintile effects, satisfies criteria for causality and is exacerbated by cannabis legalization.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia. .,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
44
|
Serum Proteomic Analysis of Cannabis Use Disorder in Male Patients. Molecules 2021; 26:molecules26175311. [PMID: 34500744 PMCID: PMC8434053 DOI: 10.3390/molecules26175311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Cannabis use has been growing recently and it is legally consumed in many countries. Cannabis has a variety of phytochemicals including cannabinoids, which might impair the peripheral systems responses affecting inflammatory and immunological pathways. However, the exact signaling pathways that induce these effects need further understanding. The objective of this study is to investigate the serum proteomic profiling in patients diagnosed with cannabis use disorder (CUD) as compared with healthy control subjects. The novelty of our study is to highlight the differentially changes proteins in the serum of CUD patients. Certain proteins can be targeted in the future to attenuate the toxicological effects of cannabis. Blood samples were collected from 20 male individuals: 10 healthy controls and 10 CUD patients. An untargeted proteomic technique employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was employed in this study to assess the differentially expressed proteins. The proteomic analysis identified a total of 121 proteins that showed significant changes in protein expression between CUD patients (experimental group) and healthy individuals (control group). For instance, the serum expression of inactive tyrosine protein kinase PEAK1 and tumor necrosis factor alpha-induced protein 3 were increased in CUD group. In contrast, the serum expression of transthyretin and serotransferrin were reduced in CUD group. Among these proteins, 55 proteins were significantly upregulated and 66 proteins significantly downregulated in CUD patients as compared with healthy control group. Ingenuity pathway analysis (IPA) found that these differentially expressed proteins are linked to p38MAPK, interleukin 12 complex, nuclear factor-κB, and other signaling pathways. Our work indicates that the differentially expressed serum proteins between CUD and control groups are correlated to liver X receptor/retinoid X receptor (RXR), farnesoid X receptor/RXR activation, and acute phase response signaling.
Collapse
|
45
|
Brunet B, Jagailloux Y, Palazzo P, Lelong J, Mura P, Neau JP. Accidents vasculaires cérébraux du sujet jeune et usage de stupéfiants : 2 – Le cas préoccupant du cannabis. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [DOI: 10.1016/j.toxac.2021.06.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Abstract
OBJECTIVES Cannabis is a known teratogen. Data availability addressing both major congenital anomalies and cannabis use allowed us to explore their geospatial relationships. METHODS Data for the years 1998 to 2009 from Canada Health and Statistics Canada was analyzed in R. Maps have been drawn and odds ratios, principal component analysis, correlation matrices, least squares regression and geospatial regression analyses have been conducted using the R packages base, dplyr, epiR, psych, ggplot2, colorplaner and the spml and spreml functions from package splm. RESULTS Mapping showed cannabis use was more common in the northern Territories of Canada in the Second National Survey of Cannabis Use 2018. Total congenital anomalies, all cardiovascular defects, orofacial clefts, Downs syndrome and gastroschisis were all found to be more common in these same regions and rose as a function of cannabis exposure. When Canada was dichotomized into high and low cannabis use zones by Provinces v Territories the Territories had a higher rate of total congenital anomalies 450.026 v 390.413 (O.R. = 1.16 95%C.I. 1.08-1.25, P = 0.000058; attributable fraction in exposed 13.25%, 95%C.I. 7.04-19.04%). In geospatial analysis in a spreml spatial error model cannabis was significant both alone as a main effect (P < 2.0 × 10) and in all its first and second order interactions with both tobacco and opioids from P < 2.0 × 10. CONCLUSION These results show that the northern Territories of Canada share a higher rate of cannabis use together with elevated rates of total congenital anomalies, all cardiovascular defects, Down's syndrome and gastroschisis. This is the second report of a significant association between cannabis use and both total defects and all cardiovascular anomalies and the fourth published report of a link with Downs syndrome and thereby direct major genotoxicity. The correlative relationships described in this paper are confounded by many features of social disadvantage in Canada's northern territories. However, in the context of a similar broad spectrum of defects described both in animals and in epidemiological reports from Hawaii, Colorado, USA and Australia they are cause for particular concern and indicate further research.
Collapse
|
47
|
Saralkar P, Mdzinarishvili A, Arsiwala TA, Lee YK, Sullivan PG, Pinti MV, Hollander JM, Kelley EE, Ren X, Hu H, Simpkins J, Brown C, Hazlehurst LE, Huber JD, Geldenhuys WJ. The Mitochondrial mitoNEET Ligand NL-1 Is Protective in a Murine Model of Transient Cerebral Ischemic Stroke. Pharm Res 2021; 38:803-817. [PMID: 33982226 PMCID: PMC8298128 DOI: 10.1007/s11095-021-03046-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Therapeutic strategies to treat ischemic stroke are limited due to the heterogeneity of cerebral ischemic injury and the mechanisms that contribute to the cell death. Since oxidative stress is one of the primary mechanisms that cause brain injury post-stroke, we hypothesized that therapeutic targets that modulate mitochondrial function could protect against reperfusion-injury after cerebral ischemia, with the focus here on a mitochondrial protein, mitoNEET, that modulates cellular bioenergetics. METHOD In this study, we evaluated the pharmacology of the mitoNEET ligand NL-1 in an in vivo therapeutic role for NL-1 in a C57Bl/6 murine model of ischemic stroke. RESULTS NL-1 decreased hydrogen peroxide production with an IC50 of 5.95 μM in neuronal cells (N2A). The in vivo activity of NL-1 was evaluated in a murine 1 h transient middle cerebral artery occlusion (t-MCAO) model of ischemic stroke. We found that mice treated with NL-1 (10 mg/kg, i.p.) at time of reperfusion and allowed to recover for 24 h showed a 43% reduction in infarct volume and 68% reduction in edema compared to sham-injured mice. Additionally, we found that when NL-1 was administered 15 min post-t-MCAO, the ischemia volume was reduced by 41%, and stroke-associated edema by 63%. CONCLUSION As support of our hypothesis, as expected, NL-1 failed to reduce stroke infarct in a permanent photothrombotic occlusion model of stroke. This report demonstrates the potential therapeutic benefits of using mitoNEET ligands like NL-1 as novel mitoceuticals for treating reperfusion-injury with cerebral stroke.
Collapse
Affiliation(s)
- Pushkar Saralkar
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA
| | - Alexander Mdzinarishvili
- Department of Neurology, College of Medicine, University of Oklahoma HSC, Oklahoma City, Oklahoma, USA
| | - Tasneem A Arsiwala
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA
| | - Yoon-Kwang Lee
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Patrick G Sullivan
- Department of Neuroscience, Spinal and Brain Injury Research Center, School of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mark V Pinti
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, West Virginia, USA
| | - John M Hollander
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, West Virginia, USA
- Division of Exercise Physiology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Eric E Kelley
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA
| | - Xuefang Ren
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Heng Hu
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - James Simpkins
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Candice Brown
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Lori E Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA
| | - Jason D Huber
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 1 Medical Center Drive, Morgantown, West Virginia, 26506, USA.
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, West Virginia, USA.
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University, Morgantown, West Virginia, USA.
| |
Collapse
|
48
|
Moustafa B, Testai FD. Cerebrovascular Complications Associated with Marijuana Use. Curr Neurol Neurosci Rep 2021; 21:25. [PMID: 33825077 DOI: 10.1007/s11910-021-01113-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW In the last few years, the attitude toward marijuana in many parts of the world has shifted from illicit to legalized for medical use and to decriminalized. In parallel, there has been a gradual increase in the consumption of this product in the general population, particularly among adolescents and young adults. Marijuana is generally perceived as a harmless drug. However, data obtained in observational studies and preclinical models have established associations between cannabis use and cardiovascular events. In addition, there is emerging evidence linking marijuana use to cerebrovascular complications. Here we provide a critical review of the literature with special emphasis on the association of cannabinoids with stroke and the possible pathogenic mechanisms involved. RECENT FINDINGS Ischemic and hemorrhagic stroke have been described in association with cannabis use, particularly in young individuals. Cerebral infarction remains the most commonly reported stroke subtype seen in marijuana users. Several pathogenic mechanisms have been proposed to explain this association, including multifocal intracranial stenosis, reversible cerebral vasoconstriction syndrome, and coexisting vascular risk factors. Cannabis use is increasingly recognized in young individuals presenting with acute stroke. Our understanding of the pathogenic mechanisms associated with cannabis use and stroke is limited but rapidly evolving. Healthcare providers should educate patients about the potential cardiovascular and cerebrovascular complications related to marijuana or cannabinoids use.
Collapse
Affiliation(s)
- Bayan Moustafa
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, College of Medicine, 912 S Wood St, Chicago, IL, USA.
| | - Fernando D Testai
- Department of Neurology and Rehabilitation, University of Illinois at Chicago, College of Medicine, 912 S Wood St, Chicago, IL, USA
| |
Collapse
|
49
|
Lah TT, Novak M, Pena Almidon MA, Marinelli O, Žvar Baškovič B, Majc B, Mlinar M, Bošnjak R, Breznik B, Zomer R, Nabissi M. Cannabigerol Is a Potential Therapeutic Agent in a Novel Combined Therapy for Glioblastoma. Cells 2021; 10:cells10020340. [PMID: 33562819 PMCID: PMC7914500 DOI: 10.3390/cells10020340] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Among primary brain tumours, glioblastoma is the most aggressive. As early relapses are unavoidable despite standard-of-care treatment, the cannabinoids delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) alone or in combination have been suggested as a combined treatment strategy for glioblastomas. However, the known psychoactive effects of THC hamper its medical applications in these patients with potential cognitive impairment due to the progression of the disease. Therefore, nontoxic cannabigerol (CBG), being recently shown to exhibit anti-tumour properties in some carcinomas, is assayed here for the first time in glioblastoma with the aim to replace THC. We indeed found CBG to effectively impair the relevant hallmarks of glioblastoma progression, with comparable killing effects to THC and in addition inhibiting the invasion of glioblastoma cells. Moreover, CBG can destroy therapy-resistant glioblastoma stem cells, which are the root of cancer development and extremely resistant to various other treatments of this lethal cancer. CBG should present a new yet unexplored adjuvant treatment strategy of glioblastoma. Abstract Glioblastoma is the most aggressive cancer among primary brain tumours. As with other cancers, the incidence of glioblastoma is increasing; despite modern therapies, the overall mean survival of patients post-diagnosis averages around 16 months, a figure that has not changed in many years. Cannabigerol (CBG) has only recently been reported to prevent the progression of certain carcinomas and has not yet been studied in glioblastoma. Here, we have compared the cytotoxic, apoptotic, and anti-invasive effects of the purified natural cannabinoid CBG together with CBD and THC on established differentiated glioblastoma tumour cells and glioblastoma stem cells. CBG and THC reduced the viability of both types of cells to a similar extent, whereas combining CBD with CBG was more efficient than with THC. CBD and CBG, both alone and in combination, induced caspase-dependent cell apoptosis, and there was no additive THC effect. Of note, CBG inhibited glioblastoma invasion in a similar manner to CBD and the chemotherapeutic temozolomide. We have demonstrated that THC has little added value in combined-cannabinoid glioblastoma treatment, suggesting that this psychotropic cannabinoid should be replaced with CBG in future clinical studies of glioblastoma therapy.
Collapse
Affiliation(s)
- Tamara T. Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-41-651-629
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
| | - Milagros A. Pena Almidon
- School of Pharmacy, Experimental Medicine Section, University of Camerino, 62032 Camerino, Italy; (M.A.P.A.); (O.M.); (M.N.)
| | - Oliviero Marinelli
- School of Pharmacy, Experimental Medicine Section, University of Camerino, 62032 Camerino, Italy; (M.A.P.A.); (O.M.); (M.N.)
| | - Barbara Žvar Baškovič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
| | - Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
- Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Mateja Mlinar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
| | - Roman Bošnjak
- Department of Neurosurgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia; (M.N.); (B.Ž.B.); (B.M.); (M.M.); (B.B.)
| | - Roby Zomer
- MGC Pharmaceuticals d.o.o., 1000 Ljubljana, Slovenia;
| | - Massimo Nabissi
- School of Pharmacy, Experimental Medicine Section, University of Camerino, 62032 Camerino, Italy; (M.A.P.A.); (O.M.); (M.N.)
| |
Collapse
|
50
|
Bayazit H, Dulgeroglu D, Selek S. Brain-Derived Neurotrophic Factor and Oxidative Stress in Cannabis Dependence. Neuropsychobiology 2021; 79:186-190. [PMID: 31779002 DOI: 10.1159/000504626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Neurotrophin levels and oxidative stress markers such as ceruloplasmin and free thiols have been shown to contribute to pathophysiology in several psychiatric disorders. OBJECTIVE Our aim is to evaluate whether those markers are altered in cannabis dependence. METHODS Forty-five cannabis-dependent patients diagnosed according to the DSM-IV criteria and 45 healthy controls matched according to sex, age, BMI, and smoking status were enrolled. Brain-derived neurotrophic factor (BDNF), ceruloplasmin, lipid hydroperoxide, and total free thiols were measured in both groups. Those who had psychiatric comorbidities were excluded before sampling. RESULTS We found significantly increased BDNF, ceruloplasmin, and lipid hydroperoxide, and decreased free thiol levels in patients with cannabis dependence. There is also a positive correlation between BDNF and lipid hydroperoxide (n = r = 0.472, p < 0.001) and a negative correlation between BDNF and total thiols (n = r = -0.412, p = 0.001). CONCLUSIONS Increased BDNF might be a sign of impaired neuronal plasticity that is crucial for memory formation and adaptive response to drug addiction. Neuronal plasticity in the ventral tegmental area dopaminergic neurons was implied to play a role in substance addiction disorders, and these adaptations can be secondary to oxidative stress. Our findings, including increased lipid hydroperoxide, ceruloplasmin, and decreased free thiols, might support this hypothesis. In conclusion, cannabis dependency alters BDNF levels and increases oxidative stress.
Collapse
Affiliation(s)
- Huseyin Bayazit
- Department of Psychiatry, Texas Tech University Health Science Center, Lubbock, Texas, USA,
| | - Dilruba Dulgeroglu
- Community-Based Treatment Team, Bagcilar Education and Training Hospital, Istanbul, Turkey
| | - Salih Selek
- Department of Psychiatry, Texas University Health Science Center, Houston, Texas, USA
| |
Collapse
|