1
|
Su H, Zou R, Su J, Chen X, Yang H, An N, Yang C, Tang J, Liu H, Yao C. Sterile inflammation of peritoneal membrane caused by peritoneal dialysis: focus on the communication between immune cells and peritoneal stroma. Front Immunol 2024; 15:1387292. [PMID: 38779674 PMCID: PMC11109381 DOI: 10.3389/fimmu.2024.1387292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Peritoneal dialysis is a widely used method for treating kidney failure. However, over time, the peritoneal structure and function can deteriorate, leading to the failure of this therapy. This deterioration is primarily caused by infectious and sterile inflammation. Sterile inflammation, which is inflammation without infection, is particularly concerning as it can be subtle and often goes unnoticed. The onset of sterile inflammation involves various pathological processes. Peritoneal cells detect signals that promote inflammation and release substances that attract immune cells from the bloodstream. These immune cells contribute to the initiation and escalation of the inflammatory response. The existing literature extensively covers the involvement of different cell types in the sterile inflammation, including mesothelial cells, fibroblasts, endothelial cells, and adipocytes, as well as immune cells such as macrophages, lymphocytes, and mast cells. These cells work together to promote the occurrence and progression of sterile inflammation, although the exact mechanisms are not fully understood. This review aims to provide a comprehensive overview of the signals from both stromal cells and components of immune system, as well as the reciprocal interactions between cellular components, during the initiation of sterile inflammation. By understanding the cellular and molecular mechanisms underlying sterile inflammation, we may potentially develop therapeutic interventions to counteract peritoneal membrane damage and restore normal function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cuiwei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
2
|
Sheng L, Shan Y, Dai H, Yu M, Sun J, Huang L, Wang F, Sheng M. Intercellular communication in peritoneal dialysis. Front Physiol 2024; 15:1331976. [PMID: 38390449 PMCID: PMC10882094 DOI: 10.3389/fphys.2024.1331976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Long-term peritoneal dialysis (PD) causes structural and functional alterations of the peritoneal membrane. Peritoneal deterioration and fibrosis are multicellular and multimolecular processes. Under stimulation by deleterious factors such as non-biocompatibility of PD solution, various cells in the abdominal cavity show differing characteristics, such as the secretion of different cytokines, varying protein expression levels, and transdifferentiation into other cells. In this review, we discuss the role of various cells in the abdominal cavity and their interactions in the pathogenesis of PD. An in-depth understanding of intercellular communication and inter-organ communication in PD will lead to a better understanding of the pathogenesis of this disease, enabling the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Li Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Shan
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Huibo Dai
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Manshu Yu
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinyi Sun
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liyan Huang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Funing Wang
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- First Clinic Medical School, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meixiao Sheng
- Department of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Trionfetti F, Marchant V, González-Mateo GT, Kawka E, Márquez-Expósito L, Ortiz A, López-Cabrera M, Ruiz-Ortega M, Strippoli R. Novel Aspects of the Immune Response Involved in the Peritoneal Damage in Chronic Kidney Disease Patients under Dialysis. Int J Mol Sci 2023; 24:5763. [PMID: 36982834 PMCID: PMC10059714 DOI: 10.3390/ijms24065763] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Chronic kidney disease (CKD) incidence is growing worldwide, with a significant percentage of CKD patients reaching end-stage renal disease (ESRD) and requiring kidney replacement therapies (KRT). Peritoneal dialysis (PD) is a convenient KRT presenting benefices as home therapy. In PD patients, the peritoneum is chronically exposed to PD fluids containing supraphysiologic concentrations of glucose or other osmotic agents, leading to the activation of cellular and molecular processes of damage, including inflammation and fibrosis. Importantly, peritonitis episodes enhance peritoneum inflammation status and accelerate peritoneal injury. Here, we review the role of immune cells in the damage of the peritoneal membrane (PM) by repeated exposure to PD fluids during KRT as well as by bacterial or viral infections. We also discuss the anti-inflammatory properties of current clinical treatments of CKD patients in KRT and their potential effect on preserving PM integrity. Finally, given the current importance of coronavirus disease 2019 (COVID-19) disease, we also analyze here the implications of this disease in CKD and KRT.
Collapse
Affiliation(s)
- Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Vanessa Marchant
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Guadalupe T. González-Mateo
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
- Premium Research, S.L., 19005 Guadalajara, Spain
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznan, Poland
| | - Laura Márquez-Expósito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Manuel López-Cabrera
- Cell-Cell Communication & Inflammation Unit, Centre for Molecular Biology “Severo Ochoa” (CSIC-UAM), 28049 Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
- REDINREN/RICORS2040, 28029 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| |
Collapse
|
4
|
Estrogen Protects against Renal Ischemia-Reperfusion Injury by Regulating Th17/Treg Cell Immune Balance. DISEASE MARKERS 2022; 2022:7812099. [PMID: 36246554 PMCID: PMC9560860 DOI: 10.1155/2022/7812099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 12/31/2022]
Abstract
Inflammation is a critical mediator of renal ischemia-reperfusion (I/R) injury (IRI), and T lymphocytes exert a key role in the renal IRI-induced inflammation. Connexin 43 (Cx43) is related to the maintenance of T lymphocyte homeostasis. Various preclinical researches have reported that estrogen is a renoprotective agent based on its anti-inflammatory potential. The present research is aimed at studying the role of T lymphocytes activated by Cx43 in 17β-estradiol-mediated protection against renal IRI. Female rats were classified into six groups: control rats, I/R rats, ovariectomized rats, ovariectomized I/R rats, and ovariectomized rats treated with 17β-estradiol or gap27. Levels of serum creatinine (Scr) and blood urea nitrogen (BUN) and Paller scoring were dramatically increased in I/R rats, especially in ovariectomized rats. By contrast, these indicators were markedly decreased by administering estradiol or gap27. Immunofluorescence staining revealed that CD4+ T cells infiltrated kidney tissues in the early stage of IRI. In both peripheral blood and renal tissue, the proportion of CD3+CD4+ T cells and ratio of CD4+ to CD8+ were high in I/R rats, especially in ovariectomized rats. The proportion of CD3+CD8+ T cells was low in peripheral blood but high in renal tissues. Administration of estrogen or Gap27 reversed these effects. IL-17 levels in both serum and tissue homogenate were significantly increased in ovariectomized rats subjected to I/R but significantly decreased in estrogen or gap 27 treated rats. The opposite trend was observed for IL-10 levels. Correlation analysis demonstrated that IL-17 was correlated positively with BUN, Scr, and Paller scores, while IL-10 was negatively correlated with these indicators. Western blot showed that Cx43 expression was markedly increased in the peripheral blood T lymphocytes of I/R rats, especially ovariectomized rats. After intervention with estrogen and gap27, Cx43 expression was significantly downregulated. These findings indicate that Cx43 may participate in the regulation of Th17/Treg balance by estrogen against renal IRI.
Collapse
|
5
|
Kyriakides TR, Kim HJ, Zheng C, Harkins L, Tao W, Deschenes E. Foreign body response to synthetic polymer biomaterials and the role of adaptive immunity. Biomed Mater 2022; 17:10.1088/1748-605X/ac5574. [PMID: 35168213 PMCID: PMC9159526 DOI: 10.1088/1748-605x/ac5574] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023]
Abstract
Implanted biomaterials elicit a series of distinct immune and repair-like responses that are collectively known as the foreign body reaction (FBR). These include processes involving innate immune inflammatory cells and wound repair cells that contribute to the encapsulation of biomaterials with a dense collagenous and largely avascular capsule. Numerous studies have shown that the early phase is dominated by macrophages that fuse to form foreign body giant cells that are considered a hallmark of the FBR. With the advent of more precise cell characterization techniques, specific macrophage subsets have been identified and linked to more or less favorable outcomes. Moreover, studies comparing synthetic- and natural-based polymer biomaterials have allowed the identification of macrophage subtypes that distinguish between fibrotic and regenerative responses. More recently, cells associated with adaptive immunity have been shown to participate in the FBR to synthetic polymers. This suggests the existence of cross-talk between innate and adaptive immune cells that depends on the nature of the implants. However, the exact participation of adaptive immune cells, such as T and B cells, remains unclear. In fact, contradictory studies suggest either the independence or dependence of the FBR on these cells. Here, we review the evidence for the involvement of adaptive immunity in the FBR to synthetic polymers with a focus on cellular and molecular components. In addition, we examine the possibility that such biomaterials induce specific antibody responses resulting in the engagement of adaptive immune cells.
Collapse
Affiliation(s)
- Themis R. Kyriakides
- Department of Biomedical Engineering, Yale University. New Haven CT 06405,Department of Pathology, Yale University. New Haven CT 06405,Vascular Biology and Therapeutics Program. Yale University. New Haven CT 06405
| | - Hyun-Je Kim
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Christy Zheng
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Lauren Harkins
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Wanyun Tao
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| | - Emily Deschenes
- Department of Biomedical Engineering, Yale University. New Haven CT 06405
| |
Collapse
|
6
|
Morimoto K, Yoshida T, Washida N, Uchiyama K, Nakayama T, Itoh H, Oya M. Bullous pemphigoid in patients receiving peritoneal dialysis: a case series and a literature survey. Ren Fail 2021; 43:651-657. [PMID: 33820495 PMCID: PMC8032334 DOI: 10.1080/0886022x.2021.1910045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune subepidermal blistering disease. Although several cases of BP in end-stage renal disease patients receiving peritoneal dialysis (PD) or hemodialysis have been reported, the incidence of BP in these patients remains unknown. We recently experienced three PD patients diagnosed with BP. The skin injury was likely to be a trigger of BP in all the three PD patients. Nifedipine and icodextrin exposures were possible factors directly or indirectly affecting the onset of BP, because they were common in the three cases. We also report that the incidence of BP in PD patients was 3/478.3 person-years in a single-center 10-year study. This case series with a literature survey describes that the skin and tissue injuries are potential triggers responsible for the onset of BP in dialysis patients and that the incidence of BP in these patients seems to be much higher than that in the general population.
Collapse
Affiliation(s)
- Kohkichi Morimoto
- Apheresis and Dialysis Center, School of Medicine, Keio University, Tokyo, Japan
| | - Tadashi Yoshida
- Apheresis and Dialysis Center, School of Medicine, Keio University, Tokyo, Japan
| | - Naoki Washida
- Department of Nephrology, School of Medicine, International University of Health and Welfare, Otawara, Japan.,Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kiyotaka Uchiyama
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Takashin Nakayama
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Mototsugu Oya
- Apheresis and Dialysis Center, School of Medicine, Keio University, Tokyo, Japan.,Department of Urology, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
7
|
Terri M, Trionfetti F, Montaldo C, Cordani M, Tripodi M, Lopez-Cabrera M, Strippoli R. Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells-Peritoneal Stroma Interactions. Front Immunol 2021; 12:607204. [PMID: 33854496 PMCID: PMC8039516 DOI: 10.3389/fimmu.2021.607204] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
Peritoneal fibrosis is characterized by abnormal production of extracellular matrix proteins leading to progressive thickening of the submesothelial compact zone of the peritoneal membrane. This process may be caused by a number of insults including pathological conditions linked to clinical practice, such as peritoneal dialysis, abdominal surgery, hemoperitoneum, and infectious peritonitis. All these events may cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy. Among the cellular processes implicated in these peritoneal alterations is the generation of myofibroblasts from mesothelial cells and other cellular sources that are central in the induction of fibrosis and in the subsequent functional deterioration of the peritoneal membrane. Myofibroblast generation and activity is actually integrated in a complex network of extracellular signals generated by the various cellular types, including leukocytes, stably residing or recirculating along the peritoneal membrane. Here, the main extracellular factors and the cellular players are described with emphasis on the cross-talk between immune system and cells of the peritoneal stroma. The understanding of cellular and molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
Affiliation(s)
- Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marco Cordani
- instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA) Nanociencia, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Manuel Lopez-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular “Severo Ochoa”-Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- National Institute for Infectious Diseases L. Spallanzani, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
8
|
IL-17A as a Potential Therapeutic Target for Patients on Peritoneal Dialysis. Biomolecules 2020; 10:biom10101361. [PMID: 32987705 PMCID: PMC7598617 DOI: 10.3390/biom10101361] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a health problem reaching epidemic proportions. There is no cure for CKD, and patients may progress to end-stage renal disease (ESRD). Peritoneal dialysis (PD) is a current replacement therapy option for ESRD patients until renal transplantation can be achieved. One important problem in long-term PD patients is peritoneal membrane failure. The mechanisms involved in peritoneal damage include activation of the inflammatory and immune responses, associated with submesothelial immune infiltrates, angiogenesis, loss of the mesothelial layer due to cell death and mesothelial to mesenchymal transition, and collagen accumulation in the submesothelial compact zone. These processes lead to fibrosis and loss of peritoneal membrane function. Peritoneal inflammation and membrane failure are strongly associated with additional problems in PD patients, mainly with a very high risk of cardiovascular disease. Among the inflammatory mediators involved in peritoneal damage, cytokine IL-17A has recently been proposed as a potential therapeutic target for chronic inflammatory diseases, including CKD. Although IL-17A is the hallmark cytokine of Th17 immune cells, many other cells can also produce or secrete IL-17A. In the peritoneum of PD patients, IL-17A-secreting cells comprise Th17 cells, γδ T cells, mast cells, and neutrophils. Experimental studies demonstrated that IL-17A blockade ameliorated peritoneal damage caused by exposure to PD fluids. This article provides a comprehensive review of recent advances on the role of IL-17A in peritoneal membrane injury during PD and other PD-associated complications.
Collapse
|
9
|
Raby AC, Labéta MO. Preventing Peritoneal Dialysis-Associated Fibrosis by Therapeutic Blunting of Peritoneal Toll-Like Receptor Activity. Front Physiol 2018; 9:1692. [PMID: 30538643 PMCID: PMC6277495 DOI: 10.3389/fphys.2018.01692] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
Abstract
Peritoneal dialysis (PD) is an essential daily life-saving treatment for end-stage renal failure. PD therapy is limited by peritoneal inflammation, which leads to peritoneal membrane failure as a result of progressive fibrosis. Peritoneal infections, with the concomitant acute inflammatory response and membrane fibrosis development, worsen PD patient outcomes. Patients who remain infection-free, however, also show evidence of inflammation-induced membrane damage and fibrosis, leading to PD cessation. In this case, uraemia, prolonged exposure to bio-incompatible PD solutions and surgical catheter insertion have been reported to induce sterile peritoneal inflammation and fibrosis as a result of cellular stress or tissue injury. Attempts to reduce inflammation (either infection-induced or sterile) and, thus, minimize fibrosis development in PD have been hampered because the immunological mechanisms underlying this PD-associated pathology remain to be fully defined. Toll-like receptors (TLRs) are central to mediating inflammatory responses by recognizing a wide variety of microorganisms and endogenous components released following cellular stress or generated as a consequence of extracellular matrix degradation during tissue injury. Given the close link between inflammation and fibrosis, recent investigations have evaluated the role that TLRs play in infection-induced and sterile peritoneal fibrosis development during PD. Here, we review the findings and discuss the potential of reducing peritoneal TLR activity by using a TLR inhibitor, soluble TLR2, as a therapeutic strategy to prevent PD-associated peritoneal fibrosis.
Collapse
Affiliation(s)
- Anne-Catherine Raby
- The Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mario O Labéta
- The Wales Kidney Research Unit, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
10
|
Witowski J, Kamhieh-Milz J, Kawka E, Catar R, Jörres A. IL-17 in Peritoneal Dialysis-Associated Inflammation and Angiogenesis: Conclusions and Perspectives. Front Physiol 2018; 9:1694. [PMID: 30534087 PMCID: PMC6275317 DOI: 10.3389/fphys.2018.01694] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/09/2018] [Indexed: 12/13/2022] Open
Abstract
Long-term peritoneal dialysis (PD) is associated with peritoneal membrane remodeling. This includes changes in peritoneal vasculature, which may ultimately lead to inadequate solute and water removal and treatment failure. The potential cause of such alterations is chronic inflammation induced by repeated episodes of infectious peritonitis and/or exposure to bioincompatible PD fluids. While these factors may jeopardize the peritoneal membrane integrity, it is not clear why adverse peritoneal remodeling develops only in some PD patients. Increasing evidence points to the differences that occur between patients in response to the same invading microorganism and/or the differences in the course of inflammatory reaction triggered by different species. Such differences may be related to the involvement of different inflammatory mediators. Here, we discuss the potential role of IL-17 in these processes with emphasis on its impact on peritoneal mesothelial cells and peritoneal vascularity.
Collapse
Affiliation(s)
- Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznań, Poland.,Department of Nephrology, Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Rusan Catar
- Department of Nephrology, Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Achim Jörres
- Department of Medicine I, Nephrology, Transplantation, Medical Intensive Care, University of Witten/Herdecke, Cologne-Merheim Medical Center, Cologne, Germany
| |
Collapse
|
11
|
Biomarker research to improve clinical outcomes of peritoneal dialysis: consensus of the European Training and Research in Peritoneal Dialysis (EuTRiPD) network. Kidney Int 2017; 92:824-835. [PMID: 28797473 DOI: 10.1016/j.kint.2017.02.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/16/2017] [Accepted: 02/27/2017] [Indexed: 12/15/2022]
Abstract
Peritoneal dialysis (PD) therapy substantially requires biomarkers as tools to identify patients who are at the highest risk for PD-related complications and to guide personalized interventions that may improve clinical outcome in the individual patient. In this consensus article, members of the European Training and Research in Peritoneal Dialysis Network (EuTRiPD) review the current status of biomarker research in PD and suggest a selection of biomarkers that can be relevant to the care of PD patients and that are directly accessible in PD effluents. Currently used biomarkers such as interleukin-6, interleukin-8, ex vivo-stimulated interleukin-6 release, cancer antigen-125, and advanced oxidation protein products that were collected through a Delphi procedure were first triaged for inclusion as surrogate endpoints in a clinical trial. Next, novel biomarkers were selected as promising candidates for proof-of-concept studies and were differentiated into inflammation signatures (including interleukin-17, M1/M2 macrophages, and regulatory T cell/T helper 17), mesothelial-to-mesenchymal transition signatures (including microRNA-21 and microRNA-31), and signatures for senescence and inadequate cellular stress responses. Finally, the need for defining pathogen-specific immune fingerprints and phenotype-associated molecular signatures utilizing effluents from the clinical cohorts of PD patients and "omics" technologies and bioinformatics-biostatistics in future joint-research efforts was expressed. Biomarker research in PD offers the potential to develop valuable tools for improving patient management. However, for all biomarkers discussed in this consensus article, the association of biological rationales with relevant clinical outcomes remains to be rigorously validated in adequately powered, prospective, independent clinical studies.
Collapse
|
12
|
Corrigendum to "T Helper 17/Regulatory T Cell Balance and Experimental Models of Peritoneal Dialysis-Induced Damage". BIOMED RESEARCH INTERNATIONAL 2017; 2017:6130208. [PMID: 28271068 PMCID: PMC5320365 DOI: 10.1155/2017/6130208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022]
Abstract
[This corrects the article DOI: 10.1155/2015/416480.].
Collapse
|
13
|
Zhang BB, Yan C, Fang F, Du Y, Ma R, Li XY, Yu Q, Meng D, Tang RX, Zheng KY. Increased hepatic Th2 and Treg subsets are associated with biliary fibrosis in different strains of mice caused by Clonorchis sinensis. PLoS One 2017; 12:e0171005. [PMID: 28151995 PMCID: PMC5289492 DOI: 10.1371/journal.pone.0171005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/14/2017] [Indexed: 12/14/2022] Open
Abstract
Previous studies showed that CD4+T cells responses might be involved in the process of biliary fibrosis. However, the underlying mechanism resulting in biliary fibrosis caused by Clonorchis sinensis remains not yet fully elucidated. The objectives of the present study were to investigate the different profiles of hepatic CD4+T cell subsets (Th1, Th2, Th17 and Treg cells) and their possible roles in the biliary fibrosis of different strains of mice (C57BL/6, BALB/c and FVB mice) induced by C. sinensis infection. C57BL/6, BALB/c and FVB mice were orally gavaged with 45 metacercariae. All mice were sacrificed on 28 days post infection in deep anesthesia conditions. The leukocytes in the liver were separated to examine CD4+T cell subsets by flow cytometry and the left lobe of liver was used to observe pathological changes, collagen depositions and the concentrations of hydroxyproline. The most serious cystic and fibrotic changes appeared in FVB infected mice indicated by gross observation, Masson’s trichrome staining and hydroxyproline content detection. In contrast to C57BL/6 infected mice, diffuse nodules and more intensive fibrosis were observed in the BALB/c infected mice. No differences of the hepatic Th1 subset and Th17 subset were found among the three strains, but the hepatic Th2 and Treg cells and their relative cytokines were dramatically increased in the BALB/c and FVB infected groups compared with the C57BL/6 infected group (P<0.01). Importantly, increased Th2 subset and Treg subset all positively correlated with hydroxyproline contents (P<0.01). This result for the first time implied that the increased hepatic Th2 and Treg cell subsets were likely to play potential roles in the formation of biliary fibrosis in C. sinensis-infected mice.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Chao Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Fan Fang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Ying Du
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Rui Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Xiang-Yang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Qian Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
| | - Di Meng
- Departments of Pathology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
- * E-mail: (KYZ); (RXT)
| | - Kui-Yang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu Province, People's Republic of China
- * E-mail: (KYZ); (RXT)
| |
Collapse
|
14
|
Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis. Stem Cells Int 2016; 2016:3543678. [PMID: 26941801 PMCID: PMC4752998 DOI: 10.1155/2016/3543678] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/10/2016] [Indexed: 12/26/2022] Open
Abstract
Peritoneal dialysis is a form of renal replacement alternative to the hemodialysis. During this treatment, the peritoneal membrane acts as a permeable barrier for exchange of solutes and water. Continual exposure to dialysis solutions, as well as episodes of peritonitis and hemoperitoneum, can cause acute/chronic inflammation and injury to the peritoneal membrane, which undergoes progressive fibrosis, angiogenesis, and vasculopathy, eventually leading to discontinuation of the peritoneal dialysis. Among the different events controlling this pathological process, epithelial to mesenchymal transition of mesothelial cells plays a main role in the induction of fibrosis and in subsequent functional deterioration of the peritoneal membrane. Here, the main extracellular inducers and cellular players are described. Moreover, signaling pathways acting during this process are elucidated, with emphasis on signals delivered by TGF-β family members and by Toll-like/IL-1β receptors. The understanding of molecular mechanisms underlying fibrosis of the peritoneal membrane has both a basic and a translational relevance, since it may be useful for setup of therapies aimed at counteracting the deterioration as well as restoring the homeostasis of the peritoneal membrane.
Collapse
|