1
|
Volpe RP, Sen A, Sharma A, Kathiresan V, Hoffman BM, Cox RT. Prophylactically Feeding Manganese to Drosophila Confers Sex-Specific Protection from Acute Ionizing Radiation Independent of MnSOD2 Levels. Antioxidants (Basel) 2025; 14:134. [PMID: 40002321 PMCID: PMC11851552 DOI: 10.3390/antiox14020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Ionizing radiation is a health threat to many, including warfighters, radiological emergency responders, radiotherapy patients, and astronauts. Despite this, no FDA-approved prophylactic medical countermeasures exist to attenuate the symptoms that occur from radiation exposure. Manganese has recently been shown to be critical for radioresistance in a wide range of organisms. In this study, we designed a stringent feeding method to test the prophylactic effects of dietary manganese on Drosophila's lifespan before exposure to acute irradiation. We found that male flies have substantially lower radioresistance than females, but feeding with low doses of MnCl2 before acute irradiation exposure extends male survival to that of females. Whole animal electron paramagnetic resonance analyses showed males have lower amounts of high-symmetry manganese-metabolite antioxidant complexes (H-Mn) than females, but manganese supplementation increases H-Mn to female levels. Levels of mitochondrial free-radical scavenger manganese-superoxide-dismutase 2 (MnSOD2) did not increase after acute irradiation, nor did loss of MnSOD2 sensitize larvae to acute irradiation exposure. These data support that prophylactic manganese feeding is sufficient to increase survivorship in males subjected to acute irradiation, independent of MnSOD2 levels, indicating a role of antioxidant manganese-metabolite H-Mn complexes for radioprotection. Furthermore, this Drosophila feeding method could be used to identify additional radiation countermeasures.
Collapse
Affiliation(s)
- Robert P. Volpe
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA; (R.P.V.); (A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Aditya Sen
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA; (R.P.V.); (A.S.)
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ajay Sharma
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; (A.S.); (V.K.); (B.M.H.)
| | - Venkatesan Kathiresan
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; (A.S.); (V.K.); (B.M.H.)
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA; (A.S.); (V.K.); (B.M.H.)
| | - Rachel T. Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA; (R.P.V.); (A.S.)
| |
Collapse
|
2
|
Gauttam VK, Munjal K, Chopra H, Ahmad A, Rana MK, Kamal MA. A Mechanistic Review on Therapeutic Potential of Medicinal Plants and their Pharmacologically Active Molecules for Targeting Metabolic Syndrome. Curr Pharm Des 2024; 30:10-30. [PMID: 38155468 DOI: 10.2174/0113816128274446231220113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Metabolic syndrome (MetS) therapy with phytochemicals is an emerging field of study with therapeutic potential. Obesity, insulin resistance, high blood pressure, and abnormal lipid profiles are all components of metabolic syndrome, which is a major public health concern across the world. New research highlights the promise of phytochemicals found in foods, including fruits, vegetables, herbs, and spices, as a sustainable and innovative method of treating this illness. Anti-inflammatory, antioxidant, and insulin-sensitizing qualities are just a few of the many positive impacts shown by bioactive substances. Collectively, they alleviate the hallmark symptoms of metabolic syndrome by modulating critical metabolic pathways, boosting insulin sensitivity, decreasing oxidative stress, and calming chronic low-grade inflammation. In addition, phytochemicals provide a multimodal strategy by targeting not only adipose tissue but also the liver, skeletal muscle, and vascular endothelium, all of which have a role in the pathogenesis of MetS. Increasing evidence suggests that these natural chemicals may be useful in controlling metabolic syndrome as a complementary treatment to standard medication or lifestyle changes. This review article emphasizes the therapeutic potential of phytochemicals, illuminating their varied modes of action and their ability to alleviate the interconnected causes of metabolic syndrome. Phytochemical-based interventions show promise as a novel and sustainable approach to combating the rising global burden of metabolic syndrome, with the ultimate goal of bettering public health and quality of life.
Collapse
Affiliation(s)
- Vinod Kumar Gauttam
- Department of Pharmacognosy, Shiva Institute of Pharmacy, Bilaspur, Hmachal Pradesh, India
| | - Kavita Munjal
- Department of Pharmacognosy, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Aftab Ahmad
- Department of Pharmacology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahesh Kumar Rana
- Department of Agriculture, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
3
|
Hoffman TR, Emsley SA, Douglas JC, Reed KR, Esquivel AR, Koyack MJ, Paddock BE, Videau P. Assessing Curcumin Uptake and Clearance and Their Influence on Superoxide Dismutase Activity in Drosophila melanogaster. BIOTECH 2023; 12:58. [PMID: 37754202 PMCID: PMC10526445 DOI: 10.3390/biotech12030058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
While normal levels of reactive oxygen and nitrogen species (RONS) are required for proper organismal function, increased levels result in oxidative stress. Oxidative stress may be managed via the scavenging activities of antioxidants (e.g., curcumin) and the action of enzymes, including superoxide dismutase (SOD). In this work, the uptake and clearance of dietary curcuminoids (consisting of curcumin, demethoxycurcumin, and bisdemethoxycurcumin) was assessed in Drosophila melanogaster larvae following chronic or acute exposure. High levels of curcuminoid uptake and loss were observed within a few hours and leveled off within eight hours post treatment onset. The addition or removal of curcuminoids from media resulted in corresponding changes in SOD activity, and the involvement of each of the three SOD genes was assessed for their contribution to total SOD activity. Taken together, these data provide insight into the uptake and clearance dynamics of curcuminoids and indicate that, while SOD activity generally increases following curcuminoid treatment, the individual SOD genes appear to contribute differently to this response.
Collapse
Affiliation(s)
- Tammy R. Hoffman
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Sarah A. Emsley
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Jenna C. Douglas
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Kaela R. Reed
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Abigail R. Esquivel
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Marc J. Koyack
- School of Arts and Sciences, Gwynedd Mercy University, Gwynedd Valley, PA 19437, USA
| | - Brie E. Paddock
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| |
Collapse
|
4
|
Guo J, Zhao Z, Shang Z, Tang Z, Zhu H, Zhang K. Nanodrugs with intrinsic radioprotective exertion: Turning the double-edged sword into a single-edged knife. EXPLORATION (BEIJING, CHINA) 2023; 3:20220119. [PMID: 37324033 PMCID: PMC10190950 DOI: 10.1002/exp.20220119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/10/2023] [Indexed: 06/17/2023]
Abstract
Ionizing radiation (IR) poses a growing threat to human health, and thus ideal radioprotectors with high efficacy and low toxicity still receive widespread attention in radiation medicine. Despite significant progress made in conventional radioprotectants, high toxicity, and low bioavailability still discourage their application. Fortunately, the rapidly evolving nanomaterial technology furnishes reliable tools to address these bottlenecks, opening up the cutting-edge nano-radioprotective medicine, among which the intrinsic nano-radioprotectants characterized by high efficacy, low toxicity, and prolonged blood retention duration, represent the most extensively studied class in this area. Herein, we made the systematic review on this topic, and discussed more specific types of radioprotective nanomaterials and more general clusters of the extensive nano-radioprotectants. In this review, we mainly focused on the development, design innovations, applications, challenges, and prospects of the intrinsic antiradiation nanomedicines, and presented a comprehensive overview, in-depth analysis as well as an updated understanding of the latest advances in this topic. We hope that this review will promote the interdisciplinarity across radiation medicine and nanotechnology and stimulate further valuable studies in this promising field.
Collapse
Affiliation(s)
- Jiaming Guo
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
| | - Zhemeng Zhao
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology CollegeZhejiang Ocean UniversityZhoushanChina
| | - Zeng‐Fu Shang
- Department of Radiation OncologySimmons Comprehensive Cancer Center at UT Southwestern Medical CenterDallasTexasUSA
| | - Zhongmin Tang
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Huanhuan Zhu
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Medical UniversityNanningGuangxiP. R. China
- Department of Oncology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanP. R. China
| |
Collapse
|
5
|
Kostova N, Staynova A, Popova-Hadjiiska L, Georgieva D, Ivanova I, Aneva N, Atanasova M, Hristova R. Effect of curcumin on γ-ray-induced cell response. JOURNAL OF RADIATION RESEARCH 2023; 64:471-479. [PMID: 36634350 PMCID: PMC10036097 DOI: 10.1093/jrr/rrac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The purpose of the present study is to evaluate the effect of curcumin as a natural compound against radiation induced γ-foci and stable chromosome aberrations. Whole blood samples form three human volunteers were pretreated with curcumin at different concentrations (0.5, 10, 20 and 100 μg/ml). After 1-hour incubation, the lymphocytes were exposed to γ-rays (0.05, 0.5, 1 and 2 Gy). Radiation induced changes in cells were quantified using γ-H2AX/53BP1 assay and FISH analysis. Our results have shown that curcumin significantly reduced the frequency of both γ-foci and translocations. We found concentration-dependent increase of curcumin protective effect on γ-H2AX/53BP1 foci formation at all radiation doses. Concerning the translocations, after 0.05 and 0.5 Gy γ-rays the values of genomic frequencies are comparable within each dose and we did not observe any impact of curcumin. The most protective effect after 1 Gy exposure was found at 100 μg/ml curcumin. At 2 Gy irradiation, the maximum protection was achieved at 0.5 and 10 μg/ml of curcumin. Concentrations of 20 and 100 μg/ml also prevent lymphocytes but to less extent. Our in vitro study indicates radioprotective efficacy of curcumin against γ-ray induced damages in human lymphocytes. This observation suggests that curcumin may play a role to protect patients undergoing radiological procedures.
Collapse
Affiliation(s)
| | | | - Ljubomira Popova-Hadjiiska
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, “Sv. Georgi Sofiiski” Str., No 3; Sofia, 1606, Bulgaria
| | - Dimka Georgieva
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, “Sv. Georgi Sofiiski” Str., No 3; Sofia, 1606, Bulgaria
| | - Ilonka Ivanova
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, “Sv. Georgi Sofiiski” Str., No 3; Sofia, 1606, Bulgaria
| | - Nevena Aneva
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, “Sv. Georgi Sofiiski” Str., No 3; Sofia, 1606, Bulgaria
| | - Margarita Atanasova
- Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, “Sv. Georgi Sofiiski” Str., No 3; Sofia, 1606, Bulgaria
| | - Rositsa Hristova
- Corresponding author. Department of Radiobiology, National Centre of Radiobiology and Radiation Protection, 3 “Sv. Georgi Sofiiski” Str., Sofia-1606, Bulgaria. Fax; Tel: +359 887 613818;
| |
Collapse
|
6
|
Mukherjee S, Rananaware P, Brahmkhatri V, Mishra M. Polyvinylpyrrolidone-Curcumin Nanoconjugate as a Biocompatible, Non-toxic Material for Biological Applications. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02230-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
A collective analysis of lifespan-extending compounds in diverse model organisms, and of species whose lifespan can be extended the most by the application of compounds. Biogerontology 2021; 22:639-653. [PMID: 34687363 DOI: 10.1007/s10522-021-09941-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022]
Abstract
Research on aging and lifespan-extending compounds has been carried out using diverse model organisms, including yeast, worms, flies and mice. Many studies reported the identification of novel lifespan-extending compounds in different species, some of which may have the potential to translate to the clinic. However, studies collectively and comparatively analyzing all the data available in these studies are highly limited. Here, by using data from the DrugAge database, we first identified top compounds in terms of their effects on percent change in average lifespan of diverse organisms, collectively (n = 1728). We found that, when data from all organisms studied were combined for each compound, aspirin resulted in the highest percent increase in average lifespan (52.01%), followed by minocycline (27.30%), N-acetyl cysteine (17.93%), nordihydroguaiaretic acid (17.65%) and rapamycin (15.66%), in average. We showed that minocycline led to the highest percent increase in average lifespan among other compounds, in both Drosophila melanogaster (28.09%) and Caenorhabditis elegans (26.67%), followed by curcumin (11.29%) and gluconic acid (5.51%) for D. melanogaster and by metformin (26.56%), resveratrol (15.82%) and quercetin (9.58%) for C. elegans. Moreover, we found that top 5 species whose lifespan can be extended the most by compounds with lifespan-extending properties are Philodina acuticornis, Acheta domesticus, Aeolosoma viride, Mytilina brevispina and Saccharomyces cerevisiae (211.80%, 76%, 70.26%, 55.18% and 45.71% in average, respectively). This study provides novel insights on lifespan extension in model organisms, and highlights the importance of databases with high quality content curated by researchers from multiple resources, in aging research.
Collapse
|
8
|
Bahrami A, Montecucco F, Carbone F, Sahebkar A. Effects of Curcumin on Aging: Molecular Mechanisms and Experimental Evidence. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8972074. [PMID: 34692844 PMCID: PMC8528582 DOI: 10.1155/2021/8972074] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/01/2023]
Abstract
Aging is characterized by a progressive inability to maintain homeostasis, self-repair, renewal, performance, and fitness of different tissues throughout the lifespan. Senescence is occurring following enormous intracellular or extracellular stress stimuli. Cellular senescence serves as an antiproliferative process that causes permanent cell cycle arrest and restricts the lifespan. Senescent cells are characterized by terminal cell cycle arrest, enlarged lysosome, and DNA double-strand breaks as well as lipofuscin granularity, senescence-associated heterochromatin foci, and activation of DNA damage response. Curcumin, a hydrophobic polyphenol, is a bioactive chemical constituent of the rhizomes of Curcuma longa Linn (turmeric), which has been extensively used for the alleviation of various human disorders. In addition to its pleiotropic effects, curcumin has been suggested to have antiaging features. In this review, we summarized the therapeutic potential of curcumin in the prevention and delaying of the aging process.
Collapse
Affiliation(s)
- Afsane Bahrami
- Clinical Research Development Unit of Akbar Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Faramarzi S, Piccolella S, Manti L, Pacifico S. Could Polyphenols Really Be a Good Radioprotective Strategy? Molecules 2021; 26:4969. [PMID: 34443561 PMCID: PMC8398122 DOI: 10.3390/molecules26164969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, radiotherapy is one of the most effective strategies to treat cancer. However, deleterious toxicity against normal cells indicate for the need to selectively protect them. Reactive oxygen and nitrogen species reinforce ionizing radiation cytotoxicity, and compounds able to scavenge these species or enhance antioxidant enzymes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) should be properly investigated. Antioxidant plant-derived compounds, such as phenols and polyphenols, could represent a valuable alternative to synthetic compounds to be used as radio-protective agents. In fact, their dose-dependent antioxidant/pro-oxidant efficacy could provide a high degree of protection to normal tissues, with little or no protection to tumor cells. The present review provides an update of the current scientific knowledge of polyphenols in pure forms or in plant extracts with good evidence concerning their possible radiomodulating action. Indeed, with few exceptions, to date, the fragmentary data available mostly derive from in vitro studies, which do not find comfort in preclinical and/or clinical studies. On the contrary, when preclinical studies are reported, especially regarding the bioactivity of a plant extract, its chemical composition is not taken into account, avoiding any standardization and compromising data reproducibility.
Collapse
Affiliation(s)
- Shadab Faramarzi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
- Department of Plant Production and Genetics, Razi University, Kermanshah 67149-67346, Iran
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
| | - Lorenzo Manti
- Department of Physics E. Pancini, University of Naples “Federico II”, and Istituto Nazionale di Fisica Nucleare, (INFN), Naples Section, Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy;
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
| |
Collapse
|
10
|
Liu Y, Miao L, Guo Y, Yuan R, Li X, Wang X, Lin X, Tian H. Oral Codelivery of WR-1065 Using Curcumin-Linked ROS-Sensitive Nanoparticles for Synergistic Radioprotection. ACS Biomater Sci Eng 2021; 7:2496-2507. [PMID: 33825438 DOI: 10.1021/acsbiomaterials.0c01780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protecting the body from radiation damage is a huge medical challenge. Amifostine and curcumin are both effective radioprotectants, but their use has been greatly restricted due to various reasons including low bioavailability. Nanoscale drug delivery systems of poly(ethylene glycol)-poly(ε-caprolactone) copolymers can improve the bioavailability of drugs due to excellent biocompatibility, biodegradability, and long circulation characteristics. In this study, a new reactive oxygen species-sensitive nanocarrier fabricated by linking curcumin and thioketal to poly(ethylene glycol)-poly(ε-caprolactone) polymer was used for delivery of WR-1065 (the active ingredient of amifostine). The content of curcumin in this polymer was about 7.6%, and the drug loading of WR-1065 was 44%. The WR-1065-loaded nanoparticles (NPs) had an average size of 128.6 nm and uniform spherical morphology. These WR-1065-loaded NPs reduced the metabolism of curcumin and WR-1065 in the gastrointestinal tract and could be well absorbed by cells and distributed to multiple organs. Compared with a single drug, oral administration of WR-1065-loaded NPs demonstrated obvious radioprotective effects on the hematopoietic system and prevented intestinal injury. The 30-day survival rate after half-lethal dose (7.2 Gy) of total body irradiation was 100%. In general, WR-1065-loaded NPs improved the oral bioavailability of WR-1065 and curcumin. This multifunctional nanocarrier provides a possibility for combination therapy in treating ionizing radiation damage.
Collapse
Affiliation(s)
- Yahong Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Longfei Miao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Yuying Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Renbin Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xuejiao Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xinxin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Xiaona Lin
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
11
|
The role of curcumin in aging and senescence: Molecular mechanisms. Biomed Pharmacother 2021; 134:111119. [DOI: 10.1016/j.biopha.2020.111119] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/29/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
|
12
|
Lee HJ, Lee SH, Lee JH, Kim Y, Seong KM, Jin YW, Min KJ. Role of Commensal Microbes in the γ-Ray Irradiation-Induced Physiological Changes in Drosophila melanogaster. Microorganisms 2020; 9:microorganisms9010031. [PMID: 33374132 PMCID: PMC7824294 DOI: 10.3390/microorganisms9010031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Ionizing radiation induces biological/physiological changes and affects commensal microbes, but few studies have examined the relationship between the physiological changes induced by irradiation and commensal microbes. This study investigated the role of commensal microbes in the γ-ray irradiation-induced physiological changes in Drosophila melanogaster. The bacterial load was increased in 5 Gy irradiated flies, but irradiation decreased the number of operational taxonomic units. The mean lifespan of conventional flies showed no significant change by irradiation, whereas that of axenic flies was negatively correlated with the radiation dose. γ-Ray irradiation did not change the average number of eggs in both conventional and axenic flies. Locomotion of conventional flies was decreased after 5 Gy radiation exposure, whereas no significant change in locomotion activity was detected in axenic flies after irradiation. γ-Ray irradiation increased the generation of reactive oxygen species in both conventional and axenic flies, but the increase was higher in axenic flies. Similarly, the amounts of mitochondria were increased in irradiated axenic flies but not in conventional flies. These results suggest that axenic flies are more sensitive in their mitochondrial responses to radiation than conventional flies, and increased sensitivity leads to a reduced lifespan and other physiological changes in axenic flies.
Collapse
Affiliation(s)
- Hwa-Jin Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Shin-Hae Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Ji-Hyeon Lee
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
| | - Yongjoong Kim
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul 01812, Korea; (Y.K.); (K.M.S.); (Y.W.J.)
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (H.-J.L.); (S.-H.L.); (J.-H.L.)
- Correspondence:
| |
Collapse
|
13
|
Esquivel AR, Douglas JC, Loughran RM, Rezendes TE, Reed KR, Cains THL, Emsley SA, Paddock WA, Videau P, Koyack MJ, Paddock BE. Assessing the influence of curcumin in sex-specific oxidative stress, survival and behavior in Drosophila melanogaster. J Exp Biol 2020; 223:jeb223867. [PMID: 33037110 DOI: 10.1242/jeb.223867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/30/2020] [Indexed: 11/20/2022]
Abstract
Oxidative stress, which occurs from an imbalance of reactive oxygen and nitrogen species (RONS) and both endogenous and exogenous antioxidants, promotes aging and underlies sex-specific differences in longevity and susceptibility to age-related neurodegeneration. Recent evidence suggests that curcumin, a yellow pigment derived from turmeric and shown to exhibit antioxidant properties as a RONS scavenger, influences the regulation of genetic elements in endogenous antioxidant pathways. To investigate the role of curcumin in sex-specific in vivo responses to oxidative stress, Drosophila were reared on media supplemented with 0.25, 2.5 or 25 mmol l-1 curcuminoids (consisting of curcumin, demethoxycurcumin and bisdemethoxycurcumin) and resistance to oxidative stress and neural parameters were assessed. High levels of curcuminoids exhibited two sex-specific effects: protection from hydrogen peroxide as an oxidative stressor and alterations in turning rate in an open field. Taken together, these results suggest that the influence of curcuminoids as antioxidants probably relies on changes in gene expression and that sexual dimorphism exists in the in vivo response to curcuminoids.
Collapse
Affiliation(s)
- Abigail R Esquivel
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Jenna C Douglas
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Rachel M Loughran
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Thomas E Rezendes
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Kaela R Reed
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Tobias H L Cains
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Sarah A Emsley
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - William A Paddock
- Department of Institutional Research, Arcadia University, Glenside, PA 19038 USA
| | - Patrick Videau
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| | - Marc J Koyack
- Department of Chemistry, Southern Oregon University, Ashland, OR 97520, USA
| | - Brie E Paddock
- Department of Biology, Southern Oregon University, Ashland, OR 97520, USA
| |
Collapse
|
14
|
Soo SK, Rudich PD, Traa A, Harris-Gauthier N, Shields HJ, Van Raamsdonk JM. Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders. Mech Ageing Dev 2020; 190:111297. [PMID: 32610099 PMCID: PMC7484136 DOI: 10.1016/j.mad.2020.111297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
While aging is the greatest risk factor for the development of neurodegenerative disease, the role of aging in these diseases is poorly understood. In the inherited forms of these diseases, the disease-causing mutation is present from birth but symptoms appear decades later. This indicates that these mutations are well tolerated in younger individuals but not in older adults. Based on this observation, we hypothesized that changes taking place during normal aging make the cells in the brain (and elsewhere) susceptible to the disease-causing mutations. If so, then delaying some of these age-related changes may be beneficial in the treatment of neurodegenerative disease. In this review, we examine the effects of five compounds that have been shown to extend longevity (metformin, rapamycin, resveratrol, N-acetyl-l-cysteine, curcumin) in four of the most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis). While not all investigations observe a beneficial effect of these compounds, there are multiple studies that show a protective effect of each of these lifespan-extending compounds in animal models of neurodegenerative disease. Combined with genetic studies, this suggests the possibility that targeting the aging process may be an effective strategy to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Namasthée Harris-Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada; Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Effects of Temperature on Lifespan of Drosophila melanogaster from Different Genetic Backgrounds: Links between Metabolic Rate and Longevity. INSECTS 2020; 11:insects11080470. [PMID: 32722420 PMCID: PMC7469197 DOI: 10.3390/insects11080470] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/01/2023]
Abstract
Despite many studies of the aging process, questions about key factors ensuring longevity have not yet found clear answers. Temperature seems to be one of the most important factors regulating lifespan. However, the genetic background may also play a key role in determining longevity. The aim of this study was to investigate the relationship between the temperature, genetic background (fruit fly origin), and metabolic rate on lifespan. Experiments were performed with the use of the wild type Drosophila melanogaster fruit flies originating from Australia, Canada, and Benin and the reference OregonR strain. The metabolic rate of D. melanogaster was measured at 20 °C, 25 °C, and 28 °C in an isothermal calorimeter. We found a strong negative relationship between the total heat flow and longevity. A high metabolic rate leads to increased aging in males and females in all strains. Furthermore, our results showed that temperature has a significant effect on fecundity and body weight. We also showed the usefulness of the isothermal calorimetry method to study the effect of environmental stress conditions on the metabolic activity of insects. This may be particularly important for the forecasting of impact of global warming on metabolic activity and lifespan of various insects.
Collapse
|
16
|
Stępień K, Wojdyła D, Nowak K, Mołoń M. Impact of curcumin on replicative and chronological aging in the Saccharomyces cerevisiae yeast. Biogerontology 2020; 21:109-123. [PMID: 31659616 PMCID: PMC6942599 DOI: 10.1007/s10522-019-09846-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
Curcumin is a biologically active compound of vegetable origin which has a hormetic effect. Pro-health and anti-aging properties of curcumin have been known for years. The main benefit of curcumin is thought to be its anti-oxidative action. Despite vast amount of data confirming age-delaying activity of curcumin in various groups of organisms, so far little has been discovered about curcumin's impact on cell aging in the experimental model of the Saccharomyces cerevisiae budding yeast. We have been able to demonstrate that curcumin significantly increases oxidative stress and accelerates replicative and chronological aging of yeast cells devoid of anti-oxidative protection (with SOD1 and SOD2 gene deletion) and deprived of DNA repair mechanisms (RAD52). Interestingly, curcumin delays aging, probably through hormesis, of the wild-type strain BY4741.
Collapse
Affiliation(s)
- Karolina Stępień
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Dominik Wojdyła
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Katarzyna Nowak
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland
| | - Mateusz Mołoń
- Department of Biochemistry and Cell Biology, University of Rzeszow, Zelwerowicza 4, 35-601, Rzeszow, Poland.
| |
Collapse
|
17
|
Some naturally occurring compounds that increase longevity and stress resistance in model organisms of aging. Biogerontology 2019; 20:583-603. [DOI: 10.1007/s10522-019-09817-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
|
18
|
Staats S, Wagner AE, Lüersen K, Künstner A, Meyer T, Kahns AK, Derer S, Graspeuntner S, Rupp J, Busch H, Sina C, Ipharraguerre IR, Rimbach G. Dietary ursolic acid improves health span and life span in male Drosophila melanogaster. Biofactors 2019; 45:169-186. [PMID: 30496629 DOI: 10.1002/biof.1467] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
The health and life span of Drosophila melanogaster are partly determined by intestinal barrier integrity, metabolic rate as well as stress response and the expression of longevity-associated genes, depending on genetic and dietary factors. Ursolic acid (UA) is a naturally occurring triterpenoid exhibiting potential antimicrobial, anti-inflammatory, and antiobesity activity and counteracting age-related deficits in muscle strength. In this study, UA was dietarily administered to w1118 D. melanogaster which significantly elongated the health and life span of males. Spargel (srl) is the Drosophila orthologue of mammalian peroxisome proliferator-activated receptor-gamma coactivator 1 α(PGC1α), an important regulator of energy homeostasis and mitochondrial function. Our results indicate that the health-promoting effect of UA, demonstrated by a significant increase in climbing activity, occurs via an upregulation of srl expression leading to a metabolic shift in the fly without reducing fecundity or gut integrity. Moreover, UA affected the flies' microbiota in a manner that contributed to life span extension. Srl expression and microbiota both seem to be affected by UA, as we determined by using srl-mutant and axenic flies. © 2018 BioFactors, 45(2):169-186, 2019.
Collapse
Affiliation(s)
- Stefanie Staats
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Anika E Wagner
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Kai Lüersen
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Axel Künstner
- Group for Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Timo Meyer
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Anna K Kahns
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Stefanie Derer
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | - Simon Graspeuntner
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Group for Medical Systems Biology, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck, Lübeck, Germany
| | | | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
19
|
Chen Y, Liu X, Jiang C, Liu L, Ordovas JM, Lai CQ, Shen L. Curcumin supplementation increases survival and lifespan in Drosophila under heat stress conditions. Biofactors 2018; 44:577-587. [PMID: 30488487 DOI: 10.1002/biof.1454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 11/07/2022]
Abstract
Harsh climate induces physiological stress thus compromising organismal survival. Our previous studies demonstrated that curcumin (CUR) supplementation increased survival of turtle under heat stress (HS). Here, we span this work to investigate the survival and lifespan of HS Drosophila fed a diet supplemented with CUR. For this purpose, female and male flies were fed basal diet (N) and CUR diet (0.2 mg/g), and exposed to three conditions: 25°C and 29°C continuously, and 34 °C for 2 h at days 1, 4, and 7, then kept at 25 °C. Lifespan analysis showed that, compared to N-25 °C flies, the mean lifespans of N-29 °C and N-34 °C flies were decreased significantly by 8.5-15.7% in males, and 3.7-7.9% in females. Conversely, in the CUR-supplemented diet, mean lifespans of C-29 °C and C-34 °C flies were significantly extended by 8.7-16.4% in males, and by 8.9-12.8% in females, compared to that of temperature-matched flies fed basal diets. The MDA levels of C-34 °C flies were significantly lower than those of N-34 °C flies, indicating CUR reduced oxidative stress caused by HS. Furthermore, CUR palliated the increased oxidative stress caused by HS, by increasing the expression of SOD1, CAT, and PHGPx and decreasing the expression of Hsp70 and Hsp83. Our results indicated that CUR supplementation increases the survival rate of Drosophila by enhancing thermal tolerance. © 2018 BioFactors, 44(6):577-587, 2018.
Collapse
Affiliation(s)
- Yong Chen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Zhejiang, Hangzhou, China
| | - Xin Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Zhejiang, Hangzhou, China
| | - Chenmin Jiang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Zhejiang, Hangzhou, China
| | - Liang Liu
- Department of Statistics, The University of Georgia, Athens, GA, USA
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
- IMDEA Alimentacion, Madrid, Spain
| | - Chao-Qiang Lai
- USDA ARS, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lirong Shen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
20
|
Park J, Ahn HM, Kwon T, Seo S, Park S, Jin YW, Seong KM. Epithelial cell shape change of Drosophila as a biomonitoring model for the dose assessment of environmental radiation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:292-299. [PMID: 29627413 DOI: 10.1016/j.ecoenv.2018.03.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/14/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
Inevitable exposure to ionizing radiation from natural and human-made sources has been increasing over time. After nuclear disasters, such as the Fukushima accident, the public concerns on health risk of radiation exposure because of radioactive contamination of the environment have increased. However, it is very difficult to assess the biological effects of exposure caused by environmental radiation. A reliable and rapid bioassay to monitor the physiological effects of radiation exposure is therefore needed. Here, we quantitatively analyzed the changes in cell shape in Drosophila epidermis after irradiation as a model for biomonitoring of radiation. Interestingly, the number of irregularly shaped epithelial cells was increased by irradiation in a dose-dependent manner. A dose-response curve constructed with the obtained data suggests that the measurement of the number of irregular shaped cell in the epidermis is useful for the assessment of radiation dose. In addition, a comparison of the variation in the different samples and the data scored by different observers showed that our evaluation for cellular morphology was highly reliable and accurate and would, therefore, have immense practical application. Overall, our study suggests that detection of morphological changes in the epithelial cells is one of the efficient ways to quantify the levels of exposure to radioactive radiation from the environment.
Collapse
Affiliation(s)
- Jina Park
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hyo Min Ahn
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - TaeWoo Kwon
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Songwon Seo
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sunhoo Park
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Departments of Pathology, Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Young Woo Jin
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Ki Moon Seong
- Laboratory of Low Dose Risk Assessment, National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| |
Collapse
|
21
|
McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Yang LV, Murata RM, Rosalen PL, Scalisi A, Neri LM, Cocco L, Ratti S, Martelli AM, Laidler P, Dulińska-Litewka J, Rakus D, Gizak A, Lombardi P, Nicoletti F, Candido S, Libra M, Montalto G, Cervello M. Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging (Albany NY) 2018; 9:1477-1536. [PMID: 28611316 PMCID: PMC5509453 DOI: 10.18632/aging.101250] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023]
Abstract
Natural products or nutraceuticals have been shown to elicit anti-aging, anti-cancer and other health-enhancing effects. A key target of the effects of natural products may be the regulation of microRNA (miR) expression which results in cell death or prevents aging, diabetes, cardiovascular and other diseases. This review will focus on a few natural products, especially on resveratrol (RES), curcumin (CUR) and berberine (BBR). RES is obtained from the skins of grapes and other fruits and berries. RES may extend human lifespan by activating the sirtuins and SIRT1 molecules. CUR is isolated from the root of turmeric (Curcuma longa). CUR is currently used in the treatment of many disorders, especially in those involving an inflammatory process. CUR and modified derivatives have been shown to have potent anti-cancer effects, especially on cancer stem cells (CSC). BBR is also isolated from various plants (e.g., Coptis chinensis) and has been used for centuries in traditional medicine to treat diseases such as adult- onset diabetes. Understanding the benefits of these and other nutraceuticals may result in approaches to improve human health.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Steve L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.,Department of Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Aurora Scalisi
- Unit of Oncologic Diseases, ASP-Catania, Catania 95100, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Piotr Laidler
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | | | - Dariusz Rakus
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy.,Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| |
Collapse
|
22
|
Cortese F, Klokov D, Osipov A, Stefaniak J, Moskalev A, Schastnaya J, Cantor C, Aliper A, Mamoshina P, Ushakov I, Sapetsky A, Vanhaelen Q, Alchinova I, Karganov M, Kovalchuk O, Wilkins R, Shtemberg A, Moreels M, Baatout S, Izumchenko E, de Magalhães JP, Artemov AV, Costes SV, Beheshti A, Mao XW, Pecaut MJ, Kaminskiy D, Ozerov IV, Scheibye-Knudsen M, Zhavoronkov A. Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization. Oncotarget 2018; 9:14692-14722. [PMID: 29581875 PMCID: PMC5865701 DOI: 10.18632/oncotarget.24461] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well.
Collapse
Affiliation(s)
- Franco Cortese
- Biogerontology Research Foundation, London, UK
- Department of Biomedical and Molecular Sciences, Queen's University School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Dmitry Klokov
- Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andreyan Osipov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Jakub Stefaniak
- Biogerontology Research Foundation, London, UK
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Alexey Moskalev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Jane Schastnaya
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | - Charles Cantor
- Boston University, Department of Biomedical Engineering, Boston, MA, USA
| | - Alexander Aliper
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- Laboratory of Bioinformatics, D. Rogachev Federal Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Polina Mamoshina
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- Computer Science Department, University of Oxford, Oxford, UK
| | - Igor Ushakov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Alex Sapetsky
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Quentin Vanhaelen
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | - Irina Alchinova
- Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
- Research Institute for Space Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Mikhail Karganov
- Laboratory of Physicochemical and Ecological Pathophysiology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Olga Kovalchuk
- Canada Cancer and Aging Research Laboratories, Ltd., Lethbridge, Alberta, Canada
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Ruth Wilkins
- Environmental and Radiation and Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Andrey Shtemberg
- Laboratory of Extreme Physiology, Institute of Medical and Biological Problems RAS, Moscow, Russia
| | - Marjan Moreels
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, (SCK·CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Interdisciplinary Biosciences, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, (SCK·CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Evgeny Izumchenko
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- The Johns Hopkins University, School of Medicine, Department of Otolaryngology, Head and Neck Cancer Research, Baltimore, MD, USA
| | - João Pedro de Magalhães
- Biogerontology Research Foundation, London, UK
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Artem V. Artemov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| | | | - Afshin Beheshti
- Wyle Laboratories, Space Biosciences Division, NASA Ames Research Center, Mountain View, CA, USA
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, USA
| | - Michael J. Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University, Loma Linda, CA, USA
| | - Dmitry Kaminskiy
- Biogerontology Research Foundation, London, UK
- Deep Knowledge Life Sciences, London, UK
| | - Ivan V. Ozerov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | | | - Alex Zhavoronkov
- Biogerontology Research Foundation, London, UK
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Lee Y, Lee SJV, Min KJ. Meeting report: Asian Society for Aging Research Symposium 2018. TRANSLATIONAL MEDICINE OF AGING 2018. [DOI: 10.1016/j.tma.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
24
|
South Asian Medicinal Compounds as Modulators of Resistance to Chemotherapy and Radiotherapy. Cancers (Basel) 2016; 8:cancers8030032. [PMID: 26959063 PMCID: PMC4810116 DOI: 10.3390/cancers8030032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/05/2016] [Accepted: 02/29/2016] [Indexed: 12/29/2022] Open
Abstract
Cancer is a hyperproliferative disorder that involves transformation, dysregulation of apoptosis, proliferation, invasion, angiogenesis and metastasis. During the last 30 years, extensive research has revealed much about the biology of cancer. Chemotherapy and radiotherapy are the mainstays of cancer treatment, particularly for patients who do not respond to surgical resection. However, cancer treatment with drugs or radiation is seriously limited by chemoresistance and radioresistance. Various approaches and strategies are employed to overcome resistance to chemotherapy and radiation treatment. Many plant-derived phytochemicals have been investigated for their chemo- and radio-sensitizing properties. The peoples of South Asian countries such as India, Pakistan, Sri Lanka, Nepal, Bangladesh and Bhutan have a large number of medicinal plants from which they produce various pharmacologically potent secondary metabolites. The medicinal properties of these compounds have been extensively investigated and many of them have been found to sensitize cancer cells to chemo- and radio-therapy. This review focuses on the role of South Asian medicinal compounds in chemo- and radio-sensitizing properties in drug- and radio-resistant cancer cells. Also discussed is the role of South Asian medicinal plants in protecting normal cells from radiation, which may be useful during radiotherapy of tumors to spare surrounding normal cells.
Collapse
|