1
|
Nan Y, Song J, Liang H, Yao L, Shi Y, Huang C, Chen X, Ma B. Qualitative and quantitative analyses of chemical components in different parts of Marsdenia cavaleriei. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1259:124617. [PMID: 40311483 DOI: 10.1016/j.jchromb.2025.124617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/29/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Species of the genus Marsdenia have a long history of medicinal use in China, with C21 steroids serving as the principal bioactive constituents. Marsdenia cavaleriei remains an unexplored phytochemical resource, particularly regarding the material basis in different plant parts. In this study, an ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) analytical method was developed to thoroughly characterize the chemical constituents of this plant. A total of 68 compounds were identified, 48 of which were tentatively identified as novel. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were employed to screen 18 potential chemical markers, elucidating compositional differences across various plant parts. Quantification of Tenacissoside H was conducted using ultra-high-performance liquid chromatography with charged aerosol detection (UHPLC-CAD), revealing its absence in the leaves. The average content of Tenacissoside H in the roots (0.281 %) exceeded that in the stems. A semi-quantitative analytical method was developed under identical gradient conditions with inverse gradient compensation. The relative standard deviation (RSD) of the average response factors for five references was 2.46 %. The semi-quantitative analysis of nine primary C21 steroids showed that Tenacigenoside K and Tenacissoside A were most abundant in the leaves, Tenacissoside A and Marsdenoside H dominated in the stems, and Marsdenoside H and Tenacissoside D were the most prevalent in the roots. This study presents a comprehensive approach for qualitative and quantitative analysis, thereby enhancing our understanding of the chemical composition of M. cavaleriei across its various parts and providing a foundation for its broader application.
Collapse
Affiliation(s)
- Yi Nan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Juan Song
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Haizhen Liang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Lan Yao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yuhao Shi
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | | | - Xiaojuan Chen
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Baiping Ma
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
2
|
He W, Hu X, Ge M, Meng K. The central role of ferroptosis-induced therapy mediated by tenacissoside H in anaplastic thyroid cancer. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119908. [PMID: 40311717 DOI: 10.1016/j.jep.2025.119908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/20/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tenacissoside H(TDH), a natural compound extracted from the dried vine stems of Marsdenia tenacissima (Roxb.) Wight et Arn., is considered to have anti-tumor effects. However, the anti-tumor activity of TDH against ATC remains unknown. AIM OF THE STUDY Ferroptosis, a novel form of programmed cell death, presents a promising target for therapeutic intervention, particularly in overcoming drug resistance in anaplastic thyroid carcinoma (ATC). We investigated the inhibitory effects of TDH on ATC cells, elucidating its ferroptosis-inducing mechanism, which to our knowledge has not been explored before. RESULTS Our findings indicate that TDH exerts an effect on the survival, proliferation, and migration of ATC cells. The strength of effect is dependent on dosage. Notably, ferroptosis marker proteins (GPX4, xCT, HO-1, TFR) were significantly downregulated following TDH treatment, whereas GPX4 and xCT expressions were partially restored post treatment with ferrostatin-1. Furthermore, in vivo studies confirmed that TDH effectively inhibited tumor growth in xenografted 8505C cells. CONCLUSIONS TDH could be considered a potential agent against ATC via inducing ferroptosis, providing a novel pharmacological basis for treating ATC.
Collapse
Affiliation(s)
- Wanwan He
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Xiaotian Hu
- Shanghai First People's Hospital, Shanghai, 200080, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, 310014, China.
| | - Kexin Meng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, 310014, China; Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, 310014, China.
| |
Collapse
|
3
|
Dong J, Qian Y, Zhang W, Xu J, Wang L, Fan Z, Jia M, Wei L, Yang H, Luo X, Wang Y, Jiang Y, Huang Z, Wang Y. Tenacissoside H repressed the progression of glioblastoma by inhibiting the PI3K/Akt/mTOR signaling pathway. Eur J Pharmacol 2024; 968:176401. [PMID: 38331340 DOI: 10.1016/j.ejphar.2024.176401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Glioblastoma (GBM) is one of the most common intracranial primary malignancies with the highest mortality rate, and there is a lack of effective treatments. In this study, we examined the anti-GBM activity of Tenacissoside H (TH), an active component isolated from the traditional Chinese medicine Marsdenia tenacissima (Roxb.) Wight & Arn (MT), and investigated the potential mechanism. Firstly, we found that TH decreased the viability of GBM cells by inducing cell cycle arrest and apoptosis, and inhibited the migration of GBM cells. Furthermore, combined with the Gene Expression Omnibus database (GEO) and network pharmacology as well as molecular docking, TH was shown to inhibit GBM progression by directly regulating the PI3K/Akt/mTOR pathway, which was further validated in vitro. In addition, the selective PI3K agonist 740 y-p partially restored the inhibitory effects of TH on GBM cells. Finally, TH inhibited GBM progression in an orthotopic transplantation model by inactivating the PI3K/Akt/mTOR pathway in vivo. Conclusively, our results suggest that TH represses GBM progression by inhibiting the PI3K/Akt/mTOR signaling pathway in vitro and in vivo, and provides new insight for the treatment of GBM patients.
Collapse
Affiliation(s)
- Jianhong Dong
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, Zhejiang, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yiming Qian
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, Zhejiang, China; School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Wei Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Jiayun Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Lipei Wang
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 310030, Zhejiang, China
| | - Ziwei Fan
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Mengxian Jia
- Department of Orthopedics (Spine Surgery), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lijia Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Hui Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xuan Luo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Yuanyuan Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
| | - Ying Wang
- Department of Clinical Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
4
|
Cui X, Wang M, Li H, Yuwen X, He X, Hao Y, Lu C. Tenacissoside G alleviated osteoarthritis through the NF-κB pathway both in vitro and in vivo. Immunol Lett 2023; 258:24-34. [PMID: 37084895 DOI: 10.1016/j.imlet.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease characterized by the destruction of articular cartilage. Tenacissoside G is a flavonoid isolated from the dry roots of Marsdenia tenacissima (Roxb) and has been shown to have anti-inflammatory effects. However, there is no report on the protective effects of Tenacissoside G on OA. OBJECTIVES To identify the effects and mechanism of Tenacissoside G on OA. METHODS In vitro, primary mouse chondrocytes were induced with IL-1β to establish OA model. mRNA expression of MMP-13, MMP-3, TNF-α, IL-6 and iNOS, was detected by PCR. Protein expression of Collagen-II, MMP-13, p65, p-p65, and IκBα was detected by Western blot. Collagen-II in chondrocytes was also detected by immunofluorescence. In vivo, we established DMM OA mice model. The preventive effect of Tenacissoside G on OA was observed by micro-CT and histological analysis. RESULTS In vitro, Tenacissoside G significantly inhibited the expression of iNOS, TNF-α, IL-6, MMP-3, MMP-13 and the degradation of collagen-II, Tenacissoside G also significantly suppressed NF-κB activation in chondrocytes by IL-1β-stimulated. In vivo, we demonstrated Tenacissoside G can decrease articular cartilage damage and reduce OARSI score. CONCLUSION These results suggest that Tenacissoside G may serve as a potential drug for the prevention and treatment of OA.
Collapse
Affiliation(s)
- Xu Cui
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China; Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, P. R. of China
| | - Mengfei Wang
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China; Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, P. R. of China
| | - Hui Li
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China; Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi Province, P. R. of China
| | - Xing Yuwen
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China
| | - Xiaochan He
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China
| | - Yangquan Hao
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China.
| | - Chao Lu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, P. R. China.
| |
Collapse
|
5
|
Wang K, Liu W, Xu Q, Gu C, Hu D. Tenacissoside G synergistically potentiates inhibitory effects of 5-fluorouracil to human colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153553. [PMID: 33906076 DOI: 10.1016/j.phymed.2021.153553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most malignant tumors worldwide with poor prognosis and low survival rate. Since the clinical efficacy of the commonly used 5-fluorouracil (5-FU) based chemotherapy in CRC patients is limited because of its intolerable adverse effects, there is an urgent need to explore agents that can enhance the anti-cancer activity of 5-FU, reduce adverse effects and prevent resistance. PURPOSE This study aims to investigate Tenacissoside G (TG)'s synergistic potentiation with 5-FU in inhibitory activity to colorectal cancer cells. METHODS The anti-proliferation effect of TG on 5 colorectal cancer cell lines was assessed by CCK-8 assay. The isobologram analysis and combination index methods were used to detect the synergistic effect of TG and 5-FU by the CompuSyn software using the T.C. Chou Method. The effects of TG/5-FU combination on cell cycle distribution and apoptosis induction were detected by flow cytometry. DNA damage degrees of cells treated with TG, 5-FU and their combination were evaluated by the alkaline comet assay. Protein expression regulated by the TG/5-FU combination was investigated by western blotting. Furthermore, a xenograft mouse model was established to investigate the synergistic anti-tumor effect in vivo. RESULTS In this work, we observed a dose-dependent growth inhibitory activity and cell cycle arrest induction of TG, a monomeric substance originated from Marsdenia tenacissima (Roxb.) Wight et Arn, in colorectal cancer cells. It was found that TG potentiated the anticancer effects of 5-FU with a synergism for the first time. And the co-treatment effects were also validated by in vivo experiments. The underlying mechanisms involved in the synergistic effects were probably included: (1) increased activation of caspase cascade; (2) enhancement of DNA damage degree and (3) induction of p53 phosphorylation at Serine 46. CONCLUSION TG potentiated 5-FU's inhibitory activity to human colorectal cancer through arresting cell cycle progression and inducing p53-mediated apoptosis, which may present a novel strategy in CRC therapies and contribute to the optimizing clinical application of 5-FU.
Collapse
Affiliation(s)
- Kaichun Wang
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wei Liu
- Department of Clinical Pharmacology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200080, China
| | - Qinfen Xu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chao Gu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Daode Hu
- Department of Clinical Pharmacology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
6
|
Lin J, Ruan J, Zhu H, Chen Z, Chen J, Yu H. Tenacissoside H Induces Autophagy and Radiosensitivity of Hepatocellular Carcinoma Cells by PI3K/Akt/mTOR Signaling Pathway. Dose Response 2021; 19:15593258211011023. [PMID: 34035782 PMCID: PMC8127767 DOI: 10.1177/15593258211011023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Tenacissoside H (TEH), which has anti-inflammatory and anti-tumor effects, is a major active ingredient extracted from the stem of Marsdenia tenacissima. However, the effect of TEH on hepatocellular carcinoma (HCC) as well as the underlying mechanisms are still indistinct. Presently, HCC cells (including Huh-7 and HepG2) were dealt with different concentrations of TEH. The proliferation and apoptosis of HCC cells were determined via Cell Counting Kit-8 (CCK8) assay and flow cytometry. In addition, Western blot was conducted to evaluate the expressions of autophagy—and apoptosis-related proteins. Tissue immunofluorescence was carried out to evaluate LC3B expression in the tumor tissues. The data showed that TEH suppressed the growth of HCC cells in a concentration-dependent manner. Besides, TEH enhanced radiosensitivity and promoted the apoptosis of HCC cells. Moreover, the mRNA and protein levels of autophagy-related genes (LC3-II/LC2-I, ATG5, Beclin-1) were significantly promoted by TEH. Mechanistically, TEH attenuated the activation of PI3K/Akt/mTOR signaling pathway. However, inhibition of PI3 K pathway abolished the anti-tumor effects of TEH in HCC cells. Collectively, this study suggested that TEH increases the radiosensitivity of HCC cells via inducing autophagy and apoptosis through downregulating PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Jiatian Lin
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jiyin Ruan
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hao Zhu
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zaizhong Chen
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Junhui Chen
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Hongjian Yu
- Department of Minimally Invasive Intervention, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Liu S, Li W. Prazosin blocks apoptosis of endothelial progenitor cells through downregulating the Akt/NF-κB signaling pathway in a rat cerebral infarction model. Exp Ther Med 2020; 20:2577-2584. [PMID: 32765751 PMCID: PMC7401792 DOI: 10.3892/etm.2020.9009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2020] [Indexed: 11/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) can enhance the recanalization of thrombosis during the progression of cerebral infarction. Prazosin plays a therapeutic role in expanding the peripheral vasculature and regulating infarction cardiosclerosis by inhibiting phosphoinositide signaling. However, the possible mechanisms underlying the therapeutic effects of prazosin have not been fully explored. The purpose of the present study was to analyze the anti-apoptotic effects of prazosin on EPCs in a rat cerebral infarction model. The results showed that prazosin treatment decreased apoptosis of EPCs. Prazosin treatment decreased the serum expression levels of the inflammatory factors, interleukin-1β and tumor necrosis factor-α in rats with cerebral infarctions as well as in EPCs in vitro. In addition, prazosin reduced the expression levels of Akt, NF-κB, phosphorylated (p)-Akt and p-NF-κB in EPCs and the middle cerebral artery of rats with cerebral infarction. These findings demonstrated that prazosin inhibited EPC apoptosis in the cerebral infarction rats through targeting the Akt/NF-κB signaling pathway. In conclusion, these results indicated that prazosin has a preventive effect on cerebral infarction by inhibiting EPC apoptosis and by inhibiting the inflammatory response in vitro and in vivo through regulating the Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Shudong Liu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China.,Chongqing Key Laboratory of Cerebrovascular Disease Research, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Wenyan Li
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China.,Chongqing Key Laboratory of Cerebrovascular Disease Research, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|
8
|
Tenacissoside H Induces Apoptosis and Inhibits Migration of Colon Cancer Cells by Downregulating Expression of GOLPH3 Gene. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2824984. [PMID: 32454851 PMCID: PMC7229548 DOI: 10.1155/2020/2824984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
Objective Tenacissoside H (TDH) is a Chinese medicine monomer extracted from Marsdenia tenacissima extract (MTE), which has been confirmed to have antitumor effects, but its mechanism is still unclear. The aim of this study was to investigate the effect and mechanism of TDH on human colon cancer LoVo cell proliferation and migration and explore the correlation of TDH treatment with the expression of GOLPH3 and cell signaling pathways in LoVo cells. Methods LoVo cells were treated with TDH at 0.1, 1, 10, and 100 μg/mL for 24, 48, and 72 h. The proliferation rate of LoVo cells was evaluated by MTT assay. Recombinant plasmid p-CMV-2-GOLPH3 was constructed, and p-CMV-2-GOLPH3 and p-CMV-2 empty plasmids were transfected into LoVo cells by lipofection. Western blotting was used to detect the transfection efficiency and the expression of p-p70S6K, p70S6K, β-catenin, and GOLPH3. The apoptosis rate was analyzed with Annexin V-FITC/PI double-staining method, and cell migration assessed by transwell assay. Results TDH inhibited the proliferation of LoVo cells in a concentration-dependent manner. The IC50 of TDH treatment in LoVo cells at 24, 48, and 72 h was 40.24, 13.00, and 5.73 μg/mL, respectively. TDH treatment significantly induced apoptosis and suppressed the viability and migration of human colon cancer LoVo cells. The effect of TDH on induction of apoptosis and inhibition of migration in LoVo cells decreased significantly after activating the PI3K/AKT/mTOR and Wnt/β-catenin signaling pathways with agonists. Additionally, the expression of GOLPH3 protein downregulated significantly in LoVo cells under TDH treatment. Overexpression of the GOLPH3 gene increased the expression of key proteins in PI3K/AKT/mTOR and Wnt/β-catenin signaling pathways and blocked the antitumor activity of TDH. Conclusion Collectively, the present results indicated that TDH can inhibit the proliferation vitality of colon cancer LoVo cells through downregulating GOLPH3 expression and activity of PI3K/AKT/mTOR and Wnt/β-catenin signaling pathways.
Collapse
|
9
|
Wang P, Yang J, Zhu Z, Zhang X. Marsdenia tenacissima: A Review of Traditional Uses, Phytochemistry and Pharmacology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1-32. [PMID: 30284470 DOI: 10.1142/s0192415x18500751] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The stems and roots of Marsdenia tenacissima (Roxb.) Wight et Arn., a traditional Chinese medicine and Dai herbal medicine, have been widely used for the treatment of asthma, trachitis, tonsillitis, pharyngitis, cystitis, pneumonia and drug or food poisoning. Nowadays, the extract of Marsdenia tenacissima, under the trademark of "Xiao-ai-ping", is widely used in clinic for the treatment of different cancers in China. To date, approximately 196 chemical ingredients covering steroids, triterpenes and organic acids have been identified from different parts of this plant. Steroids are the major characteristic and bioactive constituents of this plant. Modern pharmacology has demonstrated that the crude extracts and steroids have various in vitro and in vivo pharmacological activities, such as multidrug resistance reversal, antitumor, anti-angiogenic, immunomodulation and anti-HIV activities. The multidrug resistance reversal of steroids provided evidence for the use of this herb in clinic. However, despite wide clinical application, clinical trials, quality control method, pharmacokinetic and toxicity research on Marsdenia tenacissima were seldom reported and deserved further efforts. The present review aimed to achieve a comprehensive and up-to-date investigation in ethnopharmacology, phytochemistry, pharmacology, clinical study, pharmacokinetics, toxicology and quality control of Marsdenia tenacissima. In addition, the possible perspectives and trends for future studies of Marsdenia tenacissima have also been put forward. It is believed that this review would provide a theoretical basis and valuable data for future in-depth studies and applications.
Collapse
Affiliation(s)
- Peile Wang
- 1 Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Jing Yang
- 1 Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Zhenfeng Zhu
- 1 Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Xiaojian Zhang
- 1 Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| |
Collapse
|
10
|
Hu J, Hu J, Jiao H, Li Q. Anesthetic effects of isoflurane and the molecular mechanism underlying isoflurane‑inhibited aggressiveness of hepatic carcinoma. Mol Med Rep 2018; 18:184-192. [PMID: 29749446 PMCID: PMC6059668 DOI: 10.3892/mmr.2018.8945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Anesthesia is produced by drugs or other methods, and refers to the attenuation of pain via reversible suppression of neuronal transmission in the central and peripheral nervous systems, during surgery. Clinical investigations have indicated that the anesthetic action of isoflurane is efficient to alleviate pain during tumor resection clinical trials. In addition, it has been reported that isoflurane can induce caspase-3 activation and is associated with apoptosis of tumor cells. The present study investigated the anesthetic effects and molecular mechanisms underlying isoflurane-induced apoptosis in patients with hepatic carcinoma. Furthermore, the pain of patients with hepatic carcinoma was evaluated during the perioperative period according to the pain index. The apoptotic rate of hepatic carcinoma cells was analyzed in tumor tissues using TUNEL assay. The expression levels of apoptosis-associated proteins were detected in liver cancer cells following anesthesia in patients. Phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and nuclear factor (NF)-κB signaling pathways were also analyzed in liver cancer cells following treatment with isoflurane. The results demonstrated that isoflurane inhibited growth and decreased viability of liver cancer cells in vitro and in vivo. In addition, the apoptotic rate was increased in cells obtained from isoflurane-treated patients. The results also demonstrated that isoflurane upregulated the expression levels of proapoptotic genes and downregulated anti-apoptotic mRNA expression. In addition, a molecular mechanism analysis indicated that isoflurane inhibited PI3K and AKT expression in liver cancer cells. Isoflurane also induced caspase-3 activation in liver cancer cells. Furthermore, isoflurane treatment attenuated NF-κB activity and inhibited migration and invasion of liver cancer cells. In conclusion, these findings indicated that isoflurane treatment efficiently attenuated surgical pain and inhibited tumor aggressiveness via regulation of NF-κB activity and the PI3K/AKT signaling pathway, thus suggesting that isoflurane is an efficient anesthetic drug that induces pain remission and promotes apoptosis of liver cancer cells.
Collapse
Affiliation(s)
- Jing Hu
- Department of Anesthesiology, Linyi Cancer Hospital, Linyi, Shandong 276001, P.R. China
| | - Jingli Hu
- Department of Anesthesiology, Linyi Cancer Hospital, Linyi, Shandong 276001, P.R. China
| | - Hongmei Jiao
- Department of Anesthesiology, Linyi Cancer Hospital, Linyi, Shandong 276001, P.R. China
| | - Qingguo Li
- Department of Anesthesiology, Linyi Cancer Hospital, Linyi, Shandong 276001, P.R. China
| |
Collapse
|
11
|
Sulfiredoxin-1 protects against simulated ischaemia/reperfusion injury in cardiomyocyte by inhibiting PI3K/AKT-regulated mitochondrial apoptotic pathways. Biosci Rep 2016; 36:BSR20160076. [PMID: 26992405 PMCID: PMC4847177 DOI: 10.1042/bsr20160076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/18/2016] [Indexed: 12/31/2022] Open
Abstract
The present study confirmed that Srx-1 overexpression could protect cardiomyocyte from SI/R-induced injury by suppressing PI3K/AKT-regulated mitochondria dependent apoptosis. Therefore, the present study will support a promising therapeutic avenue for the treatment of ischaemic cardiovascular diseases. Reactive oxygen species (ROS)-triggered cardiac cell injury is recognized as the major contributor for the pathogenesis progression of ischaemic cardiovascular diseases. Sulfiredoxin-1 (Srx-1) is an endogenous antioxidant and exerts the crucial neuroprotective effects in cerebral ischaemia. However, its function and the underlying mechanism in ischaemic heart diseases remain poorly defined. Here, a dramatical decrease in Srx-1 was validated in H9c2 cardiomyocytes upon simulated ischaemia–reperfusion (SI/R) injury. Moreover, Srx-1 protected H9c2 cells from SI/R-injured injury as the evidences that Srx-1 up-regulation attenuated the inhibitory effects on cell viability, lactate dehydrogenase (LDH) and cell apoptosis upon SI/R treatment. Knockdown of Srx-1 accelerated cell injury upon SI/R. Mechanism assay corroborated that SI/R treatment noticeably aggravated the loss of mitochondrial membrane potential (Δψm), which was remarkably abated in Ad-Srx-1 groups. Importantly, Srx-1 elevation substantially reduced cytochrome c release, the activity of caspase-9 and caspase-3, accompany with the subsequent decrease in the cleavage of poly (ADP ribose) polymerase (PARP). Concomitantly, overexpression of Srx-1 also decreased the expression of pro-apoptosis protein Bax and increased anti-apoptotic Bcl-2 expression. Further analysis substantiated that Srx-1 treatment remarkably induced the activation of PI3K/AKT signalling. Preconditioning with LY294002 dramatically decreased Srx-1-enhanced cell resistance to SI/R injury. Importantly, LY294002 mitigated the inhibitory effects of Srx-1 on Δψm loss, cytochrome c release, caspase-9/3 activity, and the expression of Bcl-2 family. Together, these results suggested that Srx-1 might protect cardiomyocyte injury upon SI/R by suppressing PI3K/AKT-mediated mitochondria dependent apoptosis, revealing a promising therapeutic agent against ischaemic cardiovascular diseases.
Collapse
|