1
|
Indumati S, Apurva B, Gaurav G, Nehakumari S, Nishant V. The Role of MicroRNAs in Development of Endometrial Cancer: A Literature Review. J Reprod Infertil 2023; 24:147-165. [PMID: 37663424 PMCID: PMC10471942 DOI: 10.18502/jri.v24i3.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/01/2023] [Indexed: 09/05/2023] Open
Abstract
Endometrial cancer (EC) ranks as the second most common gynaecological cancer worldwide. EC patients are diagnosed at an early clinical stage and generally have a good prognosis. Therefore, there is a dire need for development of a specific marker for early detection of endometrial adenocarcinoma. The development of EC is conditioned by a multistep process of oncogenic upregulation and tumor suppressor downregulation as shown by molecular genetic evidence. In this setting, microRNAs appear as significant regulators of gene expression and several variations in the expression of microRNAs have been implicated in normal endometrium, endometrial tissue, metrorrhagia, and endometrial cancer. Furthermore, microRNAs act as highly precise, sensitive, and robust molecules, making them potential markers for diagnosing specific cancers and their progression. With the rising incidence of EC, its management remains a vexing challenge and diagnostic methods for the disease are limited to invasive, expensive, and inaccurate tools. Therefore, the prospect of exploiting the utility of microRNAs as potential candidates for diagnosis and therapeutic use in EC seems promising.
Collapse
Affiliation(s)
- Somasundaram Indumati
- Department of Stem Cell and Regenerative Medicine, D.Y. Patil Education Society, Kolhapur, India
| | - Birajdar Apurva
- Department of Stem Cell and Regenerative Medicine, D.Y. Patil Education Society, Kolhapur, India
| | | | | | | |
Collapse
|
2
|
Soto A, Nieto-Díaz M, Reigada D, Barreda-Manso MA, Muñoz-Galdeano T, Maza RM. miR-182-5p Regulates Nogo-A Expression and Promotes Neurite Outgrowth of Hippocampal Neurons In Vitro. Pharmaceuticals (Basel) 2022; 15:ph15050529. [PMID: 35631355 PMCID: PMC9146179 DOI: 10.3390/ph15050529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Nogo-A protein is a key myelin-associated inhibitor of axonal growth, regeneration, and plasticity in the central nervous system (CNS). Regulation of the Nogo-A/NgR1 pathway facilitates functional recovery and neural repair after spinal cord trauma and ischemic stroke. MicroRNAs are described as effective tools for the regulation of important processes in the CNS, such as neuronal differentiation, neuritogenesis, and plasticity. Our results show that miR-182-5p mimic specifically downregulates the expression of the luciferase reporter gene fused to the mouse Nogo-A 3′UTR, and Nogo-A protein expression in Neuro-2a and C6 cells. Finally, we observed that when rat primary hippocampal neurons are co-cultured with C6 cells transfected with miR-182-5p mimic, there is a promotion of the outgrowth of neuronal neurites in length. From all these data, we suggest that miR-182-5p may be a potential therapeutic tool for the promotion of axonal regeneration in different diseases of the CNS.
Collapse
Affiliation(s)
| | | | | | | | | | - Rodrigo M. Maza
- Correspondence: (M.N.-D.); (R.M.M.); Tel.: +34-92539-6834 (R.M.M.)
| |
Collapse
|
3
|
Weiss BG, Anczykowski MZ, Ihler F, Bertlich M, Spiegel JL, Haubner F, Canis M, Küffer S, Hess J, Unger K, Kitz J, Jakob M. MicroRNA-182-5p and microRNA-205-5p as potential biomarkers for prognostic stratification of p16-positive oropharyngeal squamous cell carcinoma. Cancer Biomark 2021; 33:331-347. [PMID: 34542062 DOI: 10.3233/cbm-203149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND MicroRNAs constitute promising biomarkers. OBJECTIVE The aim was to investigate diagnostic and prognostic implications of miR-182-5p and miR-205-5p in p16-positive and p16-negative oropharyngeal squamous cell carcinomas (OPSCCs). METHODS Expression of miR-182-5p, miR-205-5p were determined via quantitative real-time-PCR in fresh frozen tissues of 26 p16-positive, 19 p16-negative OPSCCs and 18 HPV-negative oropharyngeal controls. Associations between miRNA-expression, clinicopathological characteristics and prognosis were analyzed. RESULTS Higher miR-182-5p expression was associated with significant inferior disease-specific survival for p16-positive OPSCCs (HR = 1.98E+09, 95% CI 0-Inf; P= 0.028) and a similar trend was observed for p16-negative OPSCCs (HR = 1.56E+09, 95% CI 0-Inf; P= 0.051). Higher miR-205-5p expression was associated with an inferior progression-free survival (HR = 4.62, 95% CI 0.98-21.83; P= 0.034) and local control rate (HR = 2.18E+09, 95% CI 0-Inf; P= 0.048) for p16-positive OPSCCs. CONCLUSIONS Results indicate that miR-182-5p and miR-205-5p can further stratify patients with p16-positive OPSCC into prognostic groups.
Collapse
Affiliation(s)
- Bernhard G Weiss
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mahalia Zoe Anczykowski
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Göttingen, Göttingen, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Friedrich Ihler
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,German Center for Vertigo and Balance Disorders (DSGZ), Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mattis Bertlich
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Jennifer L Spiegel
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Frank Haubner
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, Germany.,Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Munich, Germany
| | - Julia Kitz
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Mark Jakob
- Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany.,Department of Otorhinolaryngology, Ludwig-Maximilians University of Munich, Munich, Germany
| |
Collapse
|
4
|
Shiina M, Hashimoto Y, Kulkarni P, Dasgupta P, Shahryari V, Yamamura S, Tanaka Y, Dahiya R. Role of miR-182/PDCD4 axis in aggressive behavior of prostate cancer in the African Americans. BMC Cancer 2021; 21:1028. [PMID: 34525952 PMCID: PMC8444584 DOI: 10.1186/s12885-021-08723-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background Prostate cancer is one of the most commonly diagnosed cancers among men. African Americans (AA) are at an increased risk of developing prostate cancer compared to European Americans (EA). miRNAs play a critical role in these tumors, leading to tumor progression. In this study, we investigated the role of miR-182 in racial disparity in prostate cancer. Results We found significantly increased levels of miR-182 in prostate cancer tissues compared to BPH. Also, miR-182 shows increased expression in AA prostate cancer cell line and tissue samples compared to EA. We performed biochemical recurrence (BCR) - free survival time in AA and EA patients and found that high miR-182 expression had significantly shorter BCR-free survival than patients with low miR-182 expression (P = 0.031). To elucidate the role of miR-182, we knocked down miR-182 in EA (DU-145 and LNCaP) and AA (MDA-PCa-2b) cell lines and found an increase in apoptosis, arrest of the cell cycle, and inhibition of colony formation in the AA cell line to a greater extent than EA cell lines. Conclusions Our results showed that PDCD4 is a direct miR-182 target and its inhibition is associated with aggressiveness and high Gleason grade in prostate cancer among AA. These findings show that miR-182 is highly expressed in AA patients and miR-182 may be a target for effective therapy in AA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08723-6.
Collapse
Affiliation(s)
- Marisa Shiina
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA.
| | - Yutaka Hashimoto
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Priyanka Kulkarni
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Pritha Dasgupta
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Varahram Shahryari
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Soichiro Yamamura
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Yuichiro Tanaka
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| | - Rajvir Dahiya
- Department of Urology, Urology Research Center, Veterans Affairs Medical Center and University of California San Francisco School of Medicine (UCSF), 4150 Clement Street, San Francisco, CA, 94121, USA
| |
Collapse
|
5
|
Bai L, Luo L, Gao W, Bu C, Huang J. miR-182 modulates cell proliferation and invasion in prostate cancer via targeting ST6GALNAC5. ACTA ACUST UNITED AC 2021; 54:e9695. [PMID: 34037099 PMCID: PMC8148881 DOI: 10.1590/1414-431x2020e9695] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
Altered expression of miR-182 has been observed in various types of human cancer. The purpose of this study was to investigate the expression of miR-182 and its role in prostate cancer (PCa). Expression of miR-182 and ST6GALNAC5 in tumor tissues and the Du145 PCa cell line was analyzed. Cell proliferation assay, colony formation assay, transwell assay, and wound healing assay were performed. The impact of miR-182 on tumor growth was investigated using a xenograft model. The results indicated that expression of miR-182 was higher in PCa tissues and cell lines, while ST6GALNAC5 was decreased. Downregulating miR-182 significantly inhibited the capacities of proliferation and invasion of PC3 and Du145 cells. ST6GALNAC5 was demonstrated to be a target of miR-182 by luciferase assay, and western blot results indicated PI3K/Akt pathway was involved in miR-182 associated effects on PC3 and Du145 cells. The animal experiment suggested that knockdown of miR-182 inhibited tumor growth. Our study proved that miR-182 participated in the proliferation and invasion of PCa cells via mediating expression of ST6GALNAC5 and established a miR-182/ST6GALNAC5/PI3K/AKT axis in regulation of tumor progression. Our investigation provided a basis for further exploration of the application of miR-182 or ST6GALNAC5-associated therapies for PCa patients.
Collapse
Affiliation(s)
- Liang Bai
- Department of Urology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Li Luo
- Department of Urology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Weicheng Gao
- Department of Urology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Chenfeng Bu
- Department of Urology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jianfeng Huang
- Department of Urology, People's Hospital of Liannan Yao Autonomous County, Qingyuan, China
| |
Collapse
|
6
|
Anwar S, Shamsi A, Mohammad T, Islam A, Hassan MI. Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188568. [PMID: 34023419 DOI: 10.1016/j.bbcan.2021.188568] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Pyruvate is irreversibly decarboxylated to acetyl coenzyme A by mitochondrial pyruvate dehydrogenase complex (PDC). Decarboxylation of pyruvate is considered a crucial step in cell metabolism and energetics. The cancer cells prefer aerobic glycolysis rather than mitochondrial oxidation of pyruvate. This attribute of cancer cells allows them to sustain under indefinite proliferation and growth. Pyruvate dehydrogenase kinases (PDKs) play critical roles in many diseases because they regulate PDC activity. Recent findings suggest an altered metabolism of cancer cells is associated with impaired mitochondrial function due to PDC inhibition. PDKs inhibit the PDC activity via phosphorylation of the E1a subunit and subsequently cause a glycolytic shift. Thus, inhibition of PDK is an attractive strategy in anticancer therapy. This review highlights that PDC/PDK axis could be implicated in cancer's therapeutic management by developing potential small-molecule PDK inhibitors. In recent years, a dramatic increase in the targeting of the PDC/PDK axis for cancer treatment gained an attention from the scientific community. We further discuss breakthrough findings in the PDC-PDK axis. In addition, structural features, functional significance, mechanism of activation, involvement in various human pathologies, and expression of different forms of PDKs (PDK1-4) in different types of cancers are discussed in detail. We further emphasized the gene expression profiling of PDKs in cancer patients to prognosis and therapeutic manifestations. Additionally, inhibition of the PDK/PDC axis by small molecule inhibitors and natural compounds at different clinical evaluation stages has also been discussed comprehensively.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
7
|
Favier A, Rocher G, Larsen AK, Delangle R, Uzan C, Sabbah M, Castela M, Duval A, Mehats C, Canlorbe G. MicroRNA as Epigenetic Modifiers in Endometrial Cancer: A Systematic Review. Cancers (Basel) 2021; 13:cancers13051137. [PMID: 33800944 PMCID: PMC7961497 DOI: 10.3390/cancers13051137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Endometrial cancer (EC) is the 2nd most common gynecologic cancer worldwide. MicroRNAs (miRNAs) are small noncoding RNAs that contribute to epigenetic regulation. The objective of this systematic review is to summarize our current knowledge on the role of miRNAs in the epigenetic deregulation of tumor-related genes in EC. It includes all miRNAs reported to be involved in EC including their roles in DNA methylation and RNA-associated silencing. This systematic review should be useful for development of novel strategies to improve diagnosis and risk assessment as well as for new treatments aimed at miRNAs, their target genes or DNA methylation. Abstract The objective of this systematic review is to summarize our current knowledge on the influence of miRNAs in the epigenetic deregulation of tumor-related genes in endometrial cancer (EC). We conducted a literature search on the role of miRNAs in the epigenetic regulation of EC applying the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The following terms were used: microRNA, miRNA, miR, endometrial cancer, endometrium, epigenetic, epimutation, hypermethylation, lynch, deacetylase, DICER, novel biomarker, histone, chromatin. The miRNAs were classified and are presented according to their function (tumor suppressor or onco-miRNA), their targets (when known), their expression levels in EC tissue vs the normal surrounding tissue, and the degree of DNA methylation in miRNA loci and CpG sites. Data were collected from 201 articles, including 190 original articles, published between November 1, 2008 and September 30, 2020 identifying 313 different miRNAs implicated in epigenetic regulation of EC. Overall, we identified a total of 148 miRNAs with decreased expression in EC, 140 miRNAs with increased expression in EC, and 22 miRNAs with discordant expression levels. The literature implicated different epigenetic phenomena including altered miRNA expression levels (miR-182, -230), changes in the methylation of miRNA loci (miR-34b, -129-2, -130a/b, -152, -200b, -625) and increased/decreased methylation of target genes (miR-30d,-191). This work provides an overview of all miRNAs reported to be involved in epigenetic regulation in EC including DNA methylation and RNA-associated silencing. These findings may contribute to novel strategies in diagnosis, risk assessment, and treatments aimed at miRNAs, their target genes or DNA methylation.
Collapse
Affiliation(s)
- Amélia Favier
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
- Correspondence: (A.F.); (G.C.)
| | - Grégoire Rocher
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
| | - Annette K. Larsen
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
| | - Romain Delangle
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
| | - Catherine Uzan
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
| | - Michèle Sabbah
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
| | - Mathieu Castela
- Scarcell Therapeutics, 101 rue de Sèvres, 75006 Paris, France;
| | - Alex Duval
- Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, INSERM, Sorbonne Université, 75012 Paris, France;
| | - Céline Mehats
- U1016, CNRS, UMR8104, Institut Cochin, INSERM, Université de Paris, 75014 Paris, France;
| | - Geoffroy Canlorbe
- Centre de Recherche Saint-Antoine (CRSA), INSERM UMR_S_938, Cancer Biology and Therapeutics, Sorbonne University, 75012 Paris, France; (A.K.L.); (C.U.); (M.S.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), University Hospital, 75013 Paris, France; (G.R.); (R.D.)
- Correspondence: (A.F.); (G.C.)
| |
Collapse
|
8
|
Li Y, Luo Y, Li B, Niu L, Liu J, Duan X. miRNA-182/Deptor/mTOR axis regulates autophagy to reduce intestinal ischaemia/reperfusion injury. J Cell Mol Med 2020; 24:7873-7883. [PMID: 32510855 PMCID: PMC7348187 DOI: 10.1111/jcmm.15420] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
It had been reported miR‐182 was down‐regulated after intestinal ischaemia/reperfusion (I/R) damage. However, its role and potential mechanisms are still unknown. This study was aimed to elucidate the function of miR‐182 in intestinal I/R injury and the underlying mechanisms. The model of intestinal injury was constructed in wild‐type and Deptor knockout (KO) mice. Haematoxylin‐eosin staining, Chiu's score and diamine oxidase were utilized to detect intestinal damage. RT‐qPCR assay was used to detected miR‐182 expression. Electronic microscopy was used to detect autophagosome. Western blot was applied to detect the expression of Deptor, S6/pS6, LC3‐II/LC3‐I and p62. Dual‐luciferase reporter assay was used to verify the relationship between miR‐182 and Deptor. The results showed miR‐182 was down‐regulated following intestinal I/R. Up‐regulation of miR‐182 reduced intestinal damage, autophagy, Deptor expression and enhanced mTOR activity following intestinal I/R. Moreover, suppression of autophagy reduced intestinal damage and inhibition of mTOR by rapamycin aggravated intestinal damage following intestinal I/R. Besides, damage of intestine was reduced and mTOR activity was enhanced in Deptor KO mice. In addition, Deptor was the target gene of miR‐182 and was indispensable for the protection of miR‐182 on intestine under I/R condition. Together, our research implicated up‐regulation of miR‐182 inhibited autophagy to alleviate intestinal I/R injury via mTOR by targeting Deptor.
Collapse
Affiliation(s)
- Yunsheng Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhua Luo
- Department of Anesthesiology, Zhongshan Ophthalmic Center of Sun Yat-sen University, Guangzhou, China
| | - Baochuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lijun Niu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Liu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoyun Duan
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Diagnostic value of microRNA panel in endometrial cancer: A systematic review. Oncotarget 2020; 11:2010-2023. [PMID: 32523655 PMCID: PMC7260115 DOI: 10.18632/oncotarget.27601] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE We conducted a systematic review to evaluate the overall diagnostic accuracy of miRNAs in detecting endometrial cancer. MATERIALS AND METHODS A systematic search of Medline, Embase, Cinahl and the Cochrane Controlled Register of Trials was performed to identify studies reporting on the diagnostic value of miRNA in EC patients. Included were diagnostic studies looking at miRNA expression in women diagnosed with endometrial cancer. Two reviewers independently selected studies and assessed quality of studies using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) score system. Data extraction was completed and the vote-counting strategy was used to rank miRNAs. RESULTS 26 studies were included with a total number of 1,400 EC patients reporting on 106 differentially expressed miRNAs. The most frequently found up-regulated miRNA was miR-205 followed by miR-200c, -223, -182, -183 and -200a. In addition, miR-135b, miR-429, miR-141 and miR-200b were also frequently up-regulated. There was less consensus on down-regulated miRNAs. CONCLUSIONS miRNAs yield a promising diagnostic biomarker potential in endometrial cancer, especially miR-205, the miR-200 family and miR-135b, -182, -183 and -223. However, no sufficient high quality data are available to draw hard conclusions. More research is needed to validate the diagnostic potential of these miRNAs in larger studies. In addition, the potential of urine as a non-invasive biofluid should be investigated in more detail.
Collapse
|
10
|
Gao L, Yan SB, Yang J, Kong JL, Shi K, Ma FC, Huang LZ, Luo J, Yin SY, He RQ, Hu XH, Chen G. MiR-182-5p and its target HOXA9 in non-small cell lung cancer: a clinical and in-silico exploration with the combination of RT-qPCR, miRNA-seq and miRNA-chip. BMC Med Genomics 2020; 13:3. [PMID: 31906958 PMCID: PMC6945423 DOI: 10.1186/s12920-019-0648-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/19/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND MiR-182-5p, a cancer-related microRNA (miRNA), modulates tumorigenesis and patient outcomes in various human malignances. This study interroted the clinicopathological significance and molecular mechanisms of miR-182-5p in non-small cell lung cancer (NSCLC). METHODS The clinical significance of miR-182-5p in NSCLC subtypes was determined based on an analysis of 124 samples (lung adenocarcinomas [LUADs], n = 101; lung squamous cell carcinomas [LUSCs], n = 23) obtained from NSCLC patients and paired noncancer tissues and an analysis of data obtained from public miRNA-seq database, miRNA-chip database, and the scientific literature. The NSCLC samples (n = 124) were analyzed using the real-time quantitative polymerase chain reaction (RT-qPCR). Potential targets of miR-182-5p were identified using lists generated by miRWalk v.2.0, a comprehensive atlas of predicted and validated targets of miRNA-target interactions. Molecular events of miR-182-5p in NSCLC were unveiled based on a functional analysis of candidate targets. The association of miR-182-5p with one of the candidate target genes, homeobox A9 (HOXA9), was validated using in-house RT-qPCR and dual-luciferase reporter assays. RESULTS The results of the in-house RT-qPCR assays analysis of data obtained from public miRNA-seq databases, miRNA-chip databases, and the scientific literature all supported upregulation of the expression level of miR-182-5p level in NSCLC. Moreover, the in-house RT-qPCR data supported the influence of upregulated miR-182-5p on malignant progression of NSCLC. In total, 774 prospective targets of miR-182-5p were identified. These targets were mainly clustered in pathways associated with biological processes, such as axonogenesis, axonal development, and Ras protein signal transduction, as well as pathways involved in axonal guidance, melanogenesis, and longevity regulation, in multiple species. Correlation analysis of the in-house RT-qPCR data and dual-luciferase reporter assays confirmed that HOXA9 was a direct target of miR-182-5p in NSCLC. CONCLUSIONS The miR-182-5p expression level was upregulated in NSCLC tissues. MiR-182-5p may exert oncogenic influence on NSCLC through regulating target genes such as HOXA9.
Collapse
Affiliation(s)
- Li Gao
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Shi-Bai Yan
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jie Yang
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jin-Liang Kong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Ke Shi
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Fu-Chao Ma
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Lin-Zhen Huang
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Jie Luo
- Department of Medical Oncology, the Second Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Shu-Ya Yin
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China
| | - Xiao-Hua Hu
- Department of Medical Oncology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| | - Gang Chen
- Department of Pathology, the First Affiliated Hospital of Guangxi Medical University, Zhuang Autonomous Region, Nanning, 530021, Guangxi, China.
| |
Collapse
|
11
|
Livingstone MC, Johnson NM, Roebuck BD, Kensler TW, Groopman JD. Serum miR-182 is a predictive biomarker for dichotomization of risk of hepatocellular carcinoma in rats. Mol Carcinog 2019; 58:2017-2025. [PMID: 31373075 DOI: 10.1002/mc.23093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/13/2019] [Accepted: 07/23/2019] [Indexed: 12/11/2022]
Abstract
Exploration of animal models leads to discoveries that can reveal candidate biomarkers for translation to human populations. Herein, a model of hepatocarcinogenesis and protection was used in which rats treated with aflatoxin (AFB1 ) daily for 28 days (200 µg/kg BW) developed tumors compared with rats completely protected from tumors by concurrent administration of the chemoprotective agent, 1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im). Differential expression of miRNAs in tumors (AFB1 ) and nontumor (AFB1 + CDDO-Im) bearing livers and their levels in sera over the life-course of the animals was determined. miRNA transcriptome analysis identified 17 miRNAs significantly upregulated at greater than five-fold in the tumors. The ten most dysregulated miRNAs judged by fold-change and biological significance were selected for further study, including liver-specific miR-122-5p. Validation of sequencing results by real-time PCR confirmed the upregulation of the majority of these miRNAs in tumors, including miR-182, as well as miR-224-5p as the most dysregulated of these miRNAs (over 400-fold). The longitudinal analysis of levels of miR-182 in sera demonstrated significant and persistent increases (5.13-fold; 95% CI: 4.59-5.70). The increase in miR-182 was detected months before any clinical symptoms were present in the animals. By the terminal time point of the study, in addition to elevated levels of serum miR-182, serum miR-122-5p was also found to be increased (>1.5-fold) in animals that developed hepatocarcinomas. Thus, using the data from an unbiased discovery approach of the tissue findings, serum miR-182 was found to track across the complex, multistage process of hepatocarcinogenesis opening an opportunity for translation to human populations.
Collapse
Affiliation(s)
- Merricka C Livingstone
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M School of Public Health, College Station, Texas
| | - Bill D Roebuck
- Department of Pharmacology and Toxicology, Giesel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Thomas W Kensler
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - John D Groopman
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
12
|
Delangle R, De Foucher T, Larsen AK, Sabbah M, Azaïs H, Bendifallah S, Daraï E, Ballester M, Mehats C, Uzan C, Canlorbe G. The Use of microRNAs in the Management of Endometrial Cancer: A Meta-Analysis. Cancers (Basel) 2019; 11:cancers11060832. [PMID: 31208108 PMCID: PMC6628044 DOI: 10.3390/cancers11060832] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction: Endometrial cancer (EC) is the most important gynecological cancer in terms of incidence. microRNAs (miRs), which are post-transcriptional regulators implicated in a variety of cellular functions including carcinogenesis, are particularly attractive candidates as biomarkers. Indeed, several studies have shown that the miR expression pattern appears to be associated with prognostic factors in EC. Our objective is to review the current knowledge of the role of miRs in carcinogenesis and tumor progression and their association with the prognosis of endometrial cancer. Materials and Method: We performed a literature search for miR expression in EC using MEDLINE, PubMed (the Internet portal of the National Library of Medicine) and The Cochrane Library, Cochrane databases “Cochrane Reviews” and “Clinical Trials” using the following keywords: microRNA, endometrial cancer, prognosis, diagnosis, lymph node, survival, plasma, FFPE (formalin-fixed, paraffin-embedded). The miRs were classified and presented according to their expression levels in cancer tissue in relation to different prognostic factors. Results: Data were collected from 74 original articles and 8 literature reviews which described the expression levels of 261 miRs in ECs, including 133 onco-miRs, 110 miR onco-suppressors, and 18 miRs with discordant functions. The review identified 30 articles studying the expression pattern of miR in neoplastic endometrial tissue compared to benign and/or hyperplastic tissues, 12 articles detailing the expression profile of miRs as a function of lymph node status, and 14 articles that detailed the expression pattern of miRs in endometrial tumor tissue according to overall survival or in the absence of recurrence. Conclusions: The findings presented here suggest that miR analysis merits a role as a prognostic factor in the management of patients with endometrial cancer.
Collapse
Affiliation(s)
- Romain Delangle
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière University Hospital, 75013 Paris, France.
| | - Tiphaine De Foucher
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Obstetrics and Gynaecology, Tenon University Hospital, 75020 Paris, France.
| | - Annette K Larsen
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Centre National de la Recherche Scientifique (CNRS), 75012 Paris, France.
| | - Michèle Sabbah
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Centre National de la Recherche Scientifique (CNRS), 75012 Paris, France.
| | - Henri Azaïs
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière University Hospital, 75013 Paris, France.
| | - Sofiane Bendifallah
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Obstetrics and Gynaecology, Tenon University Hospital, 75020 Paris, France.
| | - Emile Daraï
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Obstetrics and Gynaecology, Tenon University Hospital, 75020 Paris, France.
| | - Marcos Ballester
- Department of Gynecology, Groupe Hospitalier Diaconesses Croix Saint-Simon, 75020 Paris, France.
| | - Céline Mehats
- INSERM U1016-Institut Cochin, UMR 8104, Team "From Gametes to Birth", University Paris Descartes, 75014 Paris, France.
| | - Catherine Uzan
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière University Hospital, 75013 Paris, France.
- Institut Universitaire de Cancérologie (IUC), 75020 Paris, France.
| | - Geoffroy Canlorbe
- Cancer Biology and Therapeutics, Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France.
- Assistance Publique des Hôpitaux de Paris (AP-HP), Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière University Hospital, 75013 Paris, France.
- Institut Universitaire de Cancérologie (IUC), 75020 Paris, France.
| |
Collapse
|
13
|
Xu S, Guo J, Zhang W. lncRNA PCAT19 promotes the proliferation of laryngocarcinoma cells via modulation of the miR-182/PDK4 axis. J Cell Biochem 2019; 120:12810-12821. [PMID: 30868666 DOI: 10.1002/jcb.28552] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/06/2019] [Accepted: 01/14/2019] [Indexed: 01/01/2023]
Abstract
The mechanism of tumorigenesis has not been fully identified in laryngeal cancer, which accounts for one fourth of patents with head and neck tumors. Long noncoding RNA PCAT19 has been shown to participate in the prostate cancer progression. However, little is known about the role of PCAT19 in the tumorigenesis of laryngeal cancer. In our study, it was shown that the expression levels of PCAT19 was increased in laryngeal tumor tissues and associated with decreased overall survival. Using laryngeal cancer cells lines HEp-2 and AMC-HN-8, it was demonstrated that knockdown of PCAT19 decreased the cell proliferation, increased the mitochondrial respiration, and inhibited the glycolysis. In detail, it showed that the PDK4 expression and PDHE1α phosphorylation levels were decreased upon the PCAT19 knockdown. Further studies indicated that miR-182 functioned as the bridge between PCAT19 and PDK4, which could also regulate the cellular metabolism thus affecting the cell proliferation. Furthermore, it was shown that the PCAT19/miR-182/PDK4 axis existed and regulated cell proliferation by modulating glycolysis and mitochondrial respiration. Finally, we showed that the PCAT19 knockdown decreased the tumor growth in vivo, possibly through regulating the miR-182/PDK4 axis. In conclusion, we demonstrated that lncRNA PCAT19 promoted cell proliferation and tumorigenesis by modulating the miR-182/PDK4 axis and the metabolism balance. PCAT19 might become a promising new target for laryngeal cancer therapeutics.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Otolaryngology Head and Neck Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Jie Guo
- Department of Otolaryngology Head and Neck Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Wei Zhang
- Department of Otolaryngology Head and Neck Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| |
Collapse
|
14
|
Oda H, Ikeguchi R, Aoyama T, Ohta S, Noguchi T, Kaizawa Y, Yurie H, Takeuchi H, Mitsuzawa S, Yamamoto K, Matsuda S. Relative antigenicity of components in vascularized composite allotransplants: An experimental study of microRNAs expression in rat hind limb transplantation model. Microsurgery 2018; 39:340-348. [DOI: 10.1002/micr.30408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/26/2018] [Accepted: 11/06/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Hiroki Oda
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Ryosuke Ikeguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Tomoki Aoyama
- Department of Physical Therapy, Human Health Sciences; Graduate School of Medicine, Kyoto University; Kyoto Japan
| | - Souichi Ohta
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Takashi Noguchi
- Department of Orthopaedic Surgery; Tango Central Hospital; Kyotango Japan
| | - Yukitoshi Kaizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Hirofumi Yurie
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Hisataka Takeuchi
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Sadaki Mitsuzawa
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Koji Yamamoto
- Department of Biomedical Engineering, Faculty of Life and Medical Sciences; Doshisha University; Kyotango Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine; Kyoto University; Kyoto Japan
| |
Collapse
|
15
|
Javadi H, Lotfi AS, Hosseinkhani S, Mehrani H, Amani J, Soheili ZS, Hojati Z, Kamali M. The combinational effect of E6/E7 siRNA and anti-miR-182 on apoptosis induction in HPV16-positive cervical cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:727-736. [PMID: 29873516 DOI: 10.1080/21691401.2018.1468770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the present research, we assumed that reducing the amounts of E6 and E7 oncoproteins by a specific siRNA sequence and recovering p53 and RB proteins, along with the recovery of the FOXO1 protein by applying anti-miR-182, would increase apoptosis and reduce proliferation rate in cancer cells. The HPV16-positive CaSki cervical cancer cell line was used. 48 hours after transfection of siRNA for targeting E6 and E7 oncoproteins and anti-miR-182, expression of its cellular targets p53, p21 and FOXO1 was assessed by real-time PCR, western blot analysis and immunocytofluorescence staining. In all treatments, apoptosis rate and viability were evaluated using Annexin-V-FITC apoptosis detection kits and MTT assays, respectively. Among the designed siRNAs, E6-1 and E7-2 proved the most effective in reducing E6 and E7 expressions by increasing the apoptotic rates to 12.4% and 16%, respectively, after 48 hours. Also, using anti-miR-182 increased apoptotic rate to 12.7% 48 hours after transfection of cervical cancer cells. The combinational use of either E6-1 or E7-2 siRNAs with anti-miR-182 resulted in a rise in apoptosis to 19.3% and 26%, respectively, higher than those obtained from the individual application of either without anti-miR-182. The simultaneous use of siRNA E6-1 and siRNA E7-2 with cisplatin increased sensitivity to cisplatin and reduced the viability of the cancer cells as compared to the use of cisplatin alone. The simultaneous use of cisplatin and anti-miR-182 had no considerable effect on viability or apoptosis rate compared to cisplatin alone.
Collapse
Affiliation(s)
- Hamidreza Javadi
- a Nanobiotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran.,b Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Abbas Sahebghadam Lotfi
- c Department of Clinical Biochemistry, Faculty of Medicine , Tarbiat Modares University , Tehran , Iran
| | - Saman Hosseinkhani
- d Department of Biochemistry, Faculty of Basic Sciences , Tarbiat Modares University , Tehran , Iran
| | - Hossein Mehrani
- e Department of Biochemistry, Faculty of Science , Islamic Azad University Branch of Neyshabur , Neyshabur , Iran
| | - Jafar Amani
- f Applied Microbiology Research Center, System Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Zahra Soheila Soheili
- b Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Zahra Hojati
- b Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Mehdi Kamali
- a Nanobiotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
16
|
Jia L, Luo S, Ren X, Li Y, Hu J, Liu B, Zhao L, Shan Y, Zhou H. miR-182 and miR-135b Mediate the Tumorigenesis and Invasiveness of Colorectal Cancer Cells via Targeting ST6GALNAC2 and PI3K/AKT Pathway. Dig Dis Sci 2017; 62:3447-3459. [PMID: 29030743 DOI: 10.1007/s10620-017-4755-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/07/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Metastasis is a leading cause of cancer-related death including colorectal cancer (CRC). MicroRNAs are known to regulate cancer pathways and to be expressed aberrantly in cancer. Aberrant sialylation is closely associated with malignant phenotype of tumor cells, including invasiveness and metastasis. AIM This study aimed to investigate the association of miR-182 and miR-135b with proliferation and invasion by targeting sialyltransferase ST6GALNAC2 in CRC cells and explore the potential molecular mechanism. METHODS We measured the levels of miR-182, miR-135b, and ST6GALNAC2 in a series of CRC cell lines and tissues using real-time PCR. Bioinformatics analysis and luciferase reporter assay were performed to test the direct binding of miR-182 and miR-135b to the target gene ST6GALNAC2. We also analyzed the possible role of miR-182/-135b on colony formation, wound healing, invasion, and tube formation. RESULTS The expression of miR-182 and miR-135b was higher in tumor tissues compared to adjacent noncancerous tissues of CRC patients, as well as up-regulated in SW620 cells than in SW480 cells with different metastatic potential. By applying bioinformatics analysis and luciferase reporter assay, we identified ST6GALNAC2 as the direct target of miR-182/-135b. Furthermore, miR-182/-135b inhibited significantly ST6GALNAC2 expression, and consistently, ST6GALNAC2 mediated migration, adhesion, invasion, proliferation, and tumor angiogenesis in CRC cell lines. Additionally, PI3K/AKT signaling pathway was regulated by miR-182/135b, which was partially blocked by altered level of ST6GALNAC2 in CRC. CONCLUSIONS The miR-182/-135b/ST6GALNAC2/PI3K/AKT axis may serve as a predictive biomarker and a potential therapeutic target in CRC treatment.
Collapse
Affiliation(s)
- Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China.
| | - Shihua Luo
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
- Department of Traumatology, Shanghai Ruijin Hospital, Jiaotong University, Shanghai, 200025, China
| | - Xiang Ren
- College of Stomatology, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yang Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Jialei Hu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Bing Liu
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Yujia Shan
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| | - Huimin Zhou
- College of Laboratory Medicine, Dalian Medical University, Dalian, 116044, Liaoning Province, China
| |
Collapse
|
17
|
Ma Z, Wu X, Xu B, Jiang H, Tang P, Yue J, Ma M, Chen C, Zhang H, Yu Z. Development of a novel biomarker model for predicting preoperative lymph node metastatic extent in esophageal squamous cell carcinoma 1. Oncotarget 2017; 8:105790-105799. [PMID: 29285292 PMCID: PMC5739679 DOI: 10.18632/oncotarget.22399] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022] Open
Abstract
The number and range of lymph node metastasis (LNM) are critical prognostic factors in esophageal squamous cell carcinoma (ESCC). Preoperative serum biomarkers are reported to be associated with LNM. However, whether these markers can precisely predict the extent of LNM is not known. The aim of this study was to evaluate the predictive value of preoperative serum SCC-Ag, Cyfra21-1, CEA, CA19-9 and CA72-4 for LNM number and range by retrospectively investigating 577 ESCC patients undergone esophagectomy from 2007-2010. In this study, the positive rate of SCC-Ag and CA19-9 were associated with pN stage. Significant differences were found in CEA and CA19-9 between pN0-1 stage patients and pN2-3 stage patients. However, in subgroup analysis (patients with pN0-1), significant difference was found only in SCC-Ag between pN0 and pN1 stage patients (P=0.003). Middle thoracic ESCC patients were Chosen to analyze the correlation between the range of LNM and biomarkers. SCC-Ag was correlated with paraesophageal and paracardial lymph nodes, but not correlated with subcarinal and left gastric artery lymph nodes. Interestingly, the results of CEA were opposite to that of SCC-Ag. CA19-9 was associated with subcarinal and paracardial LNM (P=0.000, P=0.038). Based on the results, a model incorporated SCC-Ag, CEA and CA19-9 was constructed. The rate of patients with pN2-3 stage was 15.4% and 54.4% in group 1 and 4 of our model. In summary, SCC-Ag was associated with early lymph node metastatic stage, and CEA and CA19-9 have a close relationship with advanced lymph node metastatic stage. The model combining SCC-Ag, CEA and CA19-9 might help identify the preoperative extent of LNM for a subgroup of ESCC patients that can be benefited from neoadjuvant therapy.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Xianxian Wu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Bo Xu
- Department of Molecular Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hongjing Jiang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Peng Tang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Jie Yue
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Mingquan Ma
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Chuangui Chen
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Hongdian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| | - Zhentao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center of Cancer, Tianjin, China
| |
Collapse
|
18
|
Dong N, Wang W, Tian J, Xie Z, Lv B, Dai J, Jiang R, Huang D, Fang S, Tian J, Li H, Yu B. MicroRNA-182 prevents vascular smooth muscle cell dedifferentiation via FGF9/PDGFRβ signaling. Int J Mol Med 2017; 39:791-798. [PMID: 28259995 PMCID: PMC5360430 DOI: 10.3892/ijmm.2017.2905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/20/2017] [Indexed: 11/06/2022] Open
Abstract
The abnormal phenotypic transformation of vascular smooth muscle cells (SMCs) causes various proliferative vascular diseases. MicroRNAs (miRNAs or miRs) have been established to play important roles in SMC biology and phenotypic modulation. This study revealed that the expression of miR‑182 was markedly altered during rat vascular SMC phenotypic transformation in vitro. We aimed to investigate the role of miR‑182 in the vascular SMC phenotypic switch and to determine the potential molecular mechanisms involved. The expression of miR‑182 gene was significantly downregulated in cultured SMCs during dedifferentiation from a contractile to a synthetic phenotype. Conversely, the upregulation of miR‑182 increased the expression of SMC-specific contractile genes, such as α-smooth muscle actin, smooth muscle 22α and calponin. Additionally, miR‑182 overexpression potently inhibited SMC proliferation and migration under both basal conditions and under platelet-derived growth factor-BB stimulation. Furthermore, we identified fibroblast growth factor 9 (FGF9) as the target gene of miR‑182 for the phenotypic modulation of SMCs mediated through platelet-derived growth factor receptor β (PDGFRβ) signaling. These data suggest that miR‑182 may be a novel SMC phenotypic marker and a modulator that may be used to prevent SMC dedifferentiation via FGF9/PDGFRβ signaling.
Collapse
Affiliation(s)
- Nana Dong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wei Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zulong Xie
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bo Lv
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jiannan Dai
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Rui Jiang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Dan Huang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shaohong Fang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jiangtian Tian
- Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hulun Li
- Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
19
|
Spitschak A, Meier C, Kowtharapu B, Engelmann D, Pützer BM. MiR-182 promotes cancer invasion by linking RET oncogene activated NF-κB to loss of the HES1/Notch1 regulatory circuit. Mol Cancer 2017; 16:24. [PMID: 28122586 PMCID: PMC5267421 DOI: 10.1186/s12943-016-0563-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Background Dominant-activating mutations in the RET proto-oncogene, a receptor tyrosine kinase, are responsible for the development of medullary thyroid carcinoma (MTC) and causative for multiple endocrine neoplasia (MEN) type 2A and 2B. These tumors are highly aggressive with a high propensity for early metastasis and chemoresistance. This attribute makes this neoplasia an excellent model for probing mechanisms underlying cancer progression. Methods The expression level of miR-182 was measured in MTC tumor specimens and in TT cells by real-time RT-PCR. TT cells and modified NThy-ori 3.1 that stably express RETM918T were used to investigate RET-dependent regulation of miR-182. Identification and validation of miR-182 targets and pathways was accomplished with luciferase assays, qRT-PCR, Western blotting and immunofluorescence. In vitro, overexpression and knockdown experiments were carried out to examine the impact of miR-182 and HES1 on invasion and migration. Results We found that miR-182 expression is significantly upregulated in MTC patient samples and tumor-derived cell lines harboring mutated RET. Inhibition of RET oncogenic signaling through a dominant-negative RET∆TK mutant in TT cells reduces miR-182, whereas overexpression of RETM918T in NThy-ori 3.1 cells increases miR-182 levels. We further show that overexpression of this miRNA in NThy.miR-182 cells promotes the invasive and migratory properties without affecting cell proliferation. MiR-182 is upregulated after RET induced NF-κB translocation into the nucleus via binding of NF-κB to the miR-182 promoter. Database analysis revealed that HES1, a repressor of the Notch pathway, is a target of miR-182, whose upregulation correlates with loss of HES1 transcription in MTC tissue samples and mutant RET cell lines. Moreover, we demonstrated that the 3′UTR of the HES1 mRNA bearing the targeting sequence for miR-182 clearly reduced luciferase reporter activity in cells expressing miR-182. Decreased expression of HES1 promotes migration by upregulating Notch1 inhibitor Deltex1 and consequent repression of Notch1. Conclusion We demonstrate a novel mechanism for MTC aggressiveness in which mutated RET/NF-κB-driven expression of miR-182 impedes HES1 activation in a negative feedback loop. This observation might open new possibilities to treat RET oncogene associated metastatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0563-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Claudia Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Bhavani Kowtharapu
- Current address: Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany.
| |
Collapse
|
20
|
Martinez-Ruiz H, Illa-Bochaca I, Omene C, Hanniford D, Liu Q, Hernando E, Barcellos-Hoff MH. A TGFβ-miR-182-BRCA1 axis controls the mammary differentiation hierarchy. Sci Signal 2016; 9:ra118. [PMID: 27923913 DOI: 10.1126/scisignal.aaf5402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Maintenance of mammary functional capacity during cycles of proliferation and regression depends on appropriate cell fate decisions of mammary progenitor cells to populate an epithelium consisting of secretory luminal cells and contractile myoepithelial cells. It is well established that transforming growth factor-β (TGFβ) restricts mammary epithelial cell proliferation and that sensitivity to TGFβ is decreased in breast cancer. We show that TGFβ also exerts control of mammary progenitor self-renewal and lineage commitment decisions by stringent regulation of breast cancer associated 1 (BRCA1), which controls stem cell self-renewal and lineage commitment. Either genetic depletion of Tgfb1 or transient blockade of TGFβ increased self-renewal of mammary progenitor cells in mice, cultured primary mammary epithelial cells, and also skewed lineage commitment toward the myoepithelial fate. TGFβ stabilized the abundance of BRCA1 by reducing the abundance of microRNA-182 (miR-182). Ectopic expression of BRCA1 or antagonism of miR-182 in cultured TGFβ-deficient mammary epithelial cells restored luminal lineage commitment. These findings reveal that TGFβ modulation of BRCA1 directs mammary epithelial cell fate and, because stem or progenitor cells are thought to be the cell of origin for aggressive breast cancer subtypes, suggest that TGFβ dysregulation during tumorigenesis may promote distinct breast cancer subtypes.
Collapse
Affiliation(s)
- Haydeliz Martinez-Ruiz
- Department of Radiation Oncology, New York University School of Medicine, 450 East 29th Street, New York, NY 10016, USA
| | - Irineu Illa-Bochaca
- Department of Radiation Oncology, New York University School of Medicine, 450 East 29th Street, New York, NY 10016, USA
| | - Coral Omene
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Douglas Hanniford
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Qi Liu
- Department of Radiation Oncology, University of California, San Francisco, 2840 Sutter Street, San Francisco, CA 94143, USA
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, 450 East 29th Street, New York, NY 10016, USA. .,Department of Radiation Oncology, University of California, San Francisco, 2840 Sutter Street, San Francisco, CA 94143, USA
| |
Collapse
|
21
|
Xiao J, Zou Y, Lu X, Xie B, Yu Q, He B, He B, Chen Q. Prognostic value of decreased microRNA-133a in solid cancers: a meta-analysis. Onco Targets Ther 2016; 9:5771-5779. [PMID: 27703375 PMCID: PMC5036562 DOI: 10.2147/ott.s112358] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Increasing evidence indicates that the decreased expression of microRNA-133a (miR-133a) may be correlated with poor survival for cancer patients. Thus, we performed this meta-analysis to evaluate the prognostic value of decreased miR-133a in solid cancers. METHODS Eligible studies were gathered by searching on PubMed, Web of Science, and Embase. Using the STATA 12.0 software, the pooled hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) for total and subgroup analyses were calculated to investigate the possible correlation between decreased miR-133a and overall survival (OS) of patients with cancer. RESULTS Ten studies were enrolled in this meta-analysis. The pooled result showed that decreased expression of miR-133a predicted poor OS in solid cancer patients (HR =1.62, 95% CI: 1.16-2.24, P=0.004). Compared with the total pooled HR, further analyses indicated that the subgroups of digestive system neoplasms (HR =1.73, 95% CI: 1.20-2.51, P=0.003), frozen tissue preservation (HR =1.89, 95% CI: 1.41-2.53, P<0.001), and multivariate analysis (HR =2.07, 95% CI: 1.42-3.02, P<0.001) exhibited stronger connection between decreased miR-133a expression and OS outcome. CONCLUSION This meta-analysis suggested that decreased miR-133a was associated with poor OS in patients with solid cancer. Because of the data in our study are limited, additional studies are required to verify the poor prognosis of decreased miR-133a in solid tumors.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Yong Zou
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Xiaoxiao Lu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Bin Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Qiao Yu
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Baimei He
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Bixiu He
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|