1
|
Zhang X, Shi L, Xing M, Li C, Ma F, Ma Y, Ma Y. Interplay between lncRNAs and the PI3K/AKT signaling pathway in the progression of digestive system neoplasms (Review). Int J Mol Med 2025; 55:15. [PMID: 39513614 PMCID: PMC11573320 DOI: 10.3892/ijmm.2024.5456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Long non‑coding RNA (lncRNA) is a class of non‑coding RNA molecules located in the cytoplasm or nucleus, which can regulate chromosome structure and function by interacting with DNA, RNA, proteins and other molecules; binding to mRNA bases in a complementary manner, affecting the splicing, stabilization, translation and degradation of mRNA; acting as competing endogenous RNA competitively binds to microRNAs to regulate gene expression and participate in the regulation of various vital activities of the body. The PI3K/AKT signalling pathway plays a key role in numerous biological and cellular processes, such as cell proliferation, invasion, migration and angiogenesis. It has been found that the lncRNA/PI3K/AKT axis regulates the expression of cancer‑related genes and thus tumour progression. The abnormal regulation of lncRNA expression in the lncRNA/PI3K/AKT axis is clearly associated with clinicopathological features and plays an important role in regulating biological functions. In the present review, the expression and biological functions of PI3K/AKT‑related lncRNAs both in vitro and in vivo over recent years, were comprehensively summarized and analyzed. Their correlation with clinicopathological features was also evaluated, with the objective of furnishing a solid theoretical foundation for clinical diagnosis and the monitoring of efficacy in digestive system neoplasms. The present review aimed to provide a comprehensive overview of the expression and biological functions of PI3K/AKT‑related lncRNAs in digestive system neoplasms and to assess their correlation with clinicopathological features. This endeavor seeks to establish a solid theoretical foundation for the clinical diagnosis and efficacy monitoring of digestive system tumors.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Chunjing Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Fengjun Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
2
|
Zhang Y, Zhang H, Liu J, Sun J, Xu Y, Shi N, Zhang H, Yan J, Chen J, Wang H, Yu T. Tuina alleviates the muscle atrophy induced by sciatic nerve injury in rats through regulation of PI3K/Akt signaling. J Orthop Surg Res 2024; 19:892. [PMID: 39736730 DOI: 10.1186/s13018-024-05270-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Tuina is an effective treatment for the decrease of skeletal muscle atrophy after peripheral nerve injury. However, the underlying mechanism of action remains unclear. This study aimed to explore the underlying mechanisms of tuina in rats with sciatic nerve injury (SNI). METHODS We established an SNI rat model. After Tuina intervention, curative effects were evaluated by behavioral assessment, nerve function index, and muscle atrophy index (MAI). Pathological changes were observed by transmission electron microscopy and immunofluorescence. Insulin-like growth factor 1 (IGF-1), forkhead box O (FoxO) and p-FoxO levels were detected using enzyme-linked immunosorbent assay. Western blotting was performed to detect the expression of proteins involved in the PI3K/AKT signaling pathway. RESULT Behavioral assessment, nerve function index, and MAI revealed that the tuina had significantly improved muscle atrophy after SNI compared with the SNI model group. Transmission electron microscopy showed that tuina improved muscle ultramicrostructure. CD31 immunofluorescence revealed that tuina improved microcirculation. Furthermore, we observed that tuina differentially regulated the levels of IGF-1, FoxO and p-FoxO, and the protein expression of p-Phosphoinositide 3-kinase (p-PI3K), p-AKT, and vascular endothelial growth factor in the anterior tibial muscle and soleus muscles. CONCLUSION Tuina could effectively inhibit skeletal muscle atrophy via the microcirculation pathway in a rat model of SNI by regulating the expression of IGF-1 and FoxO. The underlying mechanism of action may involve the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yingqi Zhang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Hanyu Zhang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jiayue Liu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jiawei Sun
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Yue Xu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Narentuya Shi
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Hongzheng Zhang
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jiawang Yan
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Jinping Chen
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Hourong Wang
- Department of Acupuncture and Massage, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| | - Tianyuan Yu
- School of Acupuncture, Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
3
|
Jiang Q, Xiao J, Hsieh YC, Kumar NL, Han L, Zou Y, Li H. The Role of the PI3K/Akt/mTOR Axis in Head and Neck Squamous Cell Carcinoma. Biomedicines 2024; 12:1610. [PMID: 39062182 PMCID: PMC11274428 DOI: 10.3390/biomedicines12071610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies globally, representing a significant public health problem with a poor prognosis. The development of efficient therapeutic strategies for HNSCC prevention and treatment is urgently needed. The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved transduction network in eukaryotic cells that promotes cell survival, growth, and cycle progression. Dysfunction in components of this pathway, such as hyperactivity of PI3K, loss of PTEN function, and gain-of-function mutations in AKT, are well-known drivers of treatment resistance and disease progression in cancer. In this review, we discuss the major mutations and dysregulations in the PAM signaling pathway in HNSCC. We highlight the results of clinical trials involving inhibitors targeting the PAM signaling pathway as a strategy for treating HNSCC. Additionally, we examine the primary mechanisms of resistance to drugs targeting the PAM pathway and potential therapeutic strategies.
Collapse
Affiliation(s)
- Qian Jiang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Jingyi Xiao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| | - Yao-Ching Hsieh
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Neha Love Kumar
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Lei Han
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| | - Yuntao Zou
- Division of Hospital Medicine, University of California, San Francisco, CA 94158, USA
| | - Huang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| |
Collapse
|
4
|
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. Targeting the PI3K/AKT signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials (2020-2023). Expert Opin Ther Pat 2024; 34:141-158. [PMID: 38557273 DOI: 10.1080/13543776.2024.2338100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed. AREA COVERED This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023. EXPERT OPINION To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Center for Epidemics and Communicable Disease Control (JCDC), Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Haizhen A Zhong
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
5
|
Chang CZ, Wu SC, Kwan AL, Hwang SL, Howng SL. Retraction Note: Magnesium lithospermate B alleviates the production of endothelin-1 through an NO-dependent mechanism and reduces experimental vasospasm in rats. Acta Neurochir (Wien) 2024; 166:19. [PMID: 38231314 DOI: 10.1007/s00701-024-05906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Affiliation(s)
- Chih-Zen Chang
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China.
- Department of Neurosurgery, Kaohsiung Medical University Hospital, No. 100, Tzyou 1St Road, Kaohsiung, Taiwan, Republic of China.
- Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan, Republic of China.
| | - Shu-Chuan Wu
- Department of Neurosurgery, Kaohsiung Medical University Hospital, No. 100, Tzyou 1St Road, Kaohsiung, Taiwan, Republic of China
| | - Aij-Lie Kwan
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Neurosurgery, Kaohsiung Medical University Hospital, No. 100, Tzyou 1St Road, Kaohsiung, Taiwan, Republic of China
| | - Shi-Lin Hwang
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Neurosurgery, Kaohsiung Medical University Hospital, No. 100, Tzyou 1St Road, Kaohsiung, Taiwan, Republic of China
| | - Shen-Long Howng
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
- Department of Neurosurgery, Kaohsiung Medical University Hospital, No. 100, Tzyou 1St Road, Kaohsiung, Taiwan, Republic of China
| |
Collapse
|
6
|
Chang CZ, Wu SC, Lin CL, Kwan AL. Retraction Note: Valproic acid attenuates intercellular adhesion molecule-1 and E-selectin through a chemokine ligand 5 dependent mechanism and subarachnoid hemorrhage induced vasospasm in a rat model. J Inflamm (Lond) 2023; 20:45. [PMID: 38124080 PMCID: PMC10734069 DOI: 10.1186/s12950-023-00370-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1186/s12950-015-0074-3.
Collapse
Affiliation(s)
- Chih-Zen Chang
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan.
- Department of Surgery, Kaohsiung Municipal Ta Tung Hospital, Kaohsiung, Taiwan.
| | - Shu-Chuan Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan
| | - Aij-Lie Kwan
- Department of Surgery, Faculty of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, No.100, Tzyou 1st Road, Kaohsiung, Taiwan
| |
Collapse
|
7
|
Thapa K, Shivam K, Khan H, Kaur A, Dua K, Singh S, Singh TG. Emerging Targets for Modulation of Immune Response and Inflammation in Stroke. Neurochem Res 2023; 48:1663-1690. [PMID: 36763312 DOI: 10.1007/s11064-023-03875-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
The inflammatory and immunological responses play a significant role after stroke. The innate immune activation stimulated by microglia during stroke results in the migration of macrophages and lymphocytes into the brain and are responsible for tissue damage. The immune response and inflammation following stroke have no defined targets, and the intricacies of the immunological and inflammatory processes are only partially understood. Innate immune cells enter the brain and meninges during the acute phase, which can cause ischemia damage. Activation of systemic immunity is caused by danger signals sent into the bloodstream by injured brain cells, which is followed by a significant immunodepression that encourages life-threatening infections. Neuropsychiatric sequelae, a major source of post-stroke morbidity, may be induced by an adaptive immune response that is initiated by antigen presentation during the chronic period and is directed against the brain. Thus, the current review discusses the role of immune response and inflammation in stroke pathogenesis, their role in the progression of injury during the stroke, and the emerging targets for the modulation of the mechanism of immune response and inflammation that may have possible therapeutic benefits against stroke.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.,School of Pharmacy, Chitkara University, Rajpura, Himachal Pradesh, 174103, India
| | - Kumar Shivam
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.,Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Sachin Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
8
|
Identification of Potential Molecular Targets and Active Ingredients of Mingmu Dihuang Pill for the Treatment of Diabetic Retinopathy Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2896185. [DOI: 10.1155/2022/2896185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 10/27/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022]
Abstract
Objective. Mingmu Dihuang Pill (MMDHP) is a traditional Chinese formula that has shown remarkable improvements of dry eyes, tearing, and blurry vision; however, the mechanisms underlying MMDHP treatment for diabetic retinopathy have not been fully understood. This study is aimed at identifying the molecular targets and active ingredients of MMDHP for the treatment of diabetic retinopathy based on network pharmacology. Methods. All active ingredients of MMDHP were retrieved from TCMSP and BATMAN-TCM databases, and the targets of active ingredients of MMDHP were predicted on the SwissTargetPrediction website. Diabetic retinopathy-related target sets were retrieved from GeneCards and OMIM databases, and the intersecting targets between targets of active ingredients of MMDHP and potential therapeutic targets of diabetic retinopathy were collected to generate the traditional Chinese medicine-ingredient-target-diabetic retinopathy network and to create the protein-protein interaction network. In addition, GO terms and KEGG pathway enrichment analyses were performed to identify the potential pathways, and molecular docking was employed to verify the binding of active ingredients of MMDHP to key targets of diabetic retinopathy. Results. Network pharmacology predicted 183 active ingredients and 904 targets from MMDHP, and 203 targets were intersected with the therapeutic targets of diabetic retinopathy. The top 10 hub targets included PIK3RA, TP53, SRC, JUN, HRAS, AKT1, VEGFA, EGFR, ESR1, and PI3KCA. GO terms and KEGG pathway enrichment analyses identified AGE-RAGE, PI3K-AKT, and Rap1 signaling pathways as major pathways involved in MMDHP treatment for diabetic retinopathy. Molecular docking confirmed a good binding affinity of active ingredients of MMDHP, including luteolin, acacetin, naringenin, and alisol B, with AKT1, SRC, and VEGFA as the three key targets of diabetic retinopathy. Conclusion. MMDHP may be effective for the treatment of diabetic retinopathy through active ingredients luteolin, acacetin, naringenin, and alisol B via AKT1, SRC, and VEGFA in AGE-RAGE, PI3K-AKT, and Rap1 signaling pathways.
Collapse
|
9
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
10
|
Falsetti L, Viticchi G, Zaccone V, Guerrieri E, Moroncini G, Luzzi S, Silvestrini M. Shared Molecular Mechanisms among Alzheimer’s Disease, Neurovascular Unit Dysfunction and Vascular Risk Factors: A Narrative Review. Biomedicines 2022; 10:biomedicines10020439. [PMID: 35203654 PMCID: PMC8962428 DOI: 10.3390/biomedicines10020439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia, affecting 24 million individuals. Clinical and epidemiological studies have found several links between vascular risk factors (VRF), neurovascular unit dysfunction (NVUd), blood-brain barrier breakdown (BBBb) and AD onset and progression in adulthood, suggesting a pathogenetic continuum between AD and vascular dementia. Shared pathways between AD, VRF, and NVUd/BBB have also been found at the molecular level, underlining the strength of this association. The present paper reviewed the literature describing commonly shared molecular pathways between adult-onset AD, VRF, and NVUd/BBBb. Current evidence suggests that VRF and NVUd/BBBb are involved in AD neurovascular and neurodegenerative pathology and share several molecular pathways. This is strongly supportive of the hypothesis that the presence of VRF can at least facilitate AD onset and progression through several mechanisms, including NVUd/BBBb. Moreover, vascular disease and several comorbidities may have a cumulative effect on VRF and worsen the clinical manifestations of AD. Early detection and correction of VRF and vascular disease by improving NVUd/BBBd could be a potential target to reduce the overall incidence and delay cognitive impairment in AD.
Collapse
Affiliation(s)
- Lorenzo Falsetti
- Internal and Subintensive Medicine Department, Azienda Ospedaliero-Universitaria “Ospedali Riuniti” di Ancona, 60100 Ancona, Italy;
- Correspondence: ; Tel.: +39-071-596-5269
| | - Giovanna Viticchi
- Neurologic Clinic, Marche Polytechnic University, 60126 Ancona, Italy; (G.V.); (S.L.); (M.S.)
| | - Vincenzo Zaccone
- Internal and Subintensive Medicine Department, Azienda Ospedaliero-Universitaria “Ospedali Riuniti” di Ancona, 60100 Ancona, Italy;
| | - Emanuele Guerrieri
- Emergency Medicine Residency Program, Università Politecnica delle Marche, 60121 Ancona, Italy;
| | | | - Simona Luzzi
- Neurologic Clinic, Marche Polytechnic University, 60126 Ancona, Italy; (G.V.); (S.L.); (M.S.)
| | - Mauro Silvestrini
- Neurologic Clinic, Marche Polytechnic University, 60126 Ancona, Italy; (G.V.); (S.L.); (M.S.)
| |
Collapse
|
11
|
Rascio F, Spadaccino F, Rocchetti MT, Castellano G, Stallone G, Netti GS, Ranieri E. The Pathogenic Role of PI3K/AKT Pathway in Cancer Onset and Drug Resistance: An Updated Review. Cancers (Basel) 2021; 13:3949. [PMID: 34439105 PMCID: PMC8394096 DOI: 10.3390/cancers13163949] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
The PI3K/AKT pathway is one of the most frequently over-activated intracellular pathways in several human cancers. This pathway, acting on different downstream target proteins, contributes to the carcinogenesis, proliferation, invasion, and metastasis of tumour cells. A multi-level impairment, involving mutation and genetic alteration, aberrant regulation of miRNAs sequences, and abnormal phosphorylation of cascade factors, has been found in multiple cancer types. The deregulation of this pathway counteracts common therapeutic strategies and contributes to multidrug resistance. In this review, we underline the involvement of this pathway in patho-physiological cell survival mechanisms, emphasizing its key role in the development of drug resistance. We also provide an overview of the potential inhibition strategies currently available.
Collapse
Affiliation(s)
- Federica Rascio
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Federica Spadaccino
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Maria Teresa Rocchetti
- Cell Biology Unit, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Giuseppe Castellano
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giovanni Stallone
- Nephrology Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.C.); (G.S.)
| | - Giuseppe Stefano Netti
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| | - Elena Ranieri
- Clinical Pathology Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (G.S.N.); (E.R.)
| |
Collapse
|
12
|
Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10:54. [PMID: 32266056 PMCID: PMC7110906 DOI: 10.1186/s13578-020-00416-0] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
The PI3 K/AKT/mTOR signalling pathway plays an important role in the regulation of signal transduction and biological processes such as cell proliferation, apoptosis, metabolism and angiogenesis. Compared with those of other signalling pathways, the components of the PI3K/AKT/mTOR signalling pathway are complicated. The regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway are important in many human diseases, including ischaemic brain injury, neurodegenerative diseases, and tumours. PI3K/AKT/mTOR signalling pathway inhibitors include single-component and dual inhibitors. Numerous PI3K inhibitors have exhibited good results in preclinical studies, and some have been clinically tested in haematologic malignancies and solid tumours. In this review, we briefly summarize the results of research on the PI3K/AKT/mTOR pathway and discuss the structural composition, activation, communication processes, regulatory mechanisms and biological functions of the PI3K/AKT/mTOR signalling pathway in the pathogenesis of neurodegenerative diseases and tumours.
Collapse
Affiliation(s)
- Fei Xu
- Department of Microbiology and Immunology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Rd, Shanghai, 201318 China
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Lixin Na
- Collaborative Innovation Center of Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Yanfei Li
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| | - Linjun Chen
- Department of Inspection and Quarantine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318 China
| |
Collapse
|
13
|
Lee MG, Lee KS, Nam KS. Anti‑metastatic effects of arctigenin are regulated by MAPK/AP‑1 signaling in 4T‑1 mouse breast cancer cells. Mol Med Rep 2020; 21:1374-1382. [PMID: 32016480 DOI: 10.3892/mmr.2020.10937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/29/2019] [Indexed: 11/06/2022] Open
Abstract
Arctigenin is a natural lignan that is found in burdock with anti‑viral, ‑oxidative, ‑inflammatory and anti‑tumor activities. In the current study, the effect of arctigenin on metastatic potential was examined in 4T‑1 mouse triple‑negative breast cancer cells. The results indicated that arctigenin inhibited cell motility and invasiveness, which was determined using wound healing and transwell invasion assays. Arctigenin suppressed matrix metalloprotease‑9 (MMP‑9) activity via gelatin zymography, and protein expression of cyclooxygenase‑2 (COX‑2) and MMP‑3. Furthermore, arctigenin attenuated the mRNA expression of metastatic factors, including MMP‑9, MMP‑3 and COX‑2. Based on these results, the effect of arctigenin on the mitogen‑activated protein kinase (MAPK)/activating protein‑1 (AP‑1) signaling pathway was assessed in an attempt to identify the regulatory mechanism responsible for its anti‑metastatic effects. Arctigenin was demonstrated to inhibit the phosphorylation of extracellular signal‑regulated protein kinase (ERK) and c‑Jun N‑terminal kinase (JNK), and the nuclear translocations of the AP‑1 subunits, c‑Jun and c‑Fos. In summary, the present study demonstrated that in 4T‑1 mouse triple‑negative breast cancer cells the anti‑metastatic effect of arctigenin is mediated by the inhibition of MMP‑9 activity and by the inhibition of the metastasis‑enhancing factors MMP‑9, MMP‑3 and COX‑2, due to the suppression of the MAPK/AP‑1 signaling pathway. The results of the current study demonstrated that arctigenin exhibits a potential for preventing cell migration and invasion in triple negative breast cancer.
Collapse
Affiliation(s)
- Min-Gu Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kyu-Shik Lee
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
14
|
Wang D, Bădărau AS, Swamy MK, Shaw S, Maggi F, da Silva LE, López V, Yeung AWK, Mocan A, Atanasov AG. Arctium Species Secondary Metabolites Chemodiversity and Bioactivities. FRONTIERS IN PLANT SCIENCE 2019; 10:834. [PMID: 31338098 PMCID: PMC6629911 DOI: 10.3389/fpls.2019.00834] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Arctium species are known for a variety of pharmacological effects due to their diverse volatile and non-volatile secondary metabolites. Representatives of Arctium species contain non-volatile compounds including lignans, fatty acids, acetylenic compounds, phytosterols, polysaccharides, caffeoylquinic acid derivatives, flavonoids, terpenes/terpenoids and volatile compounds such as hydrocarbons, aldehydes, methoxypyrazines, carboxylic and fatty acids, monoterpenes and sesquiterpenes. Arctium species also possess bioactive properties such as anti-cancer, anti-diabetic, anti-oxidant, hepatoprotective, gastroprotective, antibacterial, antiviral, antimicrobial, anti-allergic, and anti-inflammatory effects. This review aims to provide a complete overview of the chemistry and biological activities of the secondary metabolites found in therapeutically used Arctium species. Summary of pharmacopeias and monographs contents indicating the relevant phytochemicals and therapeutic effects are also discussed, along with possible safety considerations.
Collapse
Affiliation(s)
- Dongdong Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Alexandru Sabin Bădărau
- Department of Environmental Science, Faculty of Environmental Science and Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Mallappa Kumara Swamy
- Department of Biotechnology, East West First Grade College of Science, Bengaluru, India
| | - Subrata Shaw
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Luiz Everson da Silva
- Postgraduate Program in Sustainable Territorial Development, Federal University of Paraná, Curitiba, Brazil
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Andy Wai Kan Yeung
- Oral and Maxillofacial Radiology, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Atanas G. Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzębiec, Poland
- Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
15
|
Lin CY, Hsieh PL, Liao YW, Peng CY, Yu CC, Lu MY. Arctigenin Reduces Myofibroblast Activities in Oral Submucous Fibrosis by LINC00974 Inhibition. Int J Mol Sci 2019; 20:ijms20061328. [PMID: 30884781 PMCID: PMC6470833 DOI: 10.3390/ijms20061328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/18/2022] Open
Abstract
Oral submucous fibrosis (OSF) is an oral precancerous condition associated with the habit of areca nut chewing and the TGF-β pathway. Currently, there is no curative treatment to completely heal OSF, and it is imperative to alleviate patients’ symptoms and prevent it from undergoing malignant transformation. Arctigenin, a lignan extracted from Arctium lappa, has been reported to have a variety of pharmacological activities, including anti-fibrosis. In the present study, we examined the effect of arctigenin on the cell proliferation of buccal mucosal fibroblasts (BMFs) and fibrotic BMFs (fBMFs), followed by assessment of myofibroblast activities. We found that arctigenin was able to abolish the arecoline-induced collagen gel contractility, migration, invasion, and wound healing capacities of BMFs and downregulate the myofibroblast characteristics of fBMFs in a dose-dependent manner. Most importantly, the production of TGF-β in fBMFs was reduced after exposure to arctigenin, along with the suppression of p-Smad2, α-smooth muscle actin, and type I collagen A1. In addition, arctigenin was shown to diminish the expression of LINC00974, which has been proven to activate TGF-β/Smad signaling for oral fibrogenesis. Taken together, we demonstrated that arctigenin may act as a suitable adjunct therapy for OSF.
Collapse
Affiliation(s)
- Ching-Yeh Lin
- Division of Hematology/Oncology, Department of Internal Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan.
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Ming-Yi Lu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| |
Collapse
|
16
|
Sun J, Zhang Y, Lu J, Zhang W, Yan J, Yang L, Zhou C, Liu R, Chen C. Salvinorin A ameliorates cerebral vasospasm through activation of endothelial nitric oxide synthase in a rat model of subarachnoid hemorrhage. Microcirculation 2019; 25:e12442. [PMID: 29377443 DOI: 10.1111/micc.12442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE This study aimed to demonstrate the potential of salvinorin A (SA) for cerebral vasospasm after subarachnoid hemorrhage (SAH) and investigate mechanisms of therapeutic effect using rat SAH model. METHODS Salvinorin A was injected intraperitoneally, and the neurobehavioral changes were observed at 12 hours, 24 hours, 48 hours, and 72 hours after SAH. Basilar artery was observed by magnetic resonance imaging (MRI). The inner diameter and thickness of basilar artery were measured. The morphological changes and the apoptosis in CA1 area of hippocampus were detected. Endothelin-1 (ET-1) and nitric oxide (NO) levels were detected by ELISA kit. The protein expression of endothelial NO synthase (eNOS) and aquaporin-4 (AQP-4) was determined by Western blot for potential mechanism exploration. RESULTS Salvinorin A administration could relieve neurological deficits, decrease the neuronal apoptosis, and alleviate the morphological changes in CA1 area of hippocampus. SA alleviated CVS by increasing diameter and decreasing thickness of basilar artery, and such changes were accompanied by the decreased concentration of ET-1 and increased level of NO. Meanwhile, SA increased the expression of eNOS and decreased the expression of AQP-4 protein in the basilar artery and hippocampus. CONCLUSIONS Salvinorin A attenuated CVS and alleviated brain injury after SAH via increasing expression of eNOS and NO content, and decreasing ET-1 concentration and AQP-4 protein expression.
Collapse
Affiliation(s)
- Juan Sun
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jianfei Lu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weiguang Zhang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junhao Yan
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lei Yang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Changman Zhou
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chunhua Chen
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
17
|
Lu Z, Chang L, Du Q, Huang Y, Zhang X, Wu X, Zhang J, Li R, Zhang Z, Zhang W, Zhao X, Tong D. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway. Front Pharmacol 2018; 9:475. [PMID: 29867481 PMCID: PMC5962800 DOI: 10.3389/fphar.2018.00475] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/23/2018] [Indexed: 01/08/2023] Open
Abstract
Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L., has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS) production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126). Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.
Collapse
Affiliation(s)
- Zheng Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xingchen Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruizhen Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zelin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
Leclerc JL, Garcia JM, Diller MA, Carpenter AM, Kamat PK, Hoh BL, Doré S. A Comparison of Pathophysiology in Humans and Rodent Models of Subarachnoid Hemorrhage. Front Mol Neurosci 2018; 11:71. [PMID: 29623028 PMCID: PMC5875105 DOI: 10.3389/fnmol.2018.00071] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/20/2018] [Indexed: 01/03/2023] Open
Abstract
Non-traumatic subarachnoid hemorrhage (SAH) affects an estimated 30,000 people each year in the United States, with an overall mortality of ~30%. Most cases of SAH result from a ruptured intracranial aneurysm, require long hospital stays, and result in significant disability and high fatality. Early brain injury (EBI) and delayed cerebral vasospasm (CV) have been implicated as leading causes of morbidity and mortality in these patients, necessitating intense focus on developing preclinical animal models that replicate clinical SAH complete with delayed CV. Despite the variety of animal models currently available, translation of findings from rodent models to clinical trials has proven especially difficult. While the explanation for this lack of translation is unclear, possibilities include the lack of standardized practices and poor replication of human pathophysiology, such as delayed cerebral vasospasm and ischemia, in rodent models of SAH. In this review, we summarize the different approaches to simulating SAH in rodents, in particular elucidating the key pathophysiology of the various methods and models. Ultimately, we suggest the development of standardized model of rodent SAH that better replicates human pathophysiology for moving forward with translational research.
Collapse
Affiliation(s)
- Jenna L Leclerc
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Joshua M Garcia
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Matthew A Diller
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Anne-Marie Carpenter
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Pradip K Kamat
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Brian L Hoh
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Neurology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Abstract
Stroke is considered to be an acute cerebrovascular disease, including ischemic stroke and hemorrhagic stroke. The high incidence and poor prognosis of stroke suggest that it is a highly disabling and highly lethal disease which can pose a serious threat to human health. Nitric oxide (NO), a common gas in nature, which is often thought as a toxic gas, because of its intimate relationship with the pathological processes of many diseases, especially in the regulation of blood flow and cell inflammation. However, recent years have witnessed an increased interest that NO plays a significant and positive role in stroke as an essential gas signal molecule. In view of the fact that the neuroprotective effect of NO is closely related to its concentration, cell type and time, only in the appropriate circumstances can NO play a protective effect. The purpose of this review is to summarize the roles of NO in ischemic stroke and hemorrhagic stroke.
Collapse
Affiliation(s)
- Zhou-Qing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ru-Tao Mou
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Xia Feng
- Department of Scott & White Clinic-Temple, Temple, TX, USA
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|