1
|
Watz CG, Moacă EA, Cioca A, Șuta LM, Krauss Maldea L, Magyari-Pavel IZ, Nicolov M, Sîrbu IO, Loghin F, Dehelean CA. Cutaneous Evaluation of Fe 3O 4 Nanoparticles: An Assessment Based on 2D and 3D Human Epidermis Models Under Standard and UV Conditions. Int J Nanomedicine 2025; 20:3653-3670. [PMID: 40130196 PMCID: PMC11932040 DOI: 10.2147/ijn.s513423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Purpose The high-speed development of nanotechnology industry has fueled a plethora of engineered nanoparticles (NPs) and NP-based consumer products, further leading to massive and uncontrolled human exposure. In this regard, the researches addressing the safety assessment of NPs should be re-approached from the perspective of test parameters variety, closely simulating daily life scenarios. Therefore, the present study adopts complex in vitro models to establish the safety profile of Fe3O4 NPs, by using 2D and 3D human epidermis models under both standard and UV exposure conditions. Methods Advanced 3D human reconstructed epidermal tissues and two different monolayers of immortalized human cells (keratinocytes and fibroblasts), using series of in vitro assays were employed in the current study to evaluate multiple biological responses, as follows: i) divers protocols (skin irritation, phototoxicity assay); ii) different conditions (± UV exposure) and iii) a wide variety of quantification methods, such as: MTT, NR and LDH colorimetric tests - performed to evaluate the viability of the cells/microtissues, respectively, the cytotoxicity of the test compounds. In addition, IL-1α ELISA assay was used to quantify the inflammatory activity induced by the test samples, while immunocytochemistry analysis through fluorescent microscopy was employed to provide insightful information regarding the possible mechanism of action of test samples. Results The two test samples (S1 and S2) induced a higher cell viability decrease on immortalized human keratinocytes (HaCaT) compared to human fibroblasts (1BR3), while 3D-epidermis microtissues showed similar viabilities when treated with both samples under standard conditions (-UV rays) - for both type of evaluation protocols: skin irritation and phototoxicity. However, UV irradiation of 3D-microtissues pre-exposed to test samples led to different results between the two test samples, revealing that S2 sample induced a significant impairment of human epidermis viability, whereas S1 sample elicited an activity similar to the one recorded under standard conditions (-UV). Conclusion The present results indicate significant differences in toxicity between the two in vitro models under UV conditions, highlighting the importance of model selection and exposure parameters in assessing NP safety. Thus, our findings suggest that Fe3O4 NPs may pose some risks under specific environmental conditions, within the limitations of the experimental setup, and further research is needed to refine safety guidelines.
Collapse
Affiliation(s)
- Claudia Geanina Watz
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Center for Drug Data Analysis, Cheminformatics and the Internet of Medical Things, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Elena-Alina Moacă
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Andreea Cioca
- Department of Pathology “Regina Maria” Health Network, Timisoara, 300645, Romania
| | - Lenuța Maria Șuta
- Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Lavinia Krauss Maldea
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Ioana Zinuca Magyari-Pavel
- Department of Pharmacognosy-Phytotherapy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
- Research and Processing Center for Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Mirela Nicolov
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Center for Drug Data Analysis, Cheminformatics and the Internet of Medical Things, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| | - Ioan-Ovidiu Sîrbu
- Department of Biochemistry, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
- Complex Network Science Center, “Victor Babes” University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, 400012, Romania
| | - Cristina A Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Timisoara, 300041, Romania
| |
Collapse
|
2
|
Escamilla-Flores AV, Núñez-Anita RE, Arenas-Arrocena MC, Perez-Duran F, Calderón-Rico F, Santos-Cruz J, Acosta-Torres LS, Delgado-García JJ, Villanueva-Sánchez FG. Synthesis of biocompatible hydrogel of alginate-chitosan enriched with iron sulfide nanocrystals. SLAS Technol 2024; 29:100158. [PMID: 38908548 DOI: 10.1016/j.slast.2024.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
This work aimed to synthesize and characterize a biocompatible hydrogel of alginate and chitosan enriched with iron sulfide nanocrystals. Three concentrations of iron sulfide nanocrystals (FeS2NCs) 0.03905, 0.0781, and 0.2343 mg/ml were used. Gel swelling was determined using phosphate-buffered saline solution at 1, 2, 4, 6, 24, 48, and 72 h. The microstructure, the morphology, and the elastic strength were determined by optical microscopy, scanning electron microscopy, and rheological studies, respectively. The functional groups were identified through Fourier Transform Infrared spectroscopy. Biocompatibility was determined in a murine model; after seven days of subdermal inoculation, histological sections stained with H&E were analyzed, and then histopathological features were evaluated. All the compounds obtained showed a loss modulus lower than the storage modulus. The 0.2343 mg/ml FeS2NCs hydrogel showed higher swelling than the control. In the in vivo evaluation, no adverse effects were found. The presence of FeS2NCs was well tolerated in the subcutaneous tissue of mice, according to histopathological analysis. The hydrogels synthesized with added FeS2NCs demonstrate a swelling ratio of 150 %, rheologically exhibiting gel-like behavior rather than viscous liquids. Furthermore, they did not present any adverse effects on the subcutaneous tissue.
Collapse
Affiliation(s)
- Aish Valdemar Escamilla-Flores
- Escuela Nacional de Estudios Superiores, Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM no. 2011, Col. Predio El Saucillo y El Potrero, Guanajuato C. P. 37689, México
| | - Rosa Elvira Núñez-Anita
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Michoacana de San Nicolás de Hidalgo, Carretera Morelia-Zinapécuaro Km. 9.5, Tarímbaro C. P. 58893, México
| | - Ma Concepción Arenas-Arrocena
- Escuela Nacional de Estudios Superiores, Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM no. 2011, Col. Predio El Saucillo y El Potrero, Guanajuato C. P. 37689, México.
| | - Francisco Perez-Duran
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Michoacana de San Nicolás de Hidalgo, Carretera Morelia-Zinapécuaro Km. 9.5, Tarímbaro C. P. 58893, México
| | - Fernando Calderón-Rico
- Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Michoacana de San Nicolás de Hidalgo, Carretera Morelia-Zinapécuaro Km. 9.5, Tarímbaro C. P. 58893, México
| | - José Santos-Cruz
- Universidad Autónoma de Querétaro, Cerro de las Campanas s/n 76010, Querétaro, Mexico
| | - Laura Susana Acosta-Torres
- Escuela Nacional de Estudios Superiores, Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM no. 2011, Col. Predio El Saucillo y El Potrero, Guanajuato C. P. 37689, México.
| | - José Jorge Delgado-García
- División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León, Loma del Bosque 103, CP 37000, León, Gto, México
| | - Francisco Germán Villanueva-Sánchez
- Escuela Nacional de Estudios Superiores, Unidad León, Universidad Nacional Autónoma de México, Boulevard UNAM no. 2011, Col. Predio El Saucillo y El Potrero, Guanajuato C. P. 37689, México
| |
Collapse
|
3
|
Gu Y, Chen Q, Yin H, Zeng M, Gao S, Wang X. Cancer-associated fibroblasts in neoadjuvant setting for solid cancers. Crit Rev Oncol Hematol 2024; 193:104226. [PMID: 38056580 DOI: 10.1016/j.critrevonc.2023.104226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
Therapeutic approaches for cancer have become increasingly diverse in recent times. A comprehensive understanding of the tumor microenvironment (TME) holds great potential for enhancing the precision of tumor therapies. Neoadjuvant therapy offers the possibility of alleviating patient symptoms and improving overall quality of life. Additionally, it may facilitate the reduction of inoperable tumors and prevent potential preoperative micrometastases. Within the TME, cancer-associated fibroblasts (CAFs) play a prominent role as they generate various elements that contribute to tumor progression. Particularly, extracellular matrix (ECM) produced by CAFs prevents immune cell infiltration into the TME, hampers drug penetration, and diminishes therapeutic efficacy. Therefore, this review provides a summary of the heterogeneity and interactions of CAFs within the TME, with a specific focus on the influence of neoadjuvant therapy on the microenvironment, particularly CAFs. Finally, we propose several potential and promising therapeutic strategies targeting CAFs, which may efficiently eliminate CAFs to decrease stroma density and impair their functions.
Collapse
Affiliation(s)
- Yanan Gu
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China
| | - Qiangda Chen
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hanlin Yin
- Department of Pancreatic Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China
| | - Shanshan Gao
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China.
| | - Xiaolin Wang
- Department of Radiology, Zhongshan Hospital and Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, China; Department of Interventional Radiology, Zhongshan Hospital Fudan University Shanghai, 200032, China.
| |
Collapse
|
4
|
Zhang ZJ, Liu ZT, Huang YP, Nguyen W, Wang YX, Cheng L, Zhou H, Wen Y, Xiong L, Chen W. Magnetic resonance and fluorescence imaging superparamagnetic nanoparticles induce apoptosis and ferroptosis through photodynamic therapy to treat colorectal cancer. MATERIALS TODAY PHYSICS 2023; 36:101150. [DOI: 10.1016/j.mtphys.2023.101150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
|
5
|
Radoń A, Włodarczyk A, Sieroń Ł, Rost-Roszkowska M, Chajec Ł, Łukowiec D, Ciuraszkiewicz A, Gębara P, Wacławek S, Kolano-Burian A. Influence of the modifiers in polyol method on magnetically induced hyperthermia and biocompatibility of ultrafine magnetite nanoparticles. Sci Rep 2023; 13:7860. [PMID: 37188707 DOI: 10.1038/s41598-023-34738-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023] Open
Abstract
Magnetite nanoparticles (Fe3O4 NPs) are widely tested in various biomedical applications, including magnetically induced hyperthermia. In this study, the influence of the modifiers, i.e., urotropine, polyethylene glycol, and NH4HCO3, on the size, morphology, magnetically induced hyperthermia effect, and biocompatibility were tested for Fe3O4 NPs synthesized by polyol method. The nanoparticles were characterized by a spherical shape and similar size of around 10 nm. At the same time, their surface is functionalized by triethylene glycol or polyethylene glycol, depending on the modifiers. The Fe3O4 NPs synthesized in the presence of urotropine had the highest colloidal stability related to the high positive value of zeta potential (26.03 ± 0.55 mV) but were characterized by the lowest specific absorption rate (SAR) and intrinsic loss power (ILP). The highest potential in the hyperthermia applications have NPs synthesized using NH4HCO3, for which SAR and ILP were equal to 69.6 ± 5.2 W/g and 0.613 ± 0.051 nHm2/kg, respectively. Their application possibility was confirmed for a wide range of magnetic fields and by cytotoxicity tests. The absence of differences in toxicity to dermal fibroblasts between all studied NPs was confirmed. Additionally, no significant changes in the ultrastructure of fibroblast cells were observed apart from the gradual increase in the number of autophagous structures.
Collapse
Affiliation(s)
- Adrian Radoń
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland.
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland.
| | - Agnieszka Włodarczyk
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Łukasz Sieroń
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Łukasz Chajec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Dariusz Łukowiec
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland
| | - Agnieszka Ciuraszkiewicz
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland
| | - Piotr Gębara
- Department of Physics, Częstochowa University of Technology, Armii Krajowej 19, 42-200, Czestochowa, Poland
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Aleksandra Kolano-Burian
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland
| |
Collapse
|
6
|
Hosseini S, Mohammadnejad J, Salamat S, Beiram Zadeh Z, Tanhaei M, Ramakrishna S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: a review. MATERIALS TODAY CHEMISTRY 2023; 29:101400. [DOI: 10.1016/j.mtchem.2023.101400] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Zhao J, Dong Y, Zhang Y, Wang J, Wang Z. Biophysical heterogeneity of myeloid-derived microenvironment to regulate resistance to cancer immunotherapy. Adv Drug Deliv Rev 2022; 191:114585. [PMID: 36273512 DOI: 10.1016/j.addr.2022.114585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/25/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023]
Abstract
Despite the advances in immunotherapy for cancer treatment, patients still obtain limited benefits, mostly owing to unrestrained tumour self-expansion and immune evasion that exploits immunoregulatory mechanisms. Traditionally, myeloid cells have a dominantly immunosuppressive role. However, the complicated populations of the myeloid cells and their multilateral interactions with tumour/stromal/lymphoid cells and physical abnormalities in the tumour microenvironment (TME) determine their heterogeneous functions in tumour development and immune response. Tumour-associated myeloid cells (TAMCs) include monocytes, tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), and granulocytes. Single-cell profiling revealed heterogeneous TAMCs composition, sub-types, and transcriptomic signatures across 15 human cancer types. We systematically reviewed the biophysical heterogeneity of TAMC composition and pro/anti-tumoral and immuno-suppressive/stimulating properties of myeloid-derived microenvironments. We also summarised comprehensive clinical strategies to overcome resistance to immunotherapy from three dimensions: targeting TAMCs, reversing physical abnormalities, utilising nanomedicines, and finally, put forward futuristic perspectives for scientific and clinical research.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yiting Dong
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Yundi Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
8
|
Alves Feitosa K, de Oliveira Correia R, Maragno Fattori AC, Albuquerque YR, Brassolatti P, Flores Luna G, de Almeida Rodolpho JM, T Nogueira C, Cancino Bernardi J, Speglich C, de Freitas Anibal F. Toxicological effects of the mixed iron oxide nanoparticle (Fe 3O 4 NP) on murine fibroblasts LA-9. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:649-670. [PMID: 35469539 DOI: 10.1080/15287394.2022.2068711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The increase in large-scale production of magnetic nanoparticles (NP) associated with the incomplete comprehensive knowledge regarding the potential risks of their use on environmental and human health makes it necessary to study the biological effects of these particles on organisms at the cellular level. The aim of this study to examine the cellular effects on fibroblast lineage LA-9 after exposure to mixed iron oxide NP (Fe3O4 NP). The following analyses were performed: field emission gun-scanning electron microscopy (SEM-FEG), dynamic light scattering (DLS), zeta potential, ultraviolet/visible region spectroscopy (UV/VIS), and attenuated total reactance-Fourier transform infrared (ATR-FTIR) spectroscopy analyses for characterization of the NP. The assays included cell viability, morphology, clonogenic potential, oxidative stress as measurement of reactive oxygen species (ROS) and nitric oxide (NO) levels, cytokines quantification interleukin 6 (IL-6) and tumor necrosis factor (TNF), NP uptake, and cell death. The size of Fe3O4 NP was 26.3 nm when evaluated in water through DLS. Fe3O4 NP did not reduce fibroblast cell viability until the highest concentration tested (250 µg/ml), which showed a decrease in clonogenic potential as well as small morphological changes after exposure for 48 and 72 hr. The NP concentration of 250 µg/ml induced enhanced ROS and NO production after 24 hr treatment. The uptake assay exhibited time-dependent Fe3O4 NP internalization at all concentrations tested with no significant cell death. Hence, exposure of fibroblasts to Fe3O4 NP-induced oxidative stress but not reduced cell viability or death. However, the decrease in the clonogenic potential at the highest concentration demonstrates cytotoxic effects attributed to Fe3O4 NP which occurred on the 7th day after exposure.
Collapse
Affiliation(s)
- Karina Alves Feitosa
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Ricardo de Oliveira Correia
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Ana Carolina Maragno Fattori
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Yulli Roxenne Albuquerque
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Patricia Brassolatti
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Genoveva Flores Luna
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Joice Margareth de Almeida Rodolpho
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | | | - Juliana Cancino Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, Brazil
| | - Carlos Speglich
- Leopoldo Américo Miguez de Mello Research Center CENPES/Petrobras, Rio de Janeiro, Brazil
| | - Fernanda de Freitas Anibal
- Department of Morphology and Pathology, Inflammation and Infectious Diseases Laboratory, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
9
|
Yang M, Li J, Gu P, Fan X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact Mater 2020; 6:1973-1987. [PMID: 33426371 PMCID: PMC7773537 DOI: 10.1016/j.bioactmat.2020.12.010] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/04/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The tumor development and metastasis are closely related to the structure and function of the tumor microenvironment (TME). Recently, TME modulation strategies have attracted much attention in cancer immunotherapy. Despite the preliminary success of immunotherapeutic agents, their therapeutic effects have been restricted by the limited retention time of drugs in TME. Compared with traditional delivery systems, nanoparticles with unique physical properties and elaborate design can efficiently penetrate TME and specifically deliver to the major components in TME. In this review, we briefly introduce the substitutes of TME including dendritic cells, macrophages, fibroblasts, tumor vasculature, tumor-draining lymph nodes and hypoxic state, then review various nanoparticles targeting these components and their applications in tumor therapy. In addition, nanoparticles could be combined with other therapies, including chemotherapy, radiotherapy, and photodynamic therapy, however, the nanoplatform delivery system may not be effective in all types of tumors due to the heterogeneity of different tumors and individuals. The changes of TME at various stages during tumor development are required to be further elucidated so that more individualized nanoplatforms could be designed.
Collapse
Key Words
- AC-NPs, antigen-capturing nanoparticles
- ANG2, angiopoietin-2
- APCs, antigen-presenting cells
- Ab, antibodies
- Ag, antigen
- AuNCs, gold nanocages
- AuNPs, gold nanoparticles
- BBB, blood-brain barrier
- BTK, Bruton's tyrosine kinase
- Bcl-2, B-cell lymphoma 2
- CAFs, cancer associated fibroblasts
- CAP, cleavable amphiphilic peptide
- CAR-T, Chimeric antigen receptor-modified T-cell therapy
- CCL, chemoattractant chemokines ligand
- CTL, cytotoxic T lymphocytes
- CTLA4, cytotoxic lymphocyte antigen 4
- CaCO3, calcium carbonate
- Cancer immunotherapy
- DCs, dendritic cells
- DMMA, 2,3-dimethylmaleic anhydrid
- DMXAA, 5,6-dimethylxanthenone-4-acetic acid
- DSF/Cu, disulfiram/copper
- ECM, extracellular matrix
- EGFR, epidermal growth factor receptor
- EMT, epithelial-mesenchymal transition
- EPG, egg phosphatidylglycerol
- EPR, enhanced permeability and retention
- FAP, fibroblast activation protein
- FDA, the Food and Drug Administration
- HA, hyaluronic acid
- HB-GFs, heparin-binding growth factors
- HIF, hypoxia-inducible factor
- HPMA, N-(2-hydroxypropyl) methacrylamide
- HSA, human serum albumin
- Hypoxia
- IBR, Ibrutinib
- IFN-γ, interferon-γ
- IFP, interstitial fluid pressure
- IL, interleukin
- LMWH, low molecular weight heparin
- LPS, lipopolysaccharide
- M2NP, M2-like TAM dual-targeting nanoparticle
- MCMC, mannosylated carboxymethyl chitosan
- MDSCs, myeloid-derived suppressor cells
- MPs, microparticles
- MnO2, manganese dioxide
- NF-κB, nuclear factor κB
- NK, nature killer
- NO, nitric oxide
- NPs, nanoparticles
- Nanoparticles
- ODN, oligodeoxynucleotides
- PD-1, programmed cell death protein 1
- PDT, photodynamic therapy
- PFC, perfluorocarbon
- PHDs, prolyl hydroxylases
- PLGA, poly(lactic-co-glycolic acid)
- PS, photosensitizer
- PSCs, pancreatic stellate cells
- PTX, paclitaxel
- RBC, red-blood-cell
- RLX, relaxin-2
- ROS, reactive oxygen species
- SA, sialic acid
- SPARC, secreted protein acidic and rich in cysteine
- TAAs, tumor-associated antigens
- TAMs, tumor-associated macrophages
- TDPA, tumor-derived protein antigens
- TGF-β, transforming growth factor β
- TIE2, tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 2
- TIM-3, T cell immunoglobulin domain and mucin domain-3
- TLR, Toll-like receptor
- TME, tumor microenvironment
- TNF-α, tumor necrosis factor alpha
- TfR, transferrin receptor
- Tregs, regulatory T cells
- Tumor microenvironment
- UPS-NP, ultra-pH-sensitive nanoparticle
- VDA, vasculature disrupting agent
- VEGF, vascular endothelial growth factor
- cDCs, conventional dendritic cells
- melittin-NP, melittin-lipid nanoparticle
- nMOFs, nanoscale metal-organic frameworks
- scFv, single-chain variable fragment
- siRNA, small interfering RNA
- tdLNs, tumor-draining lymph nodes
- α-SMA, alpha-smooth muscle actin
Collapse
|
10
|
Dong W, Wu P, Qin M, Guo S, Liu H, Yang X, He W, Bouakaz A, Wan M, Zong Y. Multipotent miRNA Sponge-Loaded Magnetic Nanodroplets with Ultrasound/Magnet-Assisted Delivery for Hepatocellular Carcinoma Therapy. Mol Pharm 2020; 17:2891-2910. [PMID: 32678617 DOI: 10.1021/acs.molpharmaceut.0c00336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gene therapy is likely to be the most promising way to tackle cancer, while defects in molecular strategies and delivery systems have led to an impasse in clinical application. Here, it is found that onco-miRNAs of the miR-515 and -449 families were upregulated in hepatocellular carcinoma (HCC), and the sponge targeting miR-515 family had a significant probability to suppress cancer cell proliferation. Then, we constructed non-toxic sponge-loaded magnetic nanodroplets containing 20% C6F14 (SLMNDs-20%) that are incorporated with fluorinated superparamagnetic iron oxide nanoparticles enhancing external magnetism-assisted targeting and enabling a direct visualization of SLMNDs-20% distribution in vivo via magnetic resonance imaging monitoring. SLMNDs-20% could be vaporized by programmable focused ultrasound (FUS) activation, achieving ∼45% in vitro sponge delivery efficiency and significantly enhancing in vivo sponge delivery without a clear apoptosis. Moreover, the sponge-1-carrying SLMNDs-20% could effectively suppress proliferation of xenograft HCC after FUS exposure because sponge-1-suppressing onco-miR-515 enhanced the expression of anti-oncogenes (P21, CD22, TIMP1, NFKB, and E-cadherin) in cancer cells. The current results indicated that ultrasonic cavitation-inducing sonoporation enhanced the intracellular delivery of sponge-1 using SLMNDs-20% after magnetic-assisted accumulation, which was a therapeutic approach to inhibit HCC progression.
Collapse
Affiliation(s)
- Wei Dong
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Pengying Wu
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Mengfan Qin
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shifang Guo
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Huasheng Liu
- Department of Hematology, The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Xinxing Yang
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Department of Ultrasound, The First Affiliated Hospital of AFMU (Xijing Hospital), Air Force Medical University, Xi'an, Shaanxi 710032, China
| | - Wen He
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Department of Pharmacy, The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, China
| | - Ayache Bouakaz
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,Inserm Imaging and Ultrasound, INSERM U930, Imagerie et Cerveau, Université François-Rabelais de Tours, Tours 37000, France
| | - Mingxi Wan
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yujin Zong
- Department of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
11
|
Staroń A, Długosz O, Pulit-Prociak J, Banach M. Analysis of the Exposure of Organisms to the Action of Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E349. [PMID: 31940903 PMCID: PMC7014467 DOI: 10.3390/ma13020349] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
The rapid development of the production of materials containing metal nanoparticles and metal oxides is a potential risk to the environment. The degree of exposure of organisms to nanoparticles increases from year to year, and its effects are not fully known. This is due to the fact that the range of nanoparticle interactions on cells, tissues and the environment requires careful analysis. It is necessary to develop methods for testing the properties of nanomaterials and the mechanisms of their impact on individual cells as well as on entire organisms. The particular need to raise public awareness of the main sources of exposure to nanoparticles should also be highlighted. This paper presents the main sources and possible routes of exposure to metal nanoparticles and metal oxides. Key elements of research on the impact of nanoparticles on organisms, that is, in vitro tests, in vivo tests and methods of detection of nanoparticles in organisms, are presented.
Collapse
Affiliation(s)
| | | | | | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska St., 31-155 Cracow, Poland; (A.S.); (O.D.); (J.P.-P.)
| |
Collapse
|
12
|
Ajdary M, Moosavi MA, Rahmati M, Falahati M, Mahboubi M, Mandegary A, Jangjoo S, Mohammadinejad R, Varma RS. Health Concerns of Various Nanoparticles: A Review of Their in Vitro and in Vivo Toxicity. NANOMATERIALS 2018; 8:nano8090634. [PMID: 30134524 PMCID: PMC6164883 DOI: 10.3390/nano8090634] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 01/01/2023]
Abstract
Nanoparticles (NPs) are currently used in diagnosis and treatment of many human diseases, including autoimmune diseases and cancer. However, cytotoxic effects of NPs on normal cells and living organs is a severe limiting factor that hinders their use in clinic. In addition, diversity of NPs and their physico-chemical properties, including particle size, shape, surface area, dispersity and protein corona effects are considered as key factors that have a crucial impact on their safe or toxicological behaviors. Current studies on toxic effects of NPs are aimed to identify the targets and mechanisms of their side effects, with a focus on elucidating the patterns of NP transport, accumulation, degradation, and elimination, in both in vitro and in vitro models. NPs can enter the body through inhalation, skin and digestive routes. Consequently, there is a need for reliable information about effects of NPs on various organs in order to reveal their efficacy and impact on health. This review covers the existing knowledge base on the subject that hopefully prepares us better to address these challenges.
Collapse
Affiliation(s)
- Marziyeh Ajdary
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran P.O. Box 1449614525, Iran.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran P.O Box 14965/161, Iran.
| | - Marveh Rahmati
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran P.O. Box 13145-158, Iran.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Pharmaceutical Sciences Branches, Islamic Azad University of Tehran, Tehran P.O. Box 1916893813, Iran.
| | - Mohammad Mahboubi
- Department of Midwifery and Reproductive Health, Faculty of Nursing and Midwifery, Abadan School of Medical Sciences, Abadan P.O. Box 517, Iran.
| | - Ali Mandegary
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman P.O. Box 1355576169, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, and Department of Pharmacology & Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman P.O. Box 7616911319, Iran.
| | - Saranaz Jangjoo
- School of Medicine, International Branch, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman P.O. Box 1355576169, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
13
|
Wang M, Lai X, Shao L, Li L. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. Int J Nanomedicine 2018; 13:4445-4459. [PMID: 30122919 PMCID: PMC6078075 DOI: 10.2147/ijn.s170745] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nanotechnology is an interdisciplinary science that has developed rapidly in recent years. Metallic nanoparticles (NPs) are increasingly utilized in dermatology and cosmetology, because of their unique properties. However, skin exposure to NPs raises concerns regarding their transdermal toxicity. The tight junctions of epithelial cells form the skin barrier, which protects the host against external substances. Recent studies have found that NPs can pass through the skin barrier into deeper layers, indicating that skin exposure is a means for NPs to enter the body. The distribution and interaction of NPs with skin cells may cause toxic side effects. In this review, possible penetration pathways and related toxicity mechanisms are discussed. The limitations of current experimental methods on the penetration and toxic effects of metallic NPs are also described. This review contributes to a better understanding of the risks of topically applied metallic NPs and provides a foundation for future studies.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,
| | - Xuan Lai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,
| |
Collapse
|
14
|
Li M, Zhang F, Su Y, Zhou J, Wang W. Nanoparticles designed to regulate tumor microenvironment for cancer therapy. Life Sci 2018; 201:37-44. [PMID: 29577880 DOI: 10.1016/j.lfs.2018.03.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/12/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
Increasing understanding in tumor pathology reveals that tumor microenvironment (TME), which supports tumor progression and poses barriers for available therapies, takes a great responsibility in inefficient treatment and poor prognosis. In recent years, the versatile nanotechnology employed in TME regulation has made great progress. The nanoparticles (NPs) can be tailored as needed to accurately target TME components by distinguishing healthy tissues from malignancy, and to regulate TME to promote tumor regression. Meanwhile, the emerging microRNAs (miRNAs) demonstrate great potentials for TME regulation, but are regrettably restricted by quick degradation. NPs systems enable the successful delivery of miRNA to TME without the limitation, expanding the application of nucleic acid drug. In this review, we summarized recent NPs-based strategies aiming at regulating TME in different ways, including anti-angiogenesis, extracellular matrix (ECM) remodeling, tumor-associated fibroblasts (TAFs) treatment and tumor-associated macrophages (TAMs) treatment, along with the miRNAs-loaded NPs for TME regulation. Catching and utilizing the features of TME for NPs design can contribute to reversing drug-resistance, optimized drug distribution, and eventually more efficient cancer therapy.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Fangrong Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yujie Su
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
15
|
Ahmad F, Zhou Y. Pitfalls and Challenges in Nanotoxicology: A Case of Cobalt Ferrite (CoFe 2O 4) Nanocomposites. Chem Res Toxicol 2017; 30:492-507. [PMID: 28118545 DOI: 10.1021/acs.chemrestox.6b00377] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nanotechnology is developing at a rapid pace with promises of a brilliant socio-economic future. The apprehensions of vivid future involvement with nanotechnology make nanoobjects ubiquitous in the macroscopic world of humans. Nanotechnology helps us to visualize the new mysterious horizons in engineering, sophisticated electronics, environmental remediation, biosensing, and nanomedicine. In all these hotspots, cobalt ferrite (CoFe) nanoparticles (NPs) are outstanding contestants because of their astonishing controllable physicochemical and magnetic properties with ease of synthesis methods. The extensive use of CoFe NPs may result in CoFe NPs easily penetrating the human body unintentionally by ingestion, inhalation, adsorption, etc. and intentionally being instilled into the human body during biomedical diagnostics and treatment. After being housed in the human body, it might induce oxidative stress, cytotoxicity, genotoxicity, inflammation, apoptosis, and developmental, metabolic and hormonal abnormalities. In this review, we compiled the toxicity knowledge of CoFe NPs aimed to provide the safe usage of this breed of nanomaterials.
Collapse
Affiliation(s)
- Farooq Ahmad
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Zhou
- College of Chemical Engineering, Zhejiang University of Technology , Hangzhou 310032, China.,Research Center of Analysis and Measurement, Zhejiang University of Technology , 18 Chaowang Road, Hangzhou 310032, China
| |
Collapse
|
16
|
Roy A, Li SD. Modifying the tumor microenvironment using nanoparticle therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:891-908. [PMID: 27038329 DOI: 10.1002/wnan.1406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 02/24/2016] [Accepted: 03/04/2016] [Indexed: 12/21/2022]
Abstract
Treatment of cancer has come a long way from the initial 'radical surgeries' to the multimodality treatments. For the major part of the last century, cancer was considered as a monocellular disorder, and treatment strategies were designed according to that hypothesis. However, the mortality rate from cancer continued to be high and a comprehensive treatment remained elusive. Recent progress in research has demonstrated that tumors are a complex network of neoplastic and non-neoplastic cells. The non-neoplastic cells, which are collectively called stroma, assist in tumor survival and progression. It has been shown that disrupting the tumor-stromal balance leads to significant effects on the tumor survival, and effective treatment can be achieved by targeting one or more of the stromal components. In this review, we summarize the roles of various stromal components in promoting tumor progression, and discuss innovative nanoparticle-mediated drug targeting strategies for stromal depletion and the subsequent effects on the tumors. Perspectives and the future directions are also provided. WIREs Nanomed Nanobiotechnol 2016, 8:891-908. doi: 10.1002/wnan.1406 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Aniruddha Roy
- Department of Pharmacy, Birla Institute of Technology & Science (BITS), Pilani, India.
| | - Shyh-Dar Li
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|