1
|
Ghazaiean M, Aliasgharian A, Karami H, Ghasemi MM, Darvishi‐Khezri H. Antioxidative effects of N-acetylcysteine in patients with β-thalassemia: A quick review on clinical trials. Health Sci Rep 2024; 7:e70096. [PMID: 39381531 PMCID: PMC11458667 DOI: 10.1002/hsr2.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/15/2024] [Accepted: 09/05/2024] [Indexed: 10/10/2024] Open
Abstract
Background and Aims Several studies have highlighted the potent antioxidant properties of N-acetyl cysteine (NAC). This review aimed to assess the impact of NAC on oxidative stress biomarkers in patients with β-thalassemia. Methods The review included articles published before 2024 that investigated the effects of NAC on oxidative stress in individuals with β-thalassemia. A comprehensive search was conducted across various databases, including Scopus, PubMed, Web of Science, Trip, and CENTRAL. Only English-language clinical trials were considered for inclusion in this review. Besides, the number needed to treat (NNT) was calculated based on the included studies. Results Ninety-nine articles were retrieved from electronic databases, and after a thorough review, eight articles were selected for comprehensive text analysis. The highest dose of NAC administered was 10 mg/kg/day (equivalent to 600 mg/day) over a period of 3-6 months. All the studies assessing the impact of NAC on oxidative stress indicators in β-thalassemia patients demonstrated positive effects during the 3-month follow-up period. Most estimated NNTs fell into 1-5, suggesting significant clinical therapeutic value in this context. Conclusion The current potency of NAC alone appears to be effective in ameliorating oxidative stress in patients with β-thalassemia major. While a 3-month duration seems adequate to demonstrate the antioxidant properties of NAC in this population, larger and well-designed clinical trials are warranted. Current clinical evidence possesses a high risk of bias.
Collapse
Affiliation(s)
- Mobin Ghazaiean
- Student Research Committee, Faculty of MedicineMazandaran University of Medical SciencesSariIran
- Gut and Liver Research Center, Non‐Communicable Disease InstituteMazandaran University of Medical SciencesSariIran
| | - Aily Aliasgharian
- Thalassemia Research Center (TRC), Hemoglobinopathy InstituteMazandaran University of Medical SciencesSariIran
| | - Hossein Karami
- Thalassemia Research Center (TRC), Hemoglobinopathy InstituteMazandaran University of Medical SciencesSariIran
| | - Mohammad Mohsen Ghasemi
- Student Research Committee, Faculty of MedicineMazandaran University of Medical SciencesSariIran
| | - Hadi Darvishi‐Khezri
- Thalassemia Research Center (TRC), Hemoglobinopathy InstituteMazandaran University of Medical SciencesSariIran
| |
Collapse
|
2
|
Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T. Therapeutic effect of targeted antioxidant natural products. DISCOVER NANO 2024; 19:144. [PMID: 39251461 PMCID: PMC11383917 DOI: 10.1186/s11671-024-04100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
The exploration of targeted therapy has proven to be a highly promising avenue in the realm of drug development research. The human body generates a substantial amount of free radicals during metabolic processes, and if not promptly eliminated, these free radicals can lead to oxidative stress, disrupting homeostasis and potentially contributing to chronic diseases and cancers. Before the development of contemporary medicine with synthetic pharmaceuticals and antioxidants, there was a long-standing practice of employing raw, natural ingredients to cure a variety of illnesses. This practice persisted even after the active antioxidant molecules were known. The ability of natural antioxidants to neutralise excess free radicals in the human body and so prevent and cure a wide range of illnesses. The term "natural antioxidant" refers to compounds derived from plants or other living organisms that have the ability to control the production of free radicals, scavenge them, stop free radical-mediated chain reactions, and prevent lipid peroxidation. These compounds have a strong potential to inhibit oxidative stress. Phytochemicals (antioxidants) derived from plants, such as polyphenols, carotenoids, vitamins, and others, are central to the discussion of natural antioxidants. Not only may these chemicals increase endogenous antioxidant defenses, affect communication cascades, and control gene expression, but they have also shown strong free radical scavenging properties. This study comprehensively summarizes the primary classes of natural antioxidants found in different plant and animal source that contribute to the prevention and treatment of diseases. Additionally, it outlines the research progress and outlines future development prospects. These discoveries not only establish a theoretical groundwork for pharmacological development but also present inventive ideas for addressing challenges in medical treatment.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sihao Jin
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Zhenzhen Dong
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Bahoush G, Rahab M, Ahmadvand P. Can N-acetylcysteine reduce red blood cell transfusion burden in patients with transfusion-dependent β-thalassemia? Pediatr Hematol Oncol 2024; 41:251-259. [PMID: 38088332 DOI: 10.1080/08880018.2023.2292556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/04/2023] [Indexed: 04/18/2024]
Abstract
Patients with beta-thalassemia major require lifelong and frequent red blood cell transfusions for survival, impacting their quality of life and life expectancy. This treatment approach poses risks of organ damage, iron overload, and increased transfusion-transmitted diseases. N-acetylcysteine (NAC) has been studied for its potential antioxidant effects on hemoglobin stability, aiming to reduce the burden of red blood cell transfusions. To explore this possibility further, we conducted a quasi-experimental study involving 35 individuals with thalassemia major over six months All subjects were already receiving iron chelators and blood transfusions. They were given a daily oral dose of 10 mg/kg NAC for three months. After three months of treatment with NAC, the serum levels of ferritin and liver enzymes (SGOT and SGPT) did not show significant changes (p = 0.35, p = 0.352, and p = 0.686, respectively). However, the red blood cell transfusion burden was significantly reduced in all patients after NAC therapy (p = 0.029), with no corresponding decrease in serum hemoglobin levels (p = 0.931), indicating maintained hemoglobin concentration despite reduced transfusion volume. The study indicates that NAC can effectively decrease the burden of red blood cell transfusions without significant toxicity in these patients. This finding suggests the potential for NAC as a cost-effective and manageable treatment option for these patients. A larger clinical trial with more robust statistical methods could further confirm these results and pave the way for using NAC as a valuable therapeutic agent for managing beta-thalassemia major patients.
Collapse
Affiliation(s)
- Gholamreza Bahoush
- Pediatric Hematology and Oncology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Rahab
- Department of Anesthesiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parnian Ahmadvand
- Fellowship of Pediatric Hematology and Oncology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Joshi P, Bisht A, Paliwal A, Dwivedi J, Sharma S. Recent updates on clinical developments of curcumin and its derivatives. Phytother Res 2023; 37:5109-5158. [PMID: 37536946 DOI: 10.1002/ptr.7974] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 06/19/2023] [Accepted: 07/15/2023] [Indexed: 08/05/2023]
Abstract
Curcumin, a natural polyphenol, derived from Curcuma longa L. is extensively studied by various researchers across the globe and has established its immense potential in the management of several disorders at clinical level. The underlying mechanism of curcumin involves regulation of various molecular targets, namely, inflammatory cytokines, transcription factor, apoptotic genes, growth factors, oxidative stress biomarkers, and protein kinases. In clinical trials, curcumin as an adjuvant has significantly boost-up the efficacy of many proven drugs in the management of arthritis, neurodegenerative disorder, oral infection, and gastrointestinal disorders. Moreover, clinical studies have suggested curcumin as an appropriate candidate for the prevention and/or management of various cancers via regulation of signaling molecules including NF-kB, cytokines, C-reactive protein, prostaglandin E2, Nrf2, HO-1, ALT, AST, kinases, and blood profiles. This article highlights plethora of clinical trials that have been conducted on curcumin and its derivatives in the management of several ailments. Besides, it provides recent updates to the investigators for conducting future research to fulfill the current gaps to expedite the curcumin utility in clinical subjects bearing different pathological states.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Ajita Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
5
|
Kunnumakkara AB, Hegde M, Parama D, Girisa S, Kumar A, Daimary UD, Garodia P, Yenisetti SC, Oommen OV, Aggarwal BB. Role of Turmeric and Curcumin in Prevention and Treatment of Chronic Diseases: Lessons Learned from Clinical Trials. ACS Pharmacol Transl Sci 2023; 6:447-518. [PMID: 37082752 PMCID: PMC10111629 DOI: 10.1021/acsptsci.2c00012] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 03/08/2023]
Abstract
Turmeric (Curcuma longa) has been used for thousands of years for the prevention and treatment of various chronic diseases. Curcumin is just one of >200 ingredients in turmeric. Almost 7000 scientific papers on turmeric and almost 20,000 on curcumin have been published in PubMed. Scientific reports based on cell culture or animal studies are often not reproducible in humans. Therefore, human clinical trials are the best indicators for the prevention and treatment of a disease using a given agent/drug. Herein, we conducted an extensive literature survey on PubMed and Scopus following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The keywords "turmeric and clinical trials" and "curcumin and clinical trials" were considered for data mining. A total of 148 references were found to be relevant for the key term "turmeric and clinical trials", of which 70 were common in both PubMed and Scopus, 44 were unique to PubMed, and 34 were unique to Scopus. Similarly, for the search term "curcumin and clinical trials", 440 references were found to be relevant, of which 70 were unique to PubMed, 110 were unique to Scopus, and 260 were common to both databases. These studies show that the golden spice has enormous health and medicinal benefits for humans. This Review will extract and summarize the lessons learned about turmeric and curcumin in the prevention and treatment of chronic diseases based on clinical trials.
Collapse
Affiliation(s)
- Ajaikumar B. Kunnumakkara
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Mangala Hegde
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Dey Parama
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Sosmitha Girisa
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Aviral Kumar
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Uzini Devi Daimary
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Assam-781039, India
| | - Prachi Garodia
- Integrative
Research Center, Miami, Florida 33125, United States
| | - Sarat Chandra Yenisetti
- Department
of Zoology, Drosophila Neurobiology Laboratory, Nagaland University (Central), Lumami, Nagaland-798627, India
| | - Oommen V. Oommen
- Department
of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala-695581, India
| | - Bharat B. Aggarwal
- Inflammation
Research Center, San Diego, California 92109, United States
| |
Collapse
|
6
|
Tran NT, Sutcharitchan P, Janprasit J, Rojnuckarin P, Morales NP, Luechapudiporn R. Deferiprone, an iron chelator, alleviates platelet hyperactivity in patients with β-thalassaemia/HbE. Drugs Context 2022; 11:dic-2022-7-6. [PMID: 36544626 PMCID: PMC9753601 DOI: 10.7573/dic.2022-7-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Hyperfunctional platelets play important roles in thromboembolism in patients with β-thalassaemia/ haemoglobin E (β-thal/HbE). Our previous study revealed ex vivo inhibitory effects of deferiprone on normal platelets. Herein, we aimed to investigate the in vivo effects on platelets in patients with β-thal/HbE. Methods A prospective, self-controlled clinical study on 30 patients with β-thal/HbE who had received therapeutic deferiprone (20.8-94.5 mg/kg/day) was conducted. The study included a 4-week washout period followed by 4 and 12 weeks of deferiprone treatment. Platelet aggregation was performed by a turbidimetric method. Levels of deferiprone and soluble platelet (sP)-selectin in serum were measured by high-performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA) kit, respectively. Results The washout period significantly enhanced platelet hyperactivity both in patients who had undergone splenectomy and in those who had not. At 2 hours following the administration of a single dose of deferiprone, platelet sensitivity to ADP and arachidonic acid was significantly reduced. The inhibitory effects of deferiprone were gradually increased over the period of 4 and 12 weeks. Deferiprone also depressed sP-selectin levels, but the effect was stable over longer follow-up periods. Correlation analysis demonstrated the relationship between serum levels of deferiprone, sP-selectin, and platelet activities induced by ADP and arachidonic acid. Conclusion We first demonstrated the in vivo antiplatelet effect and benefit of short-term treatment of deferiprone in patients with β-thal/HbE. The impact on thrombotic outcomes deserves further study.
Collapse
Affiliation(s)
- Ngan Thi Tran
- Pharmacology and Toxicology Program, Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand,Pharmacy Practice Department, Faculty of Pharmacy, Haiphong University of Medicine and Pharmacy, Haiphong, Vietnam
| | - Pranee Sutcharitchan
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jindaporn Janprasit
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Rataya Luechapudiporn
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand,Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Singh RK. A Case of Anaemia With High-Grade Splenomegaly. Cureus 2022; 14:e24908. [PMID: 35706745 PMCID: PMC9187194 DOI: 10.7759/cureus.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 11/05/2022] Open
|
8
|
Kumfu S, Chattipakorn SC, Chattipakorn N. Iron overload cardiomyopathy: Using the latest evidence to inform future applications. Exp Biol Med (Maywood) 2022; 247:574-583. [PMID: 35130741 DOI: 10.1177/15353702221076397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Iron overload can be the result of either dysregulated iron metabolism in the case of hereditary hemochromatosis or repeated blood transfusions in the case of secondary hemochromatosis (e.g. in β-thalassemia and sickle cell anemia patients). Under iron overload conditions, transferrin (Tf) saturation leads to an increase in non-Tf bound iron which can result in the generation of reactive oxygen species (ROS). These excess ROS can damage cellular components, resulting in the dysfunction of vital organs including iron overload cardiomyopathy (IOC). Multiple studies have demonstrated that L-type and T-type calcium channels are the main routes for iron uptake in the heart, and that calcium channel blockers, given either individually or in combination with standard iron chelators, confer cardioprotective effects under iron overload conditions. Treatment with antioxidants may also provide therapeutic benefits. Interestingly, recent studies have suggested that mitochondrial dynamics and regulated cell death (RCD) pathways are potential targets for pharmacological interventions against iron-induced cardiomyocyte injury. In this review, the potential therapeutic roles of iron chelators, antioxidants, iron uptake/metabolism modulators, mitochondrial dynamics modulators, and inhibitors of RCD pathways in IOC are summarized and discussed.
Collapse
Affiliation(s)
- Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
9
|
Atmakusuma TD, Nasution IR, Sutandyo N. Oxidative Stress (Malondialdehyde) in Adults Beta-Thalassemia Major and Intermedia: Comparison Between Before and After Blood Transfusion and Its Correlation with Iron Overload. Int J Gen Med 2021; 14:6455-6462. [PMID: 34675613 PMCID: PMC8504476 DOI: 10.2147/ijgm.s336805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
Background Iron overload is a major problem in both transfusion-dependent (TDT) and non-transfusion-dependent thalassemia (NTDT). It has been known to increase oxidative stress. Meanwhile, blood transfusion as main therapy for thalassemia increases iron overload. One of the markers of oxidative stress is malondialdehyde (MDA). This study aims to provide data on MDA levels in adult thalassemia patients, and to compare the levels before and after transfusion in patients with TDT and NTDT. Methods This is a cross-sectional, pre-post study in adult patients with thalassemia major and intermedia that received blood transfusion with or without iron-chelating agents in Cipto Mangunkusumo Hospital. Blood samples were taken immediately before the transfusion and one day after. Serum ferritin (SF) assays were conducted by electrochemiluminescence immunoassay method, while transferrin saturation (TS) was calculated by dividing serum iron by the binding capacity. Subsequently, plasma MDA levels assays were performed using the Wills method, and data analysis was conducted using the t-test/Mann-Whitney and Pearson/Spearman correlation test, depending on the data distribution. Results The 63 respondents recruited consist of 51 TDT and 12 NTDT patients, and their median plasma MDA level before and after transfusion was 0.49 µmol/L and 0.45 µmol/L, respectively. Before transfusion, there was no correlation between SF and MDA, and TS and MDA levels. After the transfusion, there was no correlation between, SF and MDA, or TS and MDA levels. Conclusion There is no significant difference in MDA levels before and after transfusion. Although blood transfusion increases the iron load in thalassemia patients, there was no increase in median MDA level after transfusion. Meanwhile, there was no correlation between markers of iron overload and MDA level in thalassemia patients both before and after transfusion.
Collapse
Affiliation(s)
- Tubagus Djumhana Atmakusuma
- Division of Hematology-Medical Oncology, Department of Internal Medicine, Dr. Cipto Mangunkusumo General Hospital/Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Intan Russiana Nasution
- Division of Hematology-Medical Oncology, Department of Internal Medicine, Gatot Soebroto Army Hospital Jakarta/Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Noorwati Sutandyo
- Division of Hematology-Medical Oncology, Department of Internal Medicine, Dharmais National Cancer Hospital Jakarta/Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
10
|
Darvishi-Khezri H, Naderisorki M, Zahedi M, Mortazavi P, Tajik F, Nasirzadeh A, Karami H. Coadministration of silymarin with iron chelators in transfusion-dependent β-thalassemia patients: a systematic review and meta-analysis for effect on iron overload. Expert Rev Clin Pharmacol 2021; 14:1445-1453. [PMID: 34486906 DOI: 10.1080/17512433.2021.1964953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background and aim: We conducted a systematic review to apprise the efficacy of silymarin in conjunction with standard iron chelators on iron overload for transfusion-dependent β-thalassemia (TDT) patients.Methods: We searched PubMed, Web of Science, Scopus, Sciencedirect, the Cochrane Library (the Cochrane Database of Systematic Reviews, and the Cochrane Central Register of Controlled Trials (CENTRAL) to 1 May 2020. All randomized controlled trials (RCTs) studies comparing the effect of iron chelators alone versus silymarin plus standard routine treatment on iron burden amid TDT were included in this review. Primary outcomes comprised serum ferritin level (ng/mL), liver iron concentration (LIC Fe/kg dry weight), and total iron binding capacity (TIBC mcg/dL)Results: Combination therapy of silymarin and iron chelators showed a significant improvement in serum ferritin level in TDT patients, compared to nonsilymarin users [eight studies, n = 477]; weighted mean difference (WMD) -1.79, 95% confidence interval [CI] -2.86 to -0.72, I2 96.1%; P = 0.001. Concurrent treatment with silymarin failed to significantly decrease LIC in TDT patients [two studies, n = 106]; WMD 0.74, 95% CI -1.62 to 3.10, I2 96.6%; P = 0.54.Conclusion: There is no evidence of the effectiveness of adding silymarin to standard iron chelators to reduce iron load in TDT.
Collapse
Affiliation(s)
- Hadi Darvishi-Khezri
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Department of Research, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Naderisorki
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Faculty of Medicine, Mazandaran University of Medical, Sari, Iran
| | - Mohammad Zahedi
- Department of Medical Laboratory Sciences, Student Research Committee, School of Allied Medical Science, Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Iran
| | - Parham Mortazavi
- Student Research Committee, School of Pharmacy, Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amirreza Nasirzadeh
- Student Research Committee, Nursing and Midwifery Department, Mashhad University of Medical Sciences, Mashhad, Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Iran
| | - Hossein Karami
- Thalassemia Research Center (TRC), Hemoglobinopathy Institute, Faculty of Medicine, Mazandaran University of Medical, Sari, Iran
| |
Collapse
|
11
|
Settapramote N, Utama-ang N, Petiwathayakorn T, Settakorn K, Svasti S, Srichairatanakool S, Koonyosying P. Antioxidant Effects of Anthocyanin-Rich Riceberry™ Rice Flour Prepared Using Dielectric Barrier Discharge Plasma Technology on Iron-Induced Oxidative Stress in Mice. Molecules 2021; 26:4978. [PMID: 34443567 PMCID: PMC8399969 DOI: 10.3390/molecules26164978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Redox-active iron generates reactive oxygen species that can cause oxidative organ dysfunction. Thus, the anti-oxidative systems in the body and certain dietary antioxidants, such as anthocyanins, are needed to control oxidative stress. We aimed to investigate the effects of dielectric barrier discharge (DBD) plasma technology in the preparation of Riceberry™ rice flour (PRBF) on iron-induced oxidative stress in mice. PRBF using plasma technology was rich in anthocyanins, mainly cyanidine-3-glucoside and peonidine-3-glucoside. PRBF (5 mg AE/mg) lowered WBC numbers in iron dextran (FeDex)-loaded mice and served as evidence of the reversal of erythrocyte superoxide dismutase activity, plasma total antioxidant capacity, and plasma and liver thiobarbituric acid-reactive substances in the loading mice. Consequently, the PRBF treatment was observed to be more effective than NAC treatment. PRBF would be a powerful supplementary and therapeutic antioxidant product that is understood to be more potent than NAC in ameliorating the effects of iron-induced oxidative stress.
Collapse
Affiliation(s)
- Natwalinkhol Settapramote
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.U.-a.)
- Cluster of High Value Product from Thai Rice for Health, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Agro-Industry, Faculty of Agriculture and Technology, Surin Campus, Rajamangala University of Technology Isan, Surin 32000, Thailand
| | - Niramon Utama-ang
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.U.-a.)
- Cluster of High Value Product from Thai Rice for Health, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Touchwin Petiwathayakorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| | - Kornvipa Settakorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakorn Pathom 71300, Thailand;
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| | - Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (S.S.)
| |
Collapse
|
12
|
Allen A, Perera S, Mettananda S, Rodrigo R, Perera L, Darshana T, Moggach F, Jackson Crawford A, Heirene L, Fisher C, Olivieri N, Rees D, Premawardhena A, Allen S. Oxidative status in the β-thalassemia syndromes in Sri Lanka; a cross-sectional survey. Free Radic Biol Med 2021; 166:337-347. [PMID: 33677065 DOI: 10.1016/j.freeradbiomed.2021.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/10/2023]
Abstract
In the β-thalassemias, oxidative stress, resulting from chronic hemolysis, globin chain imbalance, iron overload and depleted antioxidant defences, likely contributes to cell death, organ damage, anemia, hypoxia and inflammation. We assessed variations in these parameters in β-thalassemia syndromes in Sri Lanka. Between November 2017 and June 2018, we assessed children and adults attending two thalassemia centres in Sri Lanka: 59 patients with HbE β-thalassemia, 50 β-thalassemia major, 40 β-thalassemia intermedia and 13 HbS β-thalassemia. Median age was 26.0 years (IQR 15.3-38.8), 101 (62.3%) were female and 152 (93.8%) of Sinhalese ethnicity. Methemoglobin, plasma hemoglobin, heme and ferritin were measured as sources of oxidants; plasma total antioxidant capacity, haptoglobin, hemopexin and vitamins C and E assessed antioxidant status; plasma thiobarbituric acid reactive substances and 8-hydroxy-2'-deoxyguanosine assessed oxidative damage; hemoglobin, plasma erythropoietin and transferrin receptor assessed anemia and hypoxia and plasma interleukin-6 and C-reactive protein assessed inflammation. Fruit and vegetable intake was determined by dietary recall. Physical fitness was investigated using the 6-min walk test and measurement of handgrip strength. Oxidant sources were frequently increased and antioxidants depleted, with consequent oxidative damage, anemia, hypoxia and inflammation. Biomarkers were generally most abnormal in HbE β-thalassemia and least abnormal in β-thalassemia intermedia but also varied markedly between individuals with the same thalassemia syndrome. Oxidative stress and damage were also more severe in splenectomized patients and/or those receiving iron chelation therapy. Less than 15% of patients ate fresh fruits or raw vegetables frequently, and plasma vitamins C and E were deficient in 132/160 (82.5%) and 140/160 (87.5%) patients respectively. Overall, physical fitness was poor in all syndromes and was likely due to anemic hypoxia. Studies of antioxidant supplements to improve outcomes in patients with thalassemia should consider individual patient variation in oxidative status both between and within the thalassemia syndromes.
Collapse
Affiliation(s)
- Angela Allen
- Department of Molecular Haematology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK; Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.
| | - Shiromi Perera
- Department of Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Sachith Mettananda
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Rexan Rodrigo
- Thalassemia Care Unit, North Colombo Teaching Hospital, Ragama, Sri Lanka
| | - Lakshman Perera
- Department of Medicine, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Thamal Darshana
- Department of Medical Laboratory Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Fiona Moggach
- Department of Clinical Biochemistry, Macewen Building, Glasgow Royal Infirmary, Castle Street, Glasgow, UK
| | - Anthony Jackson Crawford
- Department of Clinical Chemistry, Aneurin Bevan University Health Board, Grange University Hospital, Llanyravon, Cwmbran, Gwent, UK
| | - Lesley Heirene
- Department of Clinical Chemistry, Aneurin Bevan University Health Board, Grange University Hospital, Llanyravon, Cwmbran, Gwent, UK
| | - Christopher Fisher
- Department of Molecular Haematology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK
| | - Nancy Olivieri
- Professor of Pediatrics, Medicine and Public Health Sciences, University of Toronto, Toronto, Canada
| | - David Rees
- Department of Paediatric Haematology, King's College Hospital, London, UK
| | - Anuja Premawardhena
- Thalassemia Care Unit, North Colombo Teaching Hospital, Ragama, Sri Lanka; Department of Medicine, Faculty of Medicine, University of Kelaniya, Sri Lanka
| | - Stephen Allen
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| |
Collapse
|
13
|
Hatairaktham S, Masaratana P, Hantaweepant C, Srisawat C, Sirivatanauksorn V, Siritanaratkul N, Panichkul N, Kalpravidh RW. Curcuminoids supplementation ameliorates iron overload, oxidative stress, hypercoagulability, and inflammation in non-transfusion-dependent β-thalassemia/Hb E patients. Ann Hematol 2021; 100:891-901. [PMID: 33388858 DOI: 10.1007/s00277-020-04379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Curcuminoids, polyphenol compounds in turmeric, possess several pharmacological properties including antioxidant, iron-chelating, and anti-inflammatory activities. Effects of curcuminoids in thalassemia patients have been explored in a limited number of studies using different doses of curcuminoids. The present study aims to evaluate the effects of 24-week curcuminoids supplementation at the dosage of 500 and 1000 mg/day on iron overload, oxidative stress, hypercoagulability, and inflammation in non-transfused β-thalassemia/Hb E patients. In general, both curcuminoids dosages significantly lowered the levels of oxidative stress, hypercoagulability, and inflammatory markers in the patients. In contrast, reductions in iron parameter levels were more remarkable in the 1000 mg/day group. Subgroup analysis revealed that a marker of hypercoagulability was significantly decreased only in patients with baseline ferritin ≤ 1000 ng/ml independently of curcuminoids dosage. Moreover, the alleviation of iron loading parameters was more remarkable in patients with baseline ferritin > 1000 ng/ml who receive 1000 mg/day curcuminoids. On the other hand, the responses of oxidative stress markers were higher with 500 mg/day curcuminoids regardless of baseline ferritin levels. Our study suggests that baseline ferritin levels should be considered in the supplementation of curcuminoids and the appropriate curcuminoids dosage might differ according to the required therapeutic effect. Thai Clinical Trials Registry (TCTR): TCTR20200731003; July 31, 2020 "retrospectively registered".
Collapse
Affiliation(s)
- Suneerat Hatairaktham
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Patarabutr Masaratana
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Chattree Hantaweepant
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Vorapan Sirivatanauksorn
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Noppadol Siritanaratkul
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Narumol Panichkul
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Ruchaneekorn W Kalpravidh
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| |
Collapse
|
14
|
El-Shanshory M, Hablas NM, Shebel Y, Alhadramy O, El-Tahlawi R, Aboonq MS, Soliman TM, Abdel-Gawad AR, El Sayed SM, Abdallah HI, Mahmoud HS, El-Allaf H, El-Sawy S, Yousef RS, Abu-el Naga M, Mariah RA, Nabo MMH, Abdel-Haleem M, Mahmoud AA, Hassan MA, Al Arabi AH, Alnakhli AA, El Sayed SM. Al-hijamah (the triple S treatment of prophetic medicine) exerts cardioprotective, tissue-protective and immune potentiating effects in thalassemic children: a pilot clinical trial. AMERICAN JOURNAL OF BLOOD RESEARCH 2020; 10:447-458. [PMID: 33489454 PMCID: PMC7811902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Thalassemia is a major health problem in affected children due to iron overload, increased oxidative stress, atherogenic lipid profile and tissue-damage. This study aims at investigating the cardioprotective and tissue-protective benefits of Al-hijamah and their impact on cell-mediated immunity for treating thalassemic children. This study aimed also at investigating the tissue-clearance principle of Taibah mechanism: whenever pathological substances are to be cleared from the human body, Al-hijamah is indicated. Al-hijamah was done to thalassemic children (15 males and 5 females having a mean age of 9.07 ± 4.26 years) using sterile disposable sets in a complete aseptic hospital environment. Prior ethical committee agreement (in addition to written patient's consents) was obtained from Tanta Faculty of Medicine, Egypt. Twenty thalassemic children received iron chelation therapy plus Al-hijamah for one session (30-60 minutes) versus an age and sex-matched thalassemic control group treated with iron chelation therapy only. Al-hijamah is a quite safe outpatient hematological procedure that significantly decreased serum cholesterol (from 129.75 ± 3.67 to 103.5 ± 4.18 mg/dl) and decreased serum triglycerides (from 109.25 ± 8.96 to 91.95 ± 7.22 mg/dl). Interestingly, Al-hijamah exerted significant tissue-protective effects (it decreased serum GPT from 98.65 ± 12.27 to 71.65 ± 32.78 U/L and serum GOT from 96.35 ± 14.33 to 69.35 ± 34.37 U/L). Al-hijamah-induced ferritin excretion caused decreased serum ferritin (high serum ferritin negatively correlated with cell mediated immunity). Al-hijamah exerted cardioprotective and tissue-protective and hypolipidemic effects. Al-hijamah decreased serum cholesterol and is cardioprotective for thalassemic patients as it protects against atherogenesis and atherosclerosis. Medical practice of Al-hijamah is strongly recommended in hospitals. Al-hijamah cleared blood significantly from causative pathological substances e.g. serum ferritin resulting in enhanced cell-mediated immunity (in agreement with the evidence-based Taibah mechanism).
Collapse
Affiliation(s)
- Mohamed El-Shanshory
- Prophetic Medicine Course and Research Group, Taibah College of MedicineAl-Madinah Al-Munawwarah, Saudi Arabia
- Department of Pediatrics, Tanta University Faculty of MedicineTanta, Gharbia, Egypt
| | | | - Yasmin Shebel
- Department of Pediatrics, Tanta University Faculty of MedicineTanta, Gharbia, Egypt
| | - Osama Alhadramy
- Division of Cardiology, Department of Medicine, Taibah College of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Rehab El-Tahlawi
- Department of Microbiology, College of Medicine, Taibah UniversitySaudi Arabia
- Department of Microbiology, Faculty of Medicine, Zagazig UniversityEgypt
| | - Moutasem Salih Aboonq
- Department of Medical Physiology, Taibah College of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Tamer M Soliman
- Department of Clinical Pathology, Sohag Faculty of Medicine, Sohag UniversitySohag, Egypt
| | | | - Sayed Mostafa El Sayed
- Department of Anatomy, Faculty of Medicine, Ain Shams UniversityEgypt
- Department of Anatomy, Taibah Faculty of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Hesham I Abdallah
- Department of Anatomy, Faculty of Medicine, Ain Shams UniversityEgypt
- Department of Anatomy, Taibah Faculty of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Hany Salah Mahmoud
- Center of Scientific Foundation for Experimental Studies and ResearchIsmailia, Egypt
| | - Hassan El-Allaf
- Department of Medical Physiology, Sohag Faculty of Medicine, Sohag UniversityEgypt
| | - Samer El-Sawy
- Department of Medical Biochemistry, Sohag Faculty of Medicine, Sohag UniversityEgypt
| | - Reda S Yousef
- Department of Medical Biochemistry, Sohag Faculty of Medicine, Sohag UniversityEgypt
| | - Mostafa Abu-el Naga
- Department of Anatomy, College of Medicine, Al-Rayyan National CollegesAl-Madinah, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, New Damietta, Al-Azhar UniversityEgypt
| | - Reham A Mariah
- Department of Medical Biochemistry, Tanta Faculty of Medicine, Tanta UniversityTanta, Egypt
| | - Manal Mohamed Helmy Nabo
- Division of Pediatric Cardiology, Pediatrics Department, Maternity and Children HospitalHail, Saudi Arabia
- Division of Pediatric Cardiology, Pediatrics Department, Sohag Teaching Hospital, Ministry of HealthSohag, Egypt
| | - Mohamed Abdel-Haleem
- Department of Ear, Nose and Throat, Taibah Faculty of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Ahmed Alamir Mahmoud
- Department of Medical Biochemistry, Sohag Faculty of Medicine, Sohag UniversityEgypt
| | | | - Areej Hesham Al Arabi
- Department of Cardiology, Governorate of Health, Uhud HospitalAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Abdullah Ahmed Alnakhli
- Department of Cardiology, Governorate of Health, Uhud HospitalAl-Madinah Al-Munawwarah, Saudi Arabia
| | - Salah Mohamed El Sayed
- Prophetic Medicine Course and Research Group, Taibah College of MedicineAl-Madinah Al-Munawwarah, Saudi Arabia
- Department of Medical Biochemistry, Sohag Faculty of Medicine, Sohag UniversityEgypt
- Department of Clinical Biochemistry and Molecular Medicine, Taibah Faculty of Medicine, Taibah UniversityAl-Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
15
|
Effects of three months of treatment with vitamin E and N-acetyl cysteine on the oxidative balance in patients with transfusion-dependent β-thalassemia. Ann Hematol 2020; 100:635-644. [PMID: 33216196 DOI: 10.1007/s00277-020-04346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
Oxidative stress is a major mechanism contributing to the progression of β-thalassemia. To assess the effect of vitamin E and N-acetyl cysteine (NAC) as antioxidant agents on total oxidative stress (TOS) status and total antioxidant capacity (TAC) in patients with transfusion-dependent β-thalassemia (TDT). In this open-label randomized controlled trial, from May to August 2019, 78 eligible patients with TDT over the age of 18 were enrolled. All patients were registered at the Thalassemia Clinic of Shiraz University of Medical Sciences in Southern Iran. Patients were randomly allocated to the NAC group (10 mg/kg/day, orally), vitamin E group (10 U/kg/day, orally), and control group. The duration of the study was 3 months. The mean age of the participants was 28.5 ± 5.1 (range: 18-41) years. At the end of the study, TOS significantly decreased only in the vitamin E group (mean difference (MD), 95% confidence interval (CI): 0.27 (0.03-0.50), P = 0.026). TAC significantly decreased in both supplemented groups at the 3rd month of treatment (NAC group: MD (95% CI): 0.11 (0.04-0.18), P = 0.002 and vitamin E group: 0.09 (0.01-0.16), P = 0.022 respectively). Hemoglobin did not significantly change at the end of the study in each group (P > 0.05). Mild transient adverse events occurred in 4 patients of the NAC group and 5 patients of the vitamin E group with no need to discontinue the treatment. Vitamin E can be a safe and effective supplement in improving oxidative stress in patients with TDT. Moreover, it seems that a longer duration of using antioxidant supplements needs to make clinical hematologic improvement in TDT patients.
Collapse
|
16
|
Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W, Sestito S, Rapposelli S, Neffe-Skocińska K, Zielińska D, Salehi B, Setzer WN, Dosoky NS, Taheri Y, El Beyrouthy M, Martorell M, Ostrander EA, Suleria HAR, Cho WC, Maroyi A, Martins N. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front Pharmacol 2020; 11:01021. [PMID: 33041781 PMCID: PMC7522354 DOI: 10.3389/fphar.2020.01021] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
Curcumin, a yellow polyphenolic pigment from the Curcuma longa L. (turmeric) rhizome, has been used for centuries for culinary and food coloring purposes, and as an ingredient for various medicinal preparations, widely used in Ayurveda and Chinese medicine. In recent decades, their biological activities have been extensively studied. Thus, this review aims to offer an in-depth discussion of curcumin applications for food and biotechnological industries, and on health promotion and disease prevention, with particular emphasis on its antioxidant, anti-inflammatory, neuroprotective, anticancer, hepatoprotective, and cardioprotective effects. Bioavailability, bioefficacy and safety features, side effects, and quality parameters of curcumin are also addressed. Finally, curcumin's multidimensional applications, food attractiveness optimization, agro-industrial procedures to offset its instability and low bioavailability, health concerns, and upcoming strategies for clinical application are also covered.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kasli, Jounieh, Lebanon
| | - Alain Abi Rizk
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kasli, Jounieh, Lebanon
| | - Carmen Sadaka
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Raviella Zgheib
- Institut Jean-Pierre Bourgin, AgroParisTech, INRA, Université Paris-Saclay, Versailles, France
| | - Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Andalus University for Medical Sciences, Tartous, Syria
| | | | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
- Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | | | - Dorota Zielińska
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Warszawa, Poland
| | - Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | | | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marc El Beyrouthy
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kasli, Jounieh, Lebanon
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Elise Adrian Ostrander
- Medical Illustration, Kendall College of Art and Design, Ferris State University, Grand Rapids, MI, United States
| | | | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Pattanakuhar S, Phrommintikul A, Tantiworawit A, Srichairattanakool S, Chattipakorn SC, Chattipakorn N. N-acetylcysteine Restored Heart Rate Variability and Prevented Serious Adverse Events in Transfusion-dependent Thalassemia Patients: a Double-blind Single Center Randomized Controlled Trial. Int J Med Sci 2020; 17:1147-1155. [PMID: 32547310 PMCID: PMC7294923 DOI: 10.7150/ijms.45795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 05/07/2020] [Indexed: 11/05/2022] Open
Abstract
Regular blood transfusions in transfusion-dependent thalassemia (TDT) patients can lead to iron overload, causing oxidative stress and sympathovagal imbalance, resulting in increased cardiac complications. We hypothesized that administrating of N-acetylcysteine (NAC) prevents serious adverse events including cardiac complications in TDT patients by reducing systemic oxidative stress and balancing cardiac sympathovagal control. This study was double-blind, randomized control trial, investigating in 59 Thai TDT patients. After randomization, the participants were divided into two groups. The control group received standard care of TDT patient plus placebo, whereas the intervention group received 600 mg of NAC orally for six months. Serum 8-isoprostane, TNF-alpha, IL-10, 24-hour ECG monitoring, echocardiograms and the incidence of thalassemia-related complications were collected. At baseline, no significant difference in any parameters between the control and the intervention groups. At the end of intervention, the incidence of serious adverse events (i.e. infection, worsening thalassemia) was significantly higher in the control group when compared with the intervention group (24.1% vs. 3.3%, p=0.019) (Chi-square test; absolute risk reduction=20.8%, number needed to treat=4.8). The control group also had significantly lower time-dependent HRV parameters, compared with the intervention group (p=0.025 and 0.030, independent t-test). Treatment with NAC restored HRV and reduced serious adverse event in TDT patients, however, no difference in cardiac complications could be demonstrated. NAC could prevent serious adverse events in TDT patients. The proposed mechanism might be the balancing of sympathovagal control.
Collapse
Affiliation(s)
- Sintip Pattanakuhar
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Rehabilitation Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Arintaya Phrommintikul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Division of Cardiology, Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Adisak Tantiworawit
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Division of Hematology, Department of Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Somdet Srichairattanakool
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
18
|
Kumfu S, Chattipakorn S, Chattipakorn N. Antioxidant and chelator cocktails to prevent oxidative stress under iron-overload conditions. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Panachan J, Chokchaichamnankit D, Weeraphan C, Srisomsap C, Masaratana P, Hatairaktham S, Panichkul N, Svasti J, Kalpravidh RW. Differentially expressed plasma proteins of β-thalassemia/hemoglobin E patients in response to curcuminoids/vitamin E antioxidant cocktails. ACTA ACUST UNITED AC 2019; 24:300-307. [PMID: 30661467 DOI: 10.1080/16078454.2019.1568354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Iron overload and oxidative stress are the major causes of serious complications and mortality in thalassemic patients. Our previous work supports the synergistic effects of antioxidant cocktails (curcuminoids or vitamin E, N-acetylcysteine, and deferiprone) in treatment of β-thalassemia/Hb E patients. This further 2-DE-based proteomic study aimed to identify the plasma proteins that expressed differentially in response to antioxidant cocktails. METHODS Frozen plasma samples of ten normal subjects and ten β-thalassemia/Hb E patients at three-time points (baseline, month 6, and month 12) were reduced the dynamic range of proteome using ProteoMiner kit and separated proteins by two-dimensional gel electrophoresis. Differentially expressed proteins were identified using tandem mass spectrometry. Several plasma proteins were validated by ELISA and Western blot analysis. RESULTS Thirteen and 11 proteins were identified with altered expression levels in the curcuminoids- and vitamin E cocktail groups, respectively. The associations between vitronectin (VTN) expression and total bilirubin levels, as well as between serum paraoxonase/arylesterase 1 (PON1) expression and blood reactive oxygen species were observed. Validation results were consistent with proteomics results. DISCUSSION AND CONCLUSIONS These plasma proteins may provide better understanding of the mechanisms underlying the therapeutic effects of antioxidant cocktails in thalassemic patients.
Collapse
Affiliation(s)
- Jirawan Panachan
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | | | - Churat Weeraphan
- b Laboratory of Biochemistry , Chulabhorn Research Institute , Bangkok , Thailand.,c Department of Molecular Biotechnology and Bioinformatics, Faculty of Science , Prince of Songkla University , Songkla , Thailand
| | - Chantragan Srisomsap
- b Laboratory of Biochemistry , Chulabhorn Research Institute , Bangkok , Thailand
| | - Patarabutr Masaratana
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Suneerat Hatairaktham
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Narumol Panichkul
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Jisnuson Svasti
- b Laboratory of Biochemistry , Chulabhorn Research Institute , Bangkok , Thailand.,d Applied Biological Sciences Program, Chulabhorn Research Institute , Bangkok , Thailand
| | - Ruchaneekorn W Kalpravidh
- a Department of Biochemistry, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| |
Collapse
|
20
|
Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Diagnosis and treatment of cardiac iron overload in transfusion-dependent thalassemia patients. Expert Rev Hematol 2018; 11:471-479. [DOI: 10.1080/17474086.2018.1476134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
21
|
Chaniad P, Morales NP, Rojsitthisak P, Luechapudiporn R. Effects of turmeric extract on hemin-induced low-density lipoprotein oxidation. J Food Biochem 2018. [DOI: 10.1111/jfbc.12507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Prapaporn Chaniad
- Interdisciplinary Program in Pharmacology, Graduate School; Chulalongkorn University; Bangkok Thailand
- School of Medicine; Walailak University; Nakhon Si Thammarat Thailand
| | | | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences; Chulalongkorn University; Bangkok Thailand
- Natural Products for Ageing and Chronic Diseases Research Unit; Chulalongkorn University; Bangkok Thailand
| | - Rataya Luechapudiporn
- Natural Products for Ageing and Chronic Diseases Research Unit; Chulalongkorn University; Bangkok Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences; Chulalongkorn University; Bangkok Thailand
| |
Collapse
|
22
|
Darvishi-Khezri H, Salehifar E, Kosaryan M, Karami H, Alipour A, Shaki F, Aliasgharian A. The impact of silymarin on antioxidant and oxidative status in patients with β-thalassemia major: A crossover, randomized controlled trial. Complement Ther Med 2017; 35:25-32. [DOI: 10.1016/j.ctim.2017.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 02/08/2023] Open
|
23
|
Adly AAM, ElSherif NHK, Ismail EAR, Ibrahim YA, Niazi G, Elmetwally SH. Ischemia-modified albumin as a marker of vascular dysfunction and subclinical atherosclerosis in β-thalassemia major. Redox Rep 2017; 22:430-438. [PMID: 28288539 PMCID: PMC6837380 DOI: 10.1080/13510002.2017.1301624] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Ischemia-modified albumin (IMA) is an altered type of serum albumin that forms under conditions of oxidative stress and an independent predictor of major adverse cardiovascular events. OBJECTIVES To measure the levels of IMA in 45 children and adolescents with β-thalassemia major (β-TM) compared with 30 healthy controls and assess its relation to lipid peroxidation, vascular complications and subclinical atherosclerosis. METHODS β-TM patients without symptoms of heart disease were studied focusing on transfusion history, chelation therapy, serum ferritin, malondialdehyde (MDA) and IMA levels. Echocardiography was performed and carotid intima media thickness (CIMT) was assessed. RESULTS IMA and MDA levels were significantly higher in β-TM patients compared with controls (p < 0.001). IMA was higher among patients with heart disease, pulmonary hypertension risk and serum ferritin ≥2500 µg/l than those without. TM patients compliant to chelation had significantly lower IMA levels. IMA levels were positively correlated to MDA and CIMT while negatively correlated to ejection fraction and fractional shortening. CONCLUSION Our results highlight the role of oxidative stress in the pathophysiology of vascular complications in thalassemia. IMA could be useful for screening of β-TM patients at risk of cardiopulmonary complications and atherosclerosis because its alteration occurs in early subclinical disease.
Collapse
Affiliation(s)
| | | | | | | | - Gamal Niazi
- Radiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
24
|
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, et alEgea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol 2017; 13:94-162. [PMID: 28577489 PMCID: PMC5458069 DOI: 10.1016/j.redox.2017.05.007] [Show More Authors] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/12/2022] Open
Abstract
The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.
Collapse
Affiliation(s)
- Javier Egea
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | - Yves M Frapart
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | | | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ulla G Knaus
- Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Manuela G Lopez
- Institute Teofilo Hernando, Department of Pharmacology, School of Medicine. Univerisdad Autonoma de Madrid, Spain
| | | | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Rainer Schulz
- Institute of Physiology, JLU Giessen, Giessen, Germany
| | - Jose Vina
- Department of Physiology, University of Valencia, Spain
| | - Paul Winyard
- University of Exeter Medical School, St Luke's Campus, Exeter EX1 2LU, UK
| | - Kahina Abbas
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Opeyemi S Ademowo
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Catarina B Afonso
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Haike Antelmann
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica, Faculdade de Ciências, Portugal
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Markus M Bachschmid
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Rui M Barbosa
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vsevolod Belousov
- Molecular technologies laboratory, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - David Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, USA
| | - Esther Bertrán
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona (UB), L'Hospitalet, Barcelona, Spain
| | | | - Serge P Bottari
- GETI, Institute for Advanced Biosciences, INSERM U1029, CNRS UMR 5309, Grenoble-Alpes University and Radio-analysis Laboratory, CHU de Grenoble, Grenoble, France
| | - Paula M Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| | - Guia Carrara
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ana I Casas
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marcus Conrad
- Helmholtz Center Munich, Institute of Developmental Genetics, Neuherberg, Germany
| | - Marcus S Cooke
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - João G Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal; CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pham My-Chan Dang
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Barbara De Smet
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy; Pharmahungary Group, Szeged, Hungary
| | - Bilge Debelec-Butuner
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | - Irundika H K Dias
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Joe Dan Dunn
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Amanda J Edson
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain
| | - Jamel El-Benna
- Université Paris Diderot, Sorbonne Paris Cité, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation, Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Kari E Fladmark
- Department of Molecular Biology, University of Bergen, Bergen, Norway
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Medical Faculty, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Helen Griffiths
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK; Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Vaclav Hampl
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alina Hanf
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Jan Herget
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Pablo Hernansanz-Agustín
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Melanie Hillion
- Institute for Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Huang
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Serap Ilikay
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Vincent Jaquet
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Jaap A Joles
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | | | | | - Mahsa Karbaschi
- Oxidative Stress Group, Dept. Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Lars-Oliver Klotz
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Bato Korac
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Rafal Koziel
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Damir Kračun
- Experimental and Molecular Pediatric Cardiology, German Heart Center Munich at the Technical University Munich, Munich, Germany
| | - Karl-Heinz Krause
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Vladimír Křen
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, UK
| | - João Laranjinha
- Center for Neurosciences and Cell Biology, University of Coimbra and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Antonio Martínez-Ruiz
- Servicio de Immunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Reiko Matsui
- Vascular Biology Section & Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Gethin J McBean
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Stuart P Meredith
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Verónica Miguel
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Yuliya Mikhed
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology and Faculty of Health Sciences, Ljubljana, Slovenia
| | - Lidija Milković
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Antonio Miranda-Vizuete
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miloš Mojović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - María Monsalve
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Pierre-Alexis Mouthuy
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - John Mulvey
- Department of Medicine, University of Cambridge, UK
| | - Thomas Münzel
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Vladimir Muzykantov
- Department of Pharmacology, Center for Targeted Therapeutics & Translational Nanomedicine, ITMAT/CTSA Translational Research Center University of Pennsylvania The Perelman School of Medicine, Philadelphia, PA, USA
| | - Isabel T N Nguyen
- Department of Nephrology & Hypertension, University Medical Center Utrecht, The Netherlands
| | - Matthias Oelze
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos M Palmeira
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Aleksandra Pavićević
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Brandán Pedre
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Paris Descartes University, Sorbonne Paris Cité, Paris, France; ESPE of Paris, Paris Sorbonne University, Paris, France
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | | | - Andrew R Pitt
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Henrik E Poulsen
- Laboratory of Clinical Pharmacology, Rigshospitalet, University Hospital Copenhagen, Denmark; Department of Clinical Pharmacology, Bispebjerg Frederiksberg Hospital, University Hospital Copenhagen, Denmark; Department Q7642, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ignacio Prieto
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Maria Pia Rigobello
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Natalia Robledinos-Antón
- Instituto de Investigaciones Biomédicas "Alberto Sols" UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz), Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid. Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Anabela P Rolo
- Center for Neurosciences & Cell Biology of the University of Coimbra, Coimbra, Portugal; Department of Life Sciences of the Faculty of Sciences & Technology of the University of Coimbra, Coimbra, Portugal
| | - Francis Rousset
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, Republic of Macedonia
| | - Nuno Saraiva
- CBIOS, Universidade Lusófona Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Shlomo Sasson
- Institute for Drug Research, Section of Pharmacology, Diabetes Research Unit, The Hebrew University Faculty of Medicine, Jerusalem, Israel
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany
| | - Khrystyna Semen
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Tamara Seredenina
- Dept. of Pathology and Immunology, Centre Médical Universitaire, Geneva, Switzerland
| | - Anastasia Shakirzyanova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Thierry Soldati
- Department of Biochemistry, Science II, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva-4, Switzerland
| | - Bebiana C Sousa
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B47ET, UK
| | - Corinne M Spickett
- Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Ana Stancic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic" and Faculty of Biology, Belgrade, Serbia
| | - Marie José Stasia
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC-IMAG, F38000 Grenoble, France; CDiReC, Pôle Biologie, CHU de Grenoble, Grenoble, F-38043, France
| | - Holger Steinbrenner
- Institute of Nutrition, Department of Nutrigenomics, Friedrich Schiller University, Jena, Germany
| | - Višnja Stepanić
- Ruđer Bošković Institute, Division of Molecular Medicine, Zagreb, Croatia
| | - Sebastian Steven
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, UK
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey
| | - Fulvio Ursini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | - Olga Vajnerova
- Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Videnska 1083, CZ-142 20 Prague, Czech Republic
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Lokman Varisli
- Harran University, Arts and Science Faculty, Department of Biology, Cancer Biology Lab, Osmanbey Campus, Sanliurfa, Turkey
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, and Institute for Ageing, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - A Suha Yalçın
- Department of Biochemistry, School of Medicine, Marmara University, İstanbul, Turkey
| | | | - Neven Žarković
- Laboratory for Oxidative Stress, Rudjer Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hnevotinska 3, Olomouc 77515, Czech Republic
| | | | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Andreas Papapetropoulos
- Laboratoty of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tilman Grune
- German Institute of Human Nutrition, Department of Toxicology, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Santiago Lamas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Harald H H W Schmidt
- Department of Pharmacology & Personalized Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Fabio Di Lisa
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padova, Padova, Italy.
| | - Andreas Daiber
- Molecular Cardiology, Center for Cardiology, Cardiology 1, University Medical Center Mainz, Mainz, Germany; DZHK (German Centre for Cardiovascular Research), partner site Rhine-Main, Mainz, Germany.
| |
Collapse
|
25
|
Endogamous marriage and the prevalence of hemoglobin E in ethnic groups of northern Thailand. ASIAN PAC J TROP MED 2017; 10:414-417. [PMID: 28552112 DOI: 10.1016/j.apjtm.2017.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/23/2017] [Accepted: 03/01/2017] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To investigate the impact of the endogamous marriage culture on the prevalence of the hemoglobin E (HbE) recessive variant. METHODS The prevalence of the hemoglobin E (HbE) recessive variant was determined by dot-blot hybridization in 4 endogamous villages (1 Mlabri and 3 Htin ethnic groups) in comparison with 9 other nearby non-endogamous populations. RESULTS Although the overall HbE prevalence in the population studied (8.44%, 33/391) was not significantly different from that of the general southeast Asian population, a high prevalence and individuals with homozygous HbE were observed in two villages, the Mlabri from Wiang Sa district and the Htin from Thung Chang district of Nan province (26.3% and 26.9%, respectively). The low HbE allelic frequency noticed in some endogamous populations suggests that not only endogamy but also other evolutionary forces, such as founder effect and HbE/β-thalassemia negative selection may have an effect on the distribution of the HbE trait. CONCLUSION Our study strongly documents that cultural impact has to be considered in the extensive prevalence studies for genetic disorders in the ethnic groups of northern Thailand.
Collapse
|
26
|
Hirsch RE, Sibmooh N, Fucharoen S, Friedman JM. HbE/β-Thalassemia and Oxidative Stress: The Key to Pathophysiological Mechanisms and Novel Therapeutics. Antioxid Redox Signal 2017; 26:794-813. [PMID: 27650096 PMCID: PMC5421591 DOI: 10.1089/ars.2016.6806] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/16/2016] [Indexed: 01/19/2023]
Abstract
SIGNIFICANCE Oxidative stress and generation of free radicals are fundamental in initiating pathophysiological mechanisms leading to an inflammatory cascade resulting in high rates of morbidity and death from many inherited point mutation-derived hemoglobinopathies. Hemoglobin (Hb)E is the most common point mutation worldwide. The βE-globin gene is found in greatest frequency in Southeast Asia, including Thailand, Malaysia, Indonesia, Vietnam, Cambodia, and Laos. With the wave of worldwide migration, it is entering the gene pool of diverse populations with greater consequences than expected. CRITICAL ISSUES While HbE by itself presents as a mild anemia and a single gene for β-thalassemia is not serious, it remains unexplained why HbE/β-thalassemia (HbE/β-thal) is a grave disease with high morbidity and mortality. Patients often exhibit defective physical development, severe chronic anemia, and often die of cardiovascular disease and severe infections. Recent Advances: This article presents an overview of HbE/β-thal disease with an emphasis on new findings pointing to pathophysiological mechanisms derived from and initiated by the dysfunctional property of HbE as a reduced nitrite reductase concomitant with excess α-chains exacerbating unstable HbE, leading to a combination of nitric oxide imbalance, oxidative stress, and proinflammatory events. FUTURE DIRECTIONS Additionally, we present new therapeutic strategies that are based on the emerging molecular-level understanding of the pathophysiology of this and other hemoglobinopathies. These strategies are designed to short-circuit the inflammatory cascade leading to devastating chronic morbidity and fatal consequences. Antioxid. Redox Signal. 26, 794-813.
Collapse
Affiliation(s)
- Rhoda Elison Hirsch
- Department of Medicine (Hematology), Albert Einstein College of Medicine, Bronx, New York
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Nathawut Sibmooh
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, Thailand
| | - Joel M. Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|