1
|
Kuzmenko NV, Galagudza MM. Hormonal basis of seasonal metabolic changes in mammalian species. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:131-161. [PMID: 39059984 DOI: 10.1016/bs.apcsb.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Seasonal changes in external conditions (photoperiod, meteorological conditions, diet) cause adaptive changes in both energy and substrate metabolism in the animals of mammalian species. In summer, long days and a rich diet contribute to relative elevation in the levels of thyroid hormones (TH), but warmer weather lowers their levels. In winter, short days and a poor diet inhibit TH synthesis, but low temperatures increase their secretion. In addition, the results of our meta-analyses revealed a significant role of atmospheric pressure in circannual fluctuations of metabolic parameters in humans. The changes in photoperiod are generally viewed as a major factor contributing to seasonal rhythm regulation However, numerous data show that season-dependent metabolic changes in mammals could be also accounted for by meteorological factors and diet.
Collapse
Affiliation(s)
- N V Kuzmenko
- Department for Experimental Physiology and Pharmacology, Almazov National Medical Research Centre, St. Petersburg, Russia.
| | - M M Galagudza
- Department for Experimental Physiology and Pharmacology, Almazov National Medical Research Centre, St. Petersburg, Russia
| |
Collapse
|
2
|
Abdollahi-Karizno M, Roshanravan B, Zardast M, Naseri M. Aqueous extract of Teucrium polium ameliorates diabetes and induced-prostatic complication. J Diabetes Metab Disord 2022; 21:1241-1247. [PMID: 36404824 PMCID: PMC9672261 DOI: 10.1007/s40200-022-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/13/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Prostatic complications are common among diabetic patients. Previous research demonstrates that Teucrium polium (T. polium) has beneficial effects in diabetic cases. This study, therefore, aimed to evaluate the impacts of T. polium aqueous extract on the prostate of diabetic rats. METHODS Diabetes was induced in male Wistar rats by intraperitoneal injection of streptozotocin (50 mg/kg). a total of 40 Rats were randomly divided into the following groups: Control, Control + TP100 (TP100), Diabetic, Diabetic + TP100 (DTP100) and Diabetic + TP200 (DTP200). The intervention was done orally once per day for 56 days (8 weeks). An oral glucose tolerance test was conducted, glucose and insulin levels were assessed. Microscopic features of the ventral prostatic lobe were evaluated pathologically. RESULTS T. polium at both doses significantly reduced glucose levels in an insulin-independent pathway. T. polium at both doses significantly improved prostate weight, prostate epithelium height, and prostate secretory activity in comparison with the diabetic group. Interestingly, treatment of T. polium to healthy rats led to decreased epithelial height. CONCLUSION It could be deduced that T. polium has useful impacts on glucose control and may prevent prostatic complications. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40200-022-00979-4.
Collapse
Affiliation(s)
- Mahdi Abdollahi-Karizno
- Medical Student, Student Research Committee, Birjand University of Medical Sciences, Birjand, IR Iran
| | - Babak Roshanravan
- Medical Student, Student Research Committee, Birjand University of Medical Sciences, Birjand, IR Iran
| | - Mahmoud Zardast
- Atherosclerosis and Coronary Artery Research Centre, Department of Pathology, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Genomic Research Group, Birjand University of Medical Sciences, Ghafari Street, Birjand, Southern Khorasan Iran
| |
Collapse
|
3
|
Melatonin Reverses the Warburg-Type Metabolism and Reduces Mitochondrial Membrane Potential of Ovarian Cancer Cells Independent of MT1 Receptor Activation. Molecules 2022; 27:molecules27144350. [PMID: 35889222 PMCID: PMC9321770 DOI: 10.3390/molecules27144350] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic malignancy, and melatonin has shown various antitumor properties. Herein, we investigated the influence of melatonin therapy on energy metabolism and mitochondrial integrity in SKOV-3 cells and tested whether its effects depended on MT1 receptor activation. SKOV-3 cells were exposed to different melatonin concentrations, and experimental groups were divided as to the presence of MT1 receptors (melatonin groups) or receptor absence by RNAi silencing (siRNA MT1+melatonin). Intracellular melatonin levels increased after treatment with melatonin independent of the MT1. The mitochondrial membrane potential of SKOV-3 cells decreased in the group treated with the highest melatonin concentration. Melatonin reduced cellular glucose consumption, while MT1 knockdown increased its consumption. Interconversion of lactate to pyruvate increased after treatment with melatonin and was remarkable in siRNA MT1 groups. Moreover, lactate dehydrogenase activity decreased with melatonin and increased after MT1 silencing at all concentrations. The UCSC XenaBrowser tool showed a positive correlation between the human ASMTL gene and the ATP synthase genes, succinate dehydrogenase gene (SDHD), and pyruvate dehydrogenase genes (PDHA and PDHB). We conclude that melatonin changes the glycolytic phenotype and mitochondrial integrity of SKOV-3 cells independent of the MT1 receptor, thus decreasing the survival advantage of OC cells.
Collapse
|
4
|
Nyamsambuu A, Khan MA, Zhou X, Chen HC. Molecular mechanism of inhibitory effects of melatonin on prostate cancer cell proliferation, migration and invasion. PLoS One 2022; 17:e0261341. [PMID: 35061708 PMCID: PMC8782292 DOI: 10.1371/journal.pone.0261341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
The increasing incidence of prostate cancer (PCa) indicates an urgent need for the development of new effective drug therapy. There are limited options to treat the PCa, this study tried to determine a new therapy option for this acute cancer. Androgen-independent PCa cell lines PC3 and DU145 were treated with different melatonin concentrations (0.1~3.5 mM) for 1~3 days and assessed cell migration, cell invasion, cycle arrest in G0/G1 phase as well as apoptosis. We utilized RNA-seq technology to analyze the transcriptional misregulation pathways in DU145 prostate cancer cell line with melatonin (0.5 mM) treatment. Data revealed 20031 genes were up and down-regulated, there were 271 genes that differentially expressed: 97 up-regulated (P<0.05) and 174 down-regulated (P<0.05) genes. Furthermore, RNA-seq results manifested that the melatonin treatment led to a significant increase in the expression levels of HPGD, IL2Rβ, NGFR, however, IGFBP3 and IL6 (P <0.05) had decreased expression levels. The immunoblot assay revealed the expression of IL2Rβ and NGFR genes was up-regulated, qPCR confirmed the gene expression of HPGD and IL2RB were also up-regulated in Du145 cells. Consequently, we probed mechanisms that generate kinetic patterns of NF-κB-dependent gene expression in PCa cells responding to a NF-κB-activation, the significant results were indicated by the inhibition of the NF-kB pathway via IL2Rβ actions. Based on our investigation, it could be concluded that melatonin is a chemotherapeutic molecule against PCa and provides a new idea for clinical therapy of PCa.
Collapse
Affiliation(s)
- Altannavch Nyamsambuu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Md. Asaduzzaman Khan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Xi Zhou
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Han-Chun Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Mehrzadi MH, Hosseinzadeh A, Juybari KB, Mehrzadi S. Melatonin and urological cancers: a new therapeutic approach. Cancer Cell Int 2020; 20:444. [PMID: 32943992 PMCID: PMC7488244 DOI: 10.1186/s12935-020-01531-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Urological cancers are responsible for thousands of cancer-related deaths around the world. Despite all developments in therapeutic approaches for cancer therapy, the absence of efficient treatments is a critical and vital problematic issue for physicians and researchers. Furthermore, routine medical therapies contribute to several undesirable adverse events for patients, reducing life quality and survival time. Therefore, many attempts are needed to explore potent alternative or complementary treatments for great outcomes. Melatonin has multiple beneficial potential effects, including anticancer properties. Melatonin in combination with chemoradiation therapy or even alone could suppress urological cancers through affecting essential cellular pathways. This review discusses current evidence reporting the beneficial effect of melatonin in urological malignancies, including prostate cancer, bladder cancer, and renal cancer.
Collapse
Affiliation(s)
- Mohammad Hossein Mehrzadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kobra Bahrampour Juybari
- Department of Pharmacology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Olukole SG, Lanipekun DO, Ola-Davies EO, Oke BO. Melatonin attenuates bisphenol A-induced toxicity of the adrenal gland of Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5971-5982. [PMID: 30613877 DOI: 10.1007/s11356-018-4024-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the role of melatonin (MLT) on adrenal gland toxicity induced by bisphenol A (BPA). Adult male rats were divided into four groups of seven animals each: Group I (control) received oral 0.2 ml canola oil; group II received intra-peritoneal 10 mg/kg BW/day MLT; and group III received oral BPA (10 mg/kg BW/day). Group IV rats were treated with same dose of BPA as group III with a concomitant intra-peritoneal 10 mg/kg BW/day MLT. All treatments lasted for 14 days. BPA significantly increased (P < 0.05) adrenal index, circulating levels of corticosterone and adrenocorticotropic hormone (ACTH) in the rats. BPA caused marked vascular congestion, hyperplasia, cellular distortion, increased lipid peroxidation, decreased antioxidant enzymes, and decreased expression of αSmooth muscle actin as well as vimentin proteins. The concomitant treatment with MLT ameliorated these BPA-induced alterations. It is likely that melatonin attenuates BPA-induced alterations of the adrenal gland of rats through the antioxidant defense mechanism.
Collapse
|
7
|
Melatonin and Docosahexaenoic Acid Decrease Proliferation of PNT1A Prostate Benign Cells via Modulation of Mitochondrial Bioenergetics and ROS Production. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5080798. [PMID: 30728886 PMCID: PMC6343140 DOI: 10.1155/2019/5080798] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/20/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022]
Abstract
Prostate cancer development has been associated with changes in mitochondrial activity and reactive oxygen species (ROS) production. Melatonin (MLT) and docosahexaenoic acid (DHA) have properties to modulate both, but their protective role, mainly at early stages of prostate cancer, remains unclear. In this study, the effects of MLT and DHA, combined or not, on PNT1A cells with regard to mitochondria bioenergetics, ROS production, and proliferation-related pathways were examined. Based on dose response and lipid accumulation assays, DHA at 100 μM and MLT at 1 μM for 48 h were chosen. DHA doubled and MLT reduced (40%) superoxide anion production, but coincubation (DM) did not normalize to control. Hydrogen peroxide production decreased after MLT incubation only (p < 0.01). These alterations affected the area and perimeter of mitochondria, since DHA increased whereas MLT decreased, but such hormone has no effect on coincubation. DHA isolated did not change the oxidative phosphorylation rate (OXPHOS), but decreased (p < 0.001) the mitochondrial bioenergetic reserve capacity (MBRC) which is closely related to cell responsiveness to stress conditions. MLT, regardless of DHA, ameliorated OXPHOS and recovered MBRC after coincubation. All incubations decreased AKT phosphorylation; however, only MLT alone inhibited p-mTOR. MLT increased p-ERK1/2 and, when combined to DHA, increased GSTP1 expression (p < 0.01). DHA did not change the testosterone levels in the medium, whereas MLT alone or coincubated decreased by about 20%; however, any incubation affected AR expression. Moreover, incubation with luzindole revealed that MLT effects were MTR1/2-independent. In conclusion, DHA increased ROS production and impaired mitochondrial function which was probably related to AKT inactivation; MLT improved OXPHOS and decreased ROS which was related to AKT/mTOR dephosphorylation, and when coincubated, the antiproliferative action was related to mitochondrial bioenergetic modulation associated to AKT and ERK1/2 regulation. Together, these findings point to the potential application of DHA and MLT towards the prevention of proliferative prostate diseases.
Collapse
|
8
|
Sharma R, Sahota P, Thakkar MM. Melatonin promotes sleep in mice by inhibiting orexin neurons in the perifornical lateral hypothalamus. J Pineal Res 2018; 65:e12498. [PMID: 29654707 DOI: 10.1111/jpi.12498] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022]
Abstract
Melatonin promotes sleep. However, the underlying mechanisms are unknown. Orexin neurons in the perifornical lateral hypothalamus (PFH) are pivotal for wake promotion. Does melatonin promote sleep by inhibiting orexin neurons? We used C57BL/6J mice and designed 4 experiments to address this question. Experiment 1 used double-labeled immunofluorescence and examined the presence of melatonin receptors on orexin neurons. Second, mice, implanted with bilateral guides targeted toward PFH and sleep-recording electrodes, were infused with melatonin (500 pmole/50 nL/side) at dark onset (onset of active period), and spontaneous bouts of sleep-wakefulness were examined. Third, mice, implanted with bilateral guides into the PFH, were infused with melatonin (500 pmole/50 nL/side) at dark onset and euthanized 2 hours later, to examine the activation of orexin neurons using c-Fos expression in orexin neurons. Fourth, mice, implanted with PFH bilateral guides and sleep-recording electrodes, were infused with melatonin receptor antagonist, luzindole (10 pmol/50 nL/side), at light onset (onset of sleep period), and spontaneous bouts of sleep-wakefulness were examined. Our results suggest that orexin neurons express MT1, but not MT2 receptors. Melatonin infusion into the PFH, at dark onset, site-specifically and significantly increased NREM sleep (43.7%, P = .003) and reduced wakefulness (12.3%, P = .013). Local melatonin infusion at dark onset inhibited orexin neurons as evident by a significant reduction (66%, P = .0004) in the number of orexin neurons expressing c-Fos. Finally, luzindole infusion-induced blockade of melatonin receptors in PFH at sleep onset significantly increased wakefulness (44.1%, P = .015). Based on these results, we suggest that melatonin may act via the MT1 receptors to inhibit orexin neurons and promote sleep.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, MO, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, MO, USA
| | - Mahesh M Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, MO, USA
| |
Collapse
|
9
|
Olukole SG, Ajani SO, Ola-Davies EO, Lanipekun DO, Aina OO, Oyeyemi MO, Oke BO. Melatonin ameliorates bisphenol A-induced perturbations of the prostate gland of adult Wistar rats. Biomed Pharmacother 2018; 105:73-82. [PMID: 29843047 DOI: 10.1016/j.biopha.2018.05.125] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 02/04/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that has been demonstrated to induce alterations in reproductive organs while melatonin (ML), an antioxidant, present in plants and animals, is capable of protecting against EDC-induced alterations. Adult male Wistar rats (average weight, 240 + 10 g) were divided into four groups of ten animals each: Rats in group I (control) received oral 0.2 ml 1% dimethyl sulfoxide (DMSO)/99% canola oil as vehicle; group II received intra-peritoneal 10 mg/kg BW/day ML. Group III received oral BPA dissolved in DMSO and solubilized in canola oil at 10 mg/kg BW/day. Group IV were treated with same dose of BPA as group III with a concomitant intra-peritoneal 10 mg/kg BW/day ML. All treatments lasted for 14 days. BPA significantly increased the prostatic index of the rats while ML ameliorated it. BPA significantly increased serum levels of estrogen as well as prostate-specific antigen but decreased serum testosterone in the rats while concomitant treatment with ML ameliorated these alterations. Also, BPA caused vascular congestion, hyperplasia (functional, reactive and atypical) of prostatic epithelium as well as tubular atrophy the rats while ML attenuated the observed lesions. Decreased localization of αSmooth muscle actin, vimentin and S100 proteins were observed in the BPA-treated rats while these decreases were ameliorated by ML. The present study has shown that sub-acute oral administration of BPA induced alterations in prostatic index, serum hormone levels, down-regulated protein localization and induced morphological lesions of the prostate gland in rats while concomitant treatment with intra-peritoneal ML ameliorated these conditions. Hence, low dose of ML can protect against BPA-induced toxicity of the prostate gland of rats.
Collapse
Affiliation(s)
- Samuel Gbadebo Olukole
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Nigeria.
| | - Samuel Olumide Ajani
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Eunice Olufunke Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | | | | | - Bankole Olusiji Oke
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| |
Collapse
|
10
|
Pathological lesions and global DNA methylation in rat prostate under streptozotocin-induced diabetes and melatonin supplementation. Cell Biol Int 2018; 42:470-487. [DOI: 10.1002/cbin.10920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 12/17/2017] [Indexed: 12/14/2022]
|
11
|
Melatonin as a potential anticarcinogen for non-small-cell lung cancer. Oncotarget 2018; 7:46768-46784. [PMID: 27102150 PMCID: PMC5216835 DOI: 10.18632/oncotarget.8776] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/31/2016] [Indexed: 12/23/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a leading cause of death from cancer worldwide. Melatonin, an indoleamine discovered in the pineal gland, exerts pleiotropic anticancer effects against a variety of cancer types. In particular, melatonin may be an important anticancer drug in the treatment of NSCLC. Herein, we review the correlation between the disruption of the melatonin rhythm and NSCLC incidence; we also evaluate the evidence related to the effects of melatonin in inhibiting lung carcinogenesis. Special focus is placed on the oncostatic effects of melatonin, including anti-proliferation, induction of apoptosis, inhibition of invasion and metastasis, and enhancement of immunomodulation. We suggest the drug synergy of melatonin with radio- or chemotherapy for NSCLC could prove to be useful. Taken together, the information complied herein may serve as a comprehensive reference for the anticancer mechanisms of melatonin against NSCLC, and may be helpful for the design of future experimental research and for advancing melatonin as a therapeutic agent for NSCLC.
Collapse
|
12
|
Ozsavci D, Nazli A, Bingol Ozakpinar O, Yanikkaya Demirel G, Vanizor Kural B, Sener A. Native High-Density Lipoprotein and Melatonin Improve Platelet Response Induced by Glycated Lipoproteins. Folia Biol (Praha) 2018; 64:144-152. [PMID: 30724160 DOI: 10.14712/fb2018064040144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Activated platelets and glycated lipoproteins are responsible for atherothrombosis in diabetics. Melatonin and native high-density lipoproteins are crucial in the preservation of pro/oxidant-antioxidant balance. The aim of the present study was to investigate the in vitro effects of native high-density lipoproteins and melatonin on altering the platelet response induced by glycated lipoproteins. Low-density lipoproteins and high-density lipoproteins were purified from plasma by ultracentrifugation and were glycated with glucose for three weeks. After incubation with or without melatonin/or native highdensity lipoproteins, low-density lipoproteins, glycated low-density lipoproteins/glycated high-density lipoproteins were added to ADP-induced platelets. Oxidative parameters, caspase-3/9 and nitric oxide levels were measured spectrophotometrically; CD62-P/ annexin-V expression was determined by flow cytometry. In glycated low-density lipoprotein/glycated high-density lipoprotein-treated groups, platelet malondialdehyde/ protein carbonyl, P-selectin, annexin-V, caspase-3/9 levels were increased (ranging from P < 0.001 to P < 0.01); glutathione and nitric oxide levels were reduced (ranging from P < 0.001 to P < 0.01). In glycated low-density lipoprotein/glycated high-density lipoprotein-treated groups, melatonin treatment reduced malondialdehyde, protein carbonyl, CD62-P, annexin-V and caspase-3/9 (P < 0.001, P < 0.01) levels and elevated nitric oxide (only glycated low-density lipoproteins). In glycated low-density lipoprotein/glycated high-density lipoprotein-treated groups, native high-density lipoprotein treatment reduced malondialdehyde, protein carbonyl, annexin-V, caspase-3/9 levels (P < 0.001, P < 0.01) and increased glutathione; nitric oxide levels (only with gly-HDL). Both melatonin and high-density lipoproteins should be regarded as novel promising mechanism-based potential therapeutic targets to prevent atherothrombosis in diabetics.
Collapse
Affiliation(s)
- D Ozsavci
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - A Nazli
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - O Bingol Ozakpinar
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| | - G Yanikkaya Demirel
- Department of Immunology, School of Medicine, Yeditepe University, İstanbul, Turkey
| | - B Vanizor Kural
- Department of Biochemistry, Medical Faculty, Karadeniz Technical University, Trabzon, Turkey
| | - A Sener
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey
| |
Collapse
|
13
|
Kiss Z, Ghosh PM. WOMEN IN CANCER THEMATIC REVIEW: Circadian rhythmicity and the influence of 'clock' genes on prostate cancer. Endocr Relat Cancer 2016; 23:T123-T134. [PMID: 27660402 PMCID: PMC5148656 DOI: 10.1530/erc-16-0366] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 01/10/2023]
Abstract
The androgen receptor (AR) plays a key role in the development and progression of prostate cancer (CaP). Since the mid-1990s, reports in the literature pointed out higher incidences of CaP in some select groups, such as airline pilots and night shift workers in comparison with those working regular hours. The common finding in these 'high-risk' groups was that they all experienced a deregulation of the body's internal circadian rhythm. Here, we discuss how the circadian rhythm affects androgen levels and modulates CaP development and progression. Circadian rhythmicity of androgen production is lost in CaP patients, with the clock genes Per1 and Per2 decreasing, and Bmal1 increasing, in these individuals. Periodic expression of the clock genes was restored upon administration of the neurohormone melatonin, thereby suppressing CaP progression. Activation of the melatonin receptors and the AR antagonized each other, and therefore the tumour-suppressive effects of melatonin and the clock genes were most clearly observed in the absence of androgens, that is, in conjunction with androgen deprivation therapy (ADT). In addition, a large-scale study found that high-dose radiation was more effective in CaP patients when it was delivered before 17:00 h, compared with those delivered after 17:00 h, suggesting that the therapy was more effective when delivered in synchrony with the patient's circadian clock. As CaP patients are shown to become easily resistant to new therapies, perhaps circadian delivery of these therapeutic agents or delivery in conjunction with melatonin and its novel analogs should be tested to see if they prevent this resistance.
Collapse
Affiliation(s)
- Zsofia Kiss
- VA Northern California Health Care SystemMather, California, USA
- Department of UrologyUniversity of California at Davis, Sacramento, California, USA
| | - Paramita M Ghosh
- VA Northern California Health Care SystemMather, California, USA
- Department of UrologyUniversity of California at Davis, Sacramento, California, USA
- Department of Biochemistry and Molecular MedicineUniversity of California at Davis, Sacramento, California, USA
| |
Collapse
|
14
|
Rosales GJ, Busolini FI, Mohamed FH, Filippa VP. Effects of melatonin and gonadal androgens on cell proliferation in the pituitary of viscachas (Lagostomus maximus maximus). Cell Prolif 2016; 49:644-53. [PMID: 27484731 DOI: 10.1111/cpr.12280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/01/2016] [Indexed: 01/21/2023] Open
Abstract
OBJECTIVES Melatonin and androgens are involved in the regulation of cell proliferation. However, effects of these hormones on pituitary pars distalis (PD) of male viscachas is not fully understood. In the present study, we analysed melatonin and gonadal androgens' effects on proliferating cell nuclear antigen (PCNA) expression. MATERIALS AND METHODS Pituitary glands from foetuses, immature individuals, prepubertal individuals and adult viscachas during their reproductive cycle, after melatonin administration and after castration, were used. PCNA-ir cells were detected by immunocytochemistry and morphometrically quantified using image analysis. RESULTS Total percentage of PCNA-ir cells varied seasonally in the adult pituitary, with maximum values during the reproductive period and minima during gonadal regression periods. Percentages of PCNA-ir cells increased after melatonin administration, whereas it decreased after castration. Caudal end and ventral regions were the PD zones which were most affected by seasonal variations and castration. PCNA expression was highest in foetal pituitary from midpregnancy. Numbers of PCNA-ir cells decreased during sexual maturity. CONCLUSIONS Our results demonstrate the effect of gonadal androgens on cell proliferation during the reproductive period and sexual maturity of these animals. Exogenous melatonin increased PD cell proliferation in adults. Thus, these hormones seem to be involved in different mechanisms that regulate cell renewal of PD in this seasonally breeding rodent.
Collapse
Affiliation(s)
- G J Rosales
- Laboratorio de Histología, Área Morfología, Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700, San Luis, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - F I Busolini
- Laboratorio de Histología, Área Morfología, Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700, San Luis, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - F H Mohamed
- Laboratorio de Histología, Área Morfología, Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700, San Luis, Argentina
| | - V P Filippa
- Laboratorio de Histología, Área Morfología, Departamento de Bioquímica y Ciencias Biológicas, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, 5700, San Luis, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|