1
|
Hsu SN, Stephen LA, Phadwal K, Dillon S, Carter R, Morton NM, Luijten I, Emelianova K, Amin AK, Macrae VE, Freeman TC, Hsu YJ, Staines KA, Farquharson C. Mitochondrial dysfunction and mitophagy blockade contribute to renal osteodystrophy in chronic kidney disease-mineral bone disorder. Kidney Int 2025:S0085-2538(25)00085-7. [PMID: 39922377 DOI: 10.1016/j.kint.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/10/2025]
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) presents with extra-skeletal calcification and renal osteodystrophy (ROD). However, the pathophysiology of ROD remains unclear. Here we examine the hypothesis that stalled mitophagy within osteocytes of CKD-MBD mouse models contributes to bone loss. RNA-seq analysis revealed an altered expression of genes associated with mitophagy and mitochondrial function in tibia of CKD-MBD mice. The expression of mitophagy regulators, p62/SQSTM1, ATG7 and LC3, was inconsistent with functional mitophagy, and in mito-QC reporter mice with ROD, there was a two- to three-fold increase in osteocyte mitolysosomes. To determine if uremic toxins were potentially responsible for these observations, treatment of cultured osteoblasts with uremic toxins revealed increased mitolysosome number and mitochondria with distorted morphology. Membrane potential and oxidative phosphorylation were also decreased, and oxygen-free radical production increased. The altered p62/SQSTM1 and LC3-II expression was consistent with impaired mitophagy machinery, and the effects of uremic toxins were reversible by rapamycin. A causal link between uremic toxins and the development of mitochondrial abnormalities and ROD was established by showing that a mitochondria-targeted antioxidant (MitoQ) and the charcoal adsorbent AST-120 were able to mitigate the uremic toxin-induced mitochondrial changes and improve bone health. Overall, our study shows that impaired clearance of damaged mitochondria may contribute to the ROD phenotype. Targeting uremic toxins, oxygen-free radical production and the mitophagy process may offer novel routes for intervention to preserve bone health in patients with CKD-MBD. This would be timely as our current armamentarium of anti-fracture medications for patients with severe CKD-MBD is limited.
Collapse
Affiliation(s)
- Shun-Neng Hsu
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK; Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Louise A Stephen
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Kanchan Phadwal
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Scott Dillon
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Roderick Carter
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Ineke Luijten
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Katie Emelianova
- UK Dementia Research Institute, University of Edinburgh, Edinburgh Medical School, Edinburgh, UK; Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Anish K Amin
- Edinburgh Orthopaedics, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Vicky E Macrae
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, UK
| | - Tom C Freeman
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Katherine A Staines
- Centre for Lifelong Health, School of Applied Sciences, University of Brighton, Brighton, UK
| | - Colin Farquharson
- Division of Functional Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
2
|
Dabravolski SA, Churov AV, Elizova NV, Ravani AL, Karimova AE, Sukhorukov VN, Orekhov AN. Association between atherosclerosis and the development of multi-organ pathologies. SAGE Open Med 2024; 12:20503121241310013. [PMID: 39734765 PMCID: PMC11672402 DOI: 10.1177/20503121241310013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/09/2024] [Indexed: 12/31/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease affecting the vascular system, characterised by the accumulation of modified lipoproteins, immune cell aggregation and the development of fibrous tissue within blood vessel walls. As atherosclerosis impacts blood vessels, its adverse effects may manifest across various tissues and organs. In this review, we examine the association of atherosclerosis with Alzheimer's disease, stroke, pancreatic and thyroid dysfunction, kidney stones and chronic kidney diseases. In several cases, the reciprocal causative effect of these diseases on the progression of atherosclerosis is also discussed. Particular attention is given to common risk factors, biomarkers and identified molecular mechanisms linking the pathophysiology of atherosclerosis to the dysfunction of multiple tissues and organs. Understanding the role of atherosclerosis and its associated microenvironmental conditions in the pathology of multi-organ disorders may unveil novel therapeutic avenues for the prevention and treatment of cardiovascular and associated diseases.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel, Israel
| | - Alexey V Churov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Pirogov Russian National Research Medical University, Russia Gerontology Clinical Research Centre, Institute on Ageing Research, Russian Federation, Moscow, Russia
| | | | | | - Amina E Karimova
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, Moscow, Russia
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia
- Institute of Human Morphology, Petrovsky Russian National Centre of Surgery, Moscow, Russia
| | | |
Collapse
|
3
|
Iwamoto W, Ikeda T, Nishikawa H, Hirano M, Kinoshita H, Ono M, Kurogi K, Sakakibara Y, Suiko M, Yasuda S. Regulatory effects of antioxidants on indoxyl sulfate-enhanced intracellular oxidation and impaired phagocytic activity in differentiated U937 human macrophage cells. Biosci Biotechnol Biochem 2024; 88:1081-1089. [PMID: 38849302 DOI: 10.1093/bbb/zbae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Indoxyl sulfate (IS), a uremic toxin, is a physiologically active sulfated metabolite, specifically in kidney failure patients. Our previous studies have shown that IS downregulates phagocytic immune function in a differentiated HL-60 human macrophage cell model. However, it remains unclear whether IS exerts similar effects on macrophage function in other cell types or in lipopolysaccharide (LPS)-sensitive immune cell models. Therefore, this study aimed to investigate the effects of IS on intracellular oxidation levels and phagocytic activity in a differentiated U937 human macrophage cell model, both in the absence and presence of LPS. Our results demonstrated that IS significantly increases intracellular oxidation levels and decreases phagocytic activity, particularly in cells activated by LPS. Furthermore, we found that 2-acetylphenothiazine, an NADH oxidase inhibitor, attenuates the effects of IS in LPS-activated macrophage cells. Representative antioxidants, trolox, α-tocopherol, and ascorbic acid, significantly mitigated the effects of IS on the macrophages responding to LPS.
Collapse
Affiliation(s)
- Wakana Iwamoto
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| | - Tomohiro Ikeda
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| | - Hirotaka Nishikawa
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| | - Masashi Hirano
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| | - Hideki Kinoshita
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| | - Masateru Ono
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| | - Katsuhisa Kurogi
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yoichi Sakakibara
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Masahito Suiko
- Support Office for the Next Generation Researcher, University of Miyazaki, Miyazaki, Japan
| | - Shin Yasuda
- Graduate School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
- Department of Food and Life Sciences, School of Agriculture, Tokai University, Mashiki-Cho, Kamimashiki-Gun, Kumamoto, Japan
| |
Collapse
|
4
|
Muthuraman A, Sayem ASM, Meenakshisundaram S, Ali N, Ahmad SF, AlAsmari AF, Nishat S, Lim KG, Paramaswaran Y. Preventive Action of Beta-Carotene against the Indoxyl Sulfate-Induced Renal Dysfunction in Male Adult Zebrafish via Regulations of Mitochondrial Inflammatory and β-Carotene Oxygenase-2 Actions. Biomedicines 2023; 11:2654. [PMID: 37893028 PMCID: PMC10603961 DOI: 10.3390/biomedicines11102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Indoxyl sulfate (IS) is a metabolic byproduct of indole metabolism. IS readily interacts with the mitochondrial redox metabolism, leading to altered renal function. The β-carotene oxygenase-2 (BCO2) enzyme converts carotenoids to intermediate products. However, the role of β-carotene (BC) in IS-induced renal dysfunction in zebrafish and their modulatory action on BCO2 and mitochondrial inflammations have not been explored yet. Hence, the present study is designed to investigate the role of BC in the attenuation of IS-induced renal dysfunction via regulations of mitochondrial redox balance by BCO2 actions. Renal dysfunction was induced by exposure to IS (10 mg/L/hour/day) for 4 weeks. BC (50 and 100 mg/L/hour/day) and coenzyme Q10 (CoQ10; 20 mg/L/hour/day) were added before IS exposure. BC attenuated the IS-induced increase in blood urea nitrogen (BUN) and creatinine concentrations, adenosine triphosphate (ATP), and complex I activity levels, and the reduction of renal mitochondrial biomarkers, i.e., BCO2, superoxide dismutase-2 (SOD2), glutathione peroxidase-1 (GPX1), reduced and oxidized glutathione (GSH/GSSG) ratio, and carbonylated proteins. Moreover, renal histopathological changes were analyzed by the eosin and hematoxylin staining method. As a result, the administration of BC attenuated the IS-induced renal damage via the regulation of mitochondrial function.
Collapse
Affiliation(s)
- Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Abu Sadat Md. Sayem
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | | | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah F. AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Shamama Nishat
- Comprehensive Cancer Center, Wexner Medical Centre, Ohio State University, Columbus, OH 43210, USA
| | - Khian Giap Lim
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Yamunna Paramaswaran
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
5
|
Mitochondrial Calcium-Triggered Oxidative Stress and Developmental Defects in Dopaminergic Neurons Differentiated from Deciduous Teeth-Derived Dental Pulp Stem Cells with MFF Insufficiency. Antioxidants (Basel) 2022; 11:antiox11071361. [PMID: 35883852 PMCID: PMC9311869 DOI: 10.3390/antiox11071361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial fission factor (MFF) is an adapter that targets dynamin-related protein 1 from the cytosol to the mitochondria for fission. Loss-of-function MFF mutations cause encephalopathy due to defective mitochondrial and peroxisomal fission 2 (EMPF2). To elucidate the molecular mechanisms that were involved, we analyzed the functional effects of MFF depletion in deciduous teeth-derived dental pulp stem cells differentiating into dopaminergic neurons (DNs). When treated with MFF-targeting small interfering RNA, DNs showed impaired neurite outgrowth and reduced mitochondrial signals in neurites harboring elongated mitochondria. MFF silencing also caused mitochondrial Ca2+ accumulation through accelerated Ca2+ influx from the endoplasmic reticulum (ER) via the inositol 1,4,5-trisphosphate receptor. Mitochondrial Ca2+ overload led DNs to produce excessive reactive oxygen species (ROS), and downregulated peroxisome proliferator-activated receptor-gamma co-activator-1 alpha (PGC-1α). MFF was co-immunoprecipitated with voltage-dependent anion channel 1, an essential component of the ER-mitochondrial Ca2+ transport system. Folic acid supplementation normalized ROS levels, PGC-1α mediated mitochondrial biogenesis, and neurite outgrowth in MFF depleted DNs, without affecting their mitochondrial morphology or Ca2+ levels. We propose that MFF negatively regulates the mitochondrial Ca2+ influx from the ER. MFF-insufficiency recapitulated the EMPF2 neuropathology with increased oxidative stress and suppressed mitochondrial biogenesis. ROS and mitochondrial biogenesis might be potential therapeutic targets for EMPF2.
Collapse
|
6
|
Singh J, Phogat A, Kumar V, Malik V. N-acetylcysteine ameliorates monocrotophos exposure-induced mitochondrial dysfunctions in rat liver. Toxicol Mech Methods 2022; 32:686-694. [DOI: 10.1080/15376516.2022.2064258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jagjeet Singh
- Department of Zoology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Annu Phogat
- Department of Zoology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| | - Vinay Malik
- Department of Zoology, Maharshi Dayanand University, Rohtak-124001, Haryana, India
| |
Collapse
|
7
|
Choroszy M, Sobieszczańska B, Litwinowicz K, Łaczmański Ł, Chmielarz M, Walczuk U, Roleder T, Radziejewska J, Wawrzyńska M. Co-toxicity of Endotoxin and Indoxyl Sulfate, Gut-Derived Bacterial Metabolites, to Vascular Endothelial Cells in Coronary Arterial Disease Accompanied by Gut Dysbiosis. Nutrients 2022; 14:nu14030424. [PMID: 35276782 PMCID: PMC8840142 DOI: 10.3390/nu14030424] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Gut dysbiosis, alongside a high-fat diet and cigarette smoking, is considered one of the factors promoting coronary arterial disease (CAD) development. The present study aimed to research whether gut dysbiosis can increase bacterial metabolites concentration in the blood of CAD patients and what impact these metabolites can exert on endothelial cells. The gut microbiomes of 15 age-matched CAD patients and healthy controls were analyzed by 16S rRNA sequencing analysis. The in vitro impact of LPS and indoxyl sulfate at concentrations present in patients' sera on endothelial cells was investigated. 16S rRNA sequencing analysis revealed gut dysbiosis in CAD patients, further confirmed by elevated LPS and indoxyl sulfate levels in patients' sera. CAD was associated with depletion of Bacteroidetes and Alistipes. LPS and indoxyl sulfate demonstrated co-toxicity to endothelial cells inducing reactive oxygen species, E-selectin, and monocyte chemoattractant protein-1 (MCP-1) production. Moreover, both of these metabolites promoted thrombogenicity of endothelial cells confirmed by monocyte adherence. The co-toxicity of LPS and indoxyl sulfate was associated with harmful effects on endothelial cells, strongly suggesting that gut dysbiosis-associated increased intestinal permeability can initiate or promote endothelial inflammation and atherosclerosis progression.
Collapse
Affiliation(s)
- Marcin Choroszy
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
| | - Beata Sobieszczańska
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
- Correspondence:
| | - Kamil Litwinowicz
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubińskiego 10 Street, 50-368 Wroclaw, Poland;
| | - Łukasz Łaczmański
- Laboratory of Genomics & Bioinformatics, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12 Street, 53-114 Wroclaw, Poland;
| | - Mateusz Chmielarz
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
| | - Urszula Walczuk
- Department of Microbiology, Wrocław Medical University, Chalubinskiego 4 Street, 51-657 Wroclaw, Poland; (M.C.); (M.C.); (U.W.)
| | - Tomasz Roleder
- Research and Development Centre, Regional Specialist Hospital, Kamienskiego 73a Street, 51-124 Wroclaw, Poland;
| | | | - Magdalena Wawrzyńska
- Department of Preclinical Studies, Faculty of Health Sciences, Wrocław Medical University, 50-367 Wrocław, Poland;
| |
Collapse
|
8
|
Sun X, Kato H, Sato H, Torio M, Han X, Zhang Y, Hirofuji Y, Kato TA, Sakai Y, Ohga S, Fukumoto S, Masuda K. Impaired neurite development and mitochondrial dysfunction associated with calcium accumulation in dopaminergic neurons differentiated from the dental pulp stem cells of a patient with metatropic dysplasia. Biochem Biophys Rep 2021; 26:100968. [PMID: 33748438 PMCID: PMC7960789 DOI: 10.1016/j.bbrep.2021.100968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid member 4 (TRPV4) is a Ca2+ permeable nonselective cation channel, and mutations in the TRPV4 gene cause congenital skeletal dysplasias and peripheral neuropathies. Although TRPV4 is widely expressed in the brain, few studies have assessed the pathogenesis of TRPV4 mutations in the brain. We aimed to elucidate the pathological associations between a specific TRPV4 mutation and neurodevelopmental defects using dopaminergic neurons (DNs) differentiated from dental pulp stem cells (DPSCs). DPSCs were isolated from a patient with metatropic dysplasia and multiple neuropsychiatric symptoms caused by a gain-of-function TRPV4 mutation, c.1855C>T (p.L619F). The mutation was corrected by CRISPR/Cas9 to obtain isogenic control DPSCs. Mutant DPSCs differentiated into DNs without undergoing apoptosis; however, neurite development was significantly impaired in mutant vs. control DNs. Mutant DNs also showed accumulation of mitochondrial Ca2+ and reactive oxygen species, low adenosine triphosphate levels despite a high mitochondrial membrane potential, and lower peroxisome proliferator-activated receptor gamma coactivator 1-alpha expression and mitochondrial content. These results suggested that the persistent Ca2+ entry through the constitutively activated TRPV4 might perturb the adaptive coordination of multiple mitochondrial functions, including oxidative phosphorylation, redox control, and biogenesis, required for dopaminergic circuit development in the brain. Thus, certain mutations in TRPV4 that are associated with skeletal dysplasia might have pathogenic effects on brain development, and mitochondria might be a potential therapeutic target to alleviate the neuropsychiatric symptoms of TRPV4-related diseases.
Collapse
Key Words
- ATP, adenosine triphosphate
- DN, dopaminergic neuron
- DPSC, dental pulp stem cell
- Dental pulp stem cells
- Dopaminergic neuron
- MD, metatropic dysplasia
- MPP, mitochondrial membrane potential
- Metatropic dysplasia
- Mitochondria
- NURR1, nuclear receptor related 1
- PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha
- ROS, reactive oxygen species
- RPL13A, 60S ribosomal protein L13a
- Reactive oxygen species
- SOD, superoxide dismutase
- TRPV4, transient receptor potential vanilloid member 4
- Transient receptor potential vanilloid 4
Collapse
Affiliation(s)
- Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroki Kato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Michiko Torio
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Xu Han
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yu Zhang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
9
|
Uremic Toxins, Oxidative Stress, Atherosclerosis in Chronic Kidney Disease, and Kidney Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6651367. [PMID: 33628373 PMCID: PMC7895596 DOI: 10.1155/2021/6651367] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/21/2022]
Abstract
Patients with chronic kidney disease (CKD) are at a high risk for cardiovascular disease (CVD), and approximately half of all deaths among patients with CKD are a direct result of CVD. The premature cardiovascular disease extends from mild to moderate CKD stages, and the severity of CVD and the risk of death increase with a decline in kidney function. Successful kidney transplantation significantly decreases the risk of death relative to long-term dialysis treatment; nevertheless, the prevalence of CVD remains high and is responsible for approximately 20-35% of mortality in renal transplant recipients. The prevalence of traditional and nontraditional risk factors for CVD is higher in patients with CKD and transplant recipients compared with the general population; however, it can only partly explain the highly increased cardiovascular burden in CKD patients. Nontraditional risk factors, unique to CKD patients, include proteinuria, disturbed calcium, and phosphate metabolism, anemia, fluid overload, and accumulation of uremic toxins. This accumulation of uremic toxins is associated with systemic alterations including inflammation and oxidative stress which are considered crucial in CKD progression and CKD-related CVD. Kidney transplantation can mitigate the impact of some of these nontraditional factors, but they typically persist to some degree following transplantation. Taking into consideration the scarcity of data on uremic waste products, oxidative stress, and their relation to atherosclerosis in renal transplantation, in the review, we discussed the impact of uremic toxins on vascular dysfunction in CKD patients and kidney transplant recipients. Special attention was paid to the role of native and transplanted kidney function.
Collapse
|
10
|
Yabuuchi N, Hou H, Gunda N, Narita Y, Jono H, Saito H. Suppressed Hepatic Production of Indoxyl Sulfate Attenuates Cisplatin-Induced Acute Kidney Injury in Sulfotransferase 1a1-Deficient Mice. Int J Mol Sci 2021; 22:ijms22041764. [PMID: 33578912 PMCID: PMC7916706 DOI: 10.3390/ijms22041764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/26/2022] Open
Abstract
Endogenous factors involved in the progression of cisplatin nephropathy remain undetermined. Here, we demonstrate the toxico-pathological roles of indoxyl sulfate (IS), a sulfate-conjugated uremic toxin, and sulfotransferase 1A1 (SULT1A1), an enzyme involved in its synthesis, in cisplatin-induced acute kidney injury using Sult1a1-deficient (Sult1a1-/- KO) mice. With cisplatin administration, severe kidney dysfunction, tissue damage, and apoptosis were attenuated in Sult1a1-/- (KO) mice. Aryl hydrocarbon receptor (AhR) expression was increased by treatment with cisplatin in mouse kidney tissue. Moreover, the downregulation of antioxidant stress enzymes in wild-type (WT) mice was not observed in Sult1a1-/- (KO) mice. To investigate the effect of IS on the reactive oxygen species (ROS) levels, HK-2 cells were treated with cisplatin and IS. The ROS levels were significantly increased compared to cisplatin or IS treatment alone. IS-induced increases in ROS were reversed by downregulation of AhR, xanthine oxidase (XO), and NADPH oxidase 4 (NOX4). These findings suggest that SULT1A1 plays toxico-pathological roles in the progression of cisplatin-induced acute kidney injury, while the IS/AhR/ROS axis brings about oxidative stress.
Collapse
Affiliation(s)
- Nozomi Yabuuchi
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (N.Y.); (H.H.); (N.G.); (Y.N.); (H.J.)
| | - Huixian Hou
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (N.Y.); (H.H.); (N.G.); (Y.N.); (H.J.)
| | - Nao Gunda
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (N.Y.); (H.H.); (N.G.); (Y.N.); (H.J.)
| | - Yuki Narita
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (N.Y.); (H.H.); (N.G.); (Y.N.); (H.J.)
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hirofumi Jono
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (N.Y.); (H.H.); (N.G.); (Y.N.); (H.J.)
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Hideyuki Saito
- Department of Clinical Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan; (N.Y.); (H.H.); (N.G.); (Y.N.); (H.J.)
- Department of Pharmacy, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
- Correspondence: ; Tel./Fax: +81-96-373-5820
| |
Collapse
|
11
|
Kwiatkowska I, Hermanowicz JM, Mysliwiec M, Pawlak D. Oxidative Storm Induced by Tryptophan Metabolites: Missing Link between Atherosclerosis and Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6656033. [PMID: 33456671 PMCID: PMC7787774 DOI: 10.1155/2020/6656033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/08/2023]
Abstract
Chronic kidney disease (CKD) occurrence is rising all over the world. Its presence is associated with an increased risk of premature death from cardiovascular disease (CVD). Several explanations of this link have been put forward. It is known that in renal failure, an array of metabolites cannot be excreted, and they accumulate in the organism. Among them, some are metabolites of tryptophan (TRP), such as indoxyl sulfate and kynurenine. Scientists have become interested in them in the context of inducing vascular damage in the course of chronic kidney impairment. Experimental evidence suggests the involvement of TRP metabolites in the progression of chronic kidney disease and atherosclerosis separately and point to oxidative stress generation as one of the main mechanisms that is responsible for worsening those states. Since it is known that blood levels of those metabolites increase significantly in renal failure and that they generate reactive oxygen species (ROS), which lead to endothelial injury, it is reasonable to suspect that products of TRP metabolism are the missing link in frequently occurring atherosclerosis in CKD patients. This review focuses on reports that shed a light on TRP metabolites as contributing factors to vascular damage in the progression of impaired kidney function.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Justyna M. Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Michal Mysliwiec
- Ist Department Nephrology and Transplantation, Medical University, Bialystok, Zurawia 14, 15-540 Bialystok, Poland
- Lomza State University of Applied Sciences, Akademicka 14, 18-400 Łomża, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
- Department of Pharmacology and Toxicology, University of Warmia and Mazury in Olsztyn, Warszawska 30, 10-082 Olsztyn, Poland
| |
Collapse
|
12
|
Molecular Mechanisms Underlying the Cardiovascular Toxicity of Specific Uremic Solutes. Cells 2020; 9:cells9092024. [PMID: 32887404 PMCID: PMC7565564 DOI: 10.3390/cells9092024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence strongly suggests a causal link between chronic kidney disease (CKD) and cardiovascular disease (CVD). Compared with non-CKD patients, patients with CKD suffer disproportionately from CVD and derive suboptimal benefits from interventions targeting conventional CVD risk factors. Uremic toxins (UTs), whose plasma levels rapidly rise as CKD progresses, represent a unique risk factor in CKD, which has protean manifestations on CVD. Among the known UTs, tryptophan metabolites and trimethylamine N-oxide are well-established cardiovascular toxins. Their molecular mechanisms of effect warrant special consideration to draw translational value. This review surveys current knowledge on the effects of specific UTs on different pathways and cell functions that influence the integrity of cardiovascular health, with implication for CVD progression. The effect of UTs on cardiovascular health is an example of a paradigm in which a cascade of molecular and metabolic events induced by pathology in one organ in turn induces dysfunction in another organ. Deciphering the molecular mechanisms underlying such cross-organ pathologies will help uncover therapeutic targets to improve the management of CVD in patients with CKD.
Collapse
|
13
|
How do Uremic Toxins Affect the Endothelium? Toxins (Basel) 2020; 12:toxins12060412. [PMID: 32575762 PMCID: PMC7354502 DOI: 10.3390/toxins12060412] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Uremic toxins can induce endothelial dysfunction in patients with chronic kidney disease (CKD). Indeed, the structure of the endothelial monolayer is damaged in CKD, and studies have shown that the uremic toxins contribute to the loss of cell–cell junctions, increasing permeability. Membrane proteins, such as transporters and receptors, can mediate the interaction between uremic toxins and endothelial cells. In these cells, uremic toxins induce oxidative stress and activation of signaling pathways, including the aryl hydrocarbon receptor (AhR), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways. The activation of these pathways leads to overexpression of proinflammatory (e.g., monocyte chemoattractant protein-1, E-selectin) and prothrombotic (e.g., tissue factor) proteins. Uremic toxins also induce the formation of endothelial microparticles (EMPs), which can lead to the activation and dysfunction of other cells, and modulate the expression of microRNAs that have an important role in the regulation of cellular processes. The resulting endothelial dysfunction contributes to the pathogenesis of cardiovascular diseases, such as atherosclerosis and thrombotic events. Therefore, uremic toxins as well as the pathways they modulated may be potential targets for therapies in order to improve treatment for patients with CKD.
Collapse
|
14
|
Six I, Flissi N, Lenglet G, Louvet L, Kamel S, Gallet M, Massy ZA, Liabeuf S. Uremic Toxins and Vascular Dysfunction. Toxins (Basel) 2020; 12:toxins12060404. [PMID: 32570781 PMCID: PMC7354618 DOI: 10.3390/toxins12060404] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular dysfunction is an essential element found in many cardiovascular pathologies and in pathologies that have a cardiovascular impact such as chronic kidney disease (CKD). Alteration of vasomotricity is due to an imbalance between the production of relaxing and contracting factors. In addition to becoming a determining factor in pathophysiological alterations, vascular dysfunction constitutes the first step in the development of atherosclerosis plaques or vascular calcifications. In patients with CKD, alteration of vasomotricity tends to emerge as being a new, less conventional, risk factor. CKD is characterized by the accumulation of uremic toxins (UTs) such as phosphate, para-cresyl sulfate, indoxyl sulfate, and FGF23 and, consequently, the deleterious role of UTs on vascular dysfunction has been explored. This accumulation of UTs is associated with systemic alterations including inflammation, oxidative stress, and the decrease of nitric oxide production. The present review proposes to summarize our current knowledge of the mechanisms by which UTs induce vascular dysfunction.
Collapse
Affiliation(s)
- Isabelle Six
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Correspondence: ; Tel./Fax: +03-22-82-54-25
| | - Nadia Flissi
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Gaëlle Lenglet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Loïc Louvet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Said Kamel
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Amiens-Picardie University Hospital, Human Biology Center, 80054 Amiens, France
| | - Marlène Gallet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
| | - Ziad A. Massy
- Service de Néphrologie et Dialyse, Assistance Publique—Hôpitaux de Paris (APHP), Hôpital Universitaire Ambroise Paré, 92100 Boulogne Billancourt, France;
- INSERM U1018, Equipe 5, CESP (Centre de Recherche en Épidémiologie et Santé des Populations), Université Paris Saclay et Université Versailles Saint Quentin en Yvelines, 94800 Villejuif, France
| | - Sophie Liabeuf
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France; (N.F.); (G.L.); (L.L.); (S.K.); (M.G.); (S.L.)
- Pharmacology Department, Amiens University Hospital, 80025 Amiens, France
| |
Collapse
|
15
|
Indoxyl Sulfate, a Uremic Endotheliotoxin. Toxins (Basel) 2020; 12:toxins12040229. [PMID: 32260489 PMCID: PMC7232210 DOI: 10.3390/toxins12040229] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic kidney disease (CKD) is associated with a high prevalence of cardiovascular diseases. During CKD, the uremic toxin indoxyl sulfate (IS)—derived from tryptophan metabolism—accumulates. IS is involved in the pathophysiology of cardiovascular complications. IS can be described as an endotheliotoxin: IS induces endothelial dysfunction implicated in cardiovascular morbidity and mortality during CKD. In this review, we describe clinical and experimental evidence for IS endothelial toxicity and focus on the various molecular pathways implicated. In patients with CKD, plasma concentrations of IS correlate with cardiovascular events and mortality, with vascular calcification and atherosclerotic markers. Moreover, IS induces a prothrombotic state and impaired neovascularization. IS reduction by AST-120 reverse these abnormalities. In vitro, IS induces endothelial aryl hydrocarbon receptor (AhR) activation and proinflammatory transcription factors as NF-κB or AP-1. IS has a prooxidant effect with reduction of nitric oxide (NO) bioavailability. Finally, IS alters endothelial cell and endothelial progenitor cell migration, regeneration and control vascular smooth muscle cells proliferation. Reducing IS endothelial toxicity appears to be necessary to improve cardiovascular health in CKD patients.
Collapse
|
16
|
Ebert T, Pawelzik SC, Witasp A, Arefin S, Hobson S, Kublickiene K, Shiels PG, Bäck M, Stenvinkel P. Inflammation and Premature Ageing in Chronic Kidney Disease. Toxins (Basel) 2020; 12:E227. [PMID: 32260373 PMCID: PMC7232447 DOI: 10.3390/toxins12040227] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/20/2020] [Accepted: 03/29/2020] [Indexed: 02/06/2023] Open
Abstract
Persistent low-grade inflammation and premature ageing are hallmarks of the uremic phenotype and contribute to impaired health status, reduced quality of life, and premature mortality in chronic kidney disease (CKD). Because there is a huge global burden of disease due to CKD, treatment strategies targeting inflammation and premature ageing in CKD are of particular interest. Several distinct features of the uremic phenotype may represent potential treatment options to attenuate the risk of progression and poor outcome in CKD. The nuclear factor erythroid 2-related factor 2 (NRF2)-kelch-like erythroid cell-derived protein with CNC homology [ECH]-associated protein 1 (KEAP1) signaling pathway, the endocrine phosphate-fibroblast growth factor-23-klotho axis, increased cellular senescence, and impaired mitochondrial biogenesis are currently the most promising candidates, and different pharmaceutical compounds are already under evaluation. If studies in humans show beneficial effects, carefully phenotyped patients with CKD can benefit from them.
Collapse
Affiliation(s)
- Thomas Ebert
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Sven-Christian Pawelzik
- Karolinska Institutet, Department of Medicine Solna, Cardiovascular Medicine Unit, SE-171 76 Stockholm, Sweden; (S.-C.P.); (M.B.)
- Karolinska University Hospital, Theme Heart and Vessels, Division of Valvular and Coronary Disease, SE-171 76 Stockholm, Sweden
| | - Anna Witasp
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Samsul Arefin
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Sam Hobson
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Karolina Kublickiene
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| | - Paul G. Shiels
- University of Glasgow, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary & Life Sciences, Institute of Cancer Sciences, Glasgow G61 1QH, UK;
| | - Magnus Bäck
- Karolinska Institutet, Department of Medicine Solna, Cardiovascular Medicine Unit, SE-171 76 Stockholm, Sweden; (S.-C.P.); (M.B.)
- Karolinska University Hospital, Theme Heart and Vessels, Division of Valvular and Coronary Disease, SE-171 76 Stockholm, Sweden
| | - Peter Stenvinkel
- Karolinska Institutet, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, SE-141 86 Stockholm, Sweden; (A.W.); (S.A.); (S.H.); (K.K.)
| |
Collapse
|
17
|
The Role of Reactive Oxygen Species in the Life Cycle of the Mitochondrion. Int J Mol Sci 2020; 21:ijms21062173. [PMID: 32245255 PMCID: PMC7139706 DOI: 10.3390/ijms21062173] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, it is known that, in living systems, free radicals and other reactive oxygen and nitrogen species play a double role, because they can cause oxidative damage and tissue dysfunction and serve as molecular signals activating stress responses that are beneficial to the organism. It is also known that mitochondria, because of their capacity to produce free radicals, play a major role in tissue oxidative damage and dysfunction and provide protection against excessive tissue dysfunction through several mechanisms, including the stimulation of permeability transition pore opening. This process leads to mitoptosis and mitophagy, two sequential processes that are a universal route of elimination of dysfunctional mitochondria and is essential to protect cells from the harm due to mitochondrial disordered metabolism. To date, there is significant evidence not only that the above processes are induced by enhanced reactive oxygen species (ROS) production, but also that such production is involved in the other phases of the mitochondrial life cycle. Accumulating evidence also suggests that these effects are mediated through the regulation of the expression and the activity of proteins that are engaged in processes such as genesis, fission, fusion, and removal of mitochondria. This review provides an account of the developments of the knowledge on the dynamics of the mitochondrial population, examining the mechanisms governing their genesis, life, and death, and elucidating the role played by free radicals in such processes.
Collapse
|
18
|
Empagliflozin Protects HK-2 Cells from High Glucose-Mediated Injuries via a Mitochondrial Mechanism. Cells 2019; 8:cells8091085. [PMID: 31540085 PMCID: PMC6770192 DOI: 10.3390/cells8091085] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Empagliflozin is known to retard the progression of kidney disease in diabetic patients. However, the underlying mechanism is incompletely understood. High glucose induces oxidative stress in renal tubules, eventually leading to mitochondrial damage. Here, we investigated whether empagliflozin exhibits protective functions in renal tubules via a mitochondrial mechanism. We used human proximal tubular cell (PTC) line HK-2 and employed western blotting, terminal deoxynucleotidyl transferase dUTP nick end labelling assay, fluorescence staining, flow cytometry, and enzyme-linked immunosorbent assay to investigate the impact of high glucose and empagliflozin on cellular apoptosis, mitochondrial morphology, and functions including mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production, and adenosine triphosphate (ATP) generation. We found that PTCs were susceptible to high glucose-induced mitochondrial fragmentation, and empagliflozin ameliorated this effect via the regulation of mitochondrial fission (FIS1 and DRP1) and fusion (MFN1 and MFN2) proteins. Empagliflozin reduced the high glucose-induced cellular apoptosis and improved mitochondrial functions by restoring mitochondrial ROS production, MMP, and ATP generation. Our results suggest that empagliflozin may protect renal PTCs from high glucose-mediated injuries through a mitochondrial mechanism. This could be one of the novel mechanisms explaining the benefits demonstrated in EMPA-REG OUTCOME trial.
Collapse
|
19
|
Pei J, Juni R, Harakalova M, Duncker DJ, Asselbergs FW, Koolwijk P, Hinsbergh VV, Verhaar MC, Mokry M, Cheng C. Indoxyl Sulfate Stimulates Angiogenesis by Regulating Reactive Oxygen Species Production via CYP1B1. Toxins (Basel) 2019; 11:E454. [PMID: 31382511 PMCID: PMC6723868 DOI: 10.3390/toxins11080454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/22/2019] [Accepted: 07/29/2019] [Indexed: 12/11/2022] Open
Abstract
Indoxyl sulfate (IS) is an accumulative protein-bound uremic toxin found in patients with kidney disease. It is reported that IS impairs the vascular endothelium, but a comprehensive overview of all mechanisms active in IS-injury currently remains lacking. Here we performed RNA sequencing in human umbilical vein endothelial cells (HUVECs) after IS or control medium treatment and identified 1293 genes that were affected in a IS-induced response. Gene enrichment analysis highlighted pathways involved in altered vascular formation and cell metabolism. We confirmed these transcriptome profiles at the functional level by demonstrating decreased viability and increased cell senescence in response to IS treatment. In line with the additional pathways highlighted by the transcriptome analysis, we further could demonstrate that IS exposure of HUVECs promoted tubule formation as shown by the increase in total tubule length in a 3D HUVECs/pericytes co-culture assay. Notably, the pro-angiogenic response of IS and increased ROS production were abolished when CYP1B1, one of the main target genes that was highly upregulated by IS, was silenced. This observation indicates IS-induced ROS in endothelial cells is CYP1B1-dependent. Taken together, our findings demonstrate that IS promotes angiogenesis and CYP1B1 is an important factor in IS-activated angiogenic response.
Collapse
Affiliation(s)
- Jiayi Pei
- Department of Nephrology and Hypertension, DIGD, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Cardiology, Division Heart & Lungs, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Regenerative Medicine Utrecht, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
| | - Rio Juni
- Department of Physiology, Amsterdam UMC, VUmc location, Amsterdam Cardiovascular Science, 1081 HV Amsterdam, The Netherlands
| | - Magdalena Harakalova
- Department of Cardiology, Division Heart & Lungs, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Pathology, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Erasmus MC, Rotterdam, 3015 GD, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart & Lungs, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Institute of Cardiovascular Science, Faculty of Population Health Sciences, University College London, London, NW1 2DA, UK
- Health Data Research UK and Institute of Health Informatics, University College London, London, NW1 2DA, UK
| | - Pieter Koolwijk
- Department of Physiology, Amsterdam UMC, VUmc location, Amsterdam Cardiovascular Science, 1081 HV Amsterdam, The Netherlands
| | - Victor van Hinsbergh
- Department of Physiology, Amsterdam UMC, VUmc location, Amsterdam Cardiovascular Science, 1081 HV Amsterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, DIGD, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Regenerative Medicine Utrecht, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
| | - Michal Mokry
- Regenerative Medicine Utrecht, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Clinical Chemistry and Heamatology, University of Utrecht, 3584 CX Utrecht, The Netherlands
- Division of Paediatrics, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, DIGD, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands.
- Regenerative Medicine Utrecht, UMC Utrecht, University of Utrecht, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
20
|
Bouchez C, Devin A. Mitochondrial Biogenesis and Mitochondrial Reactive Oxygen Species (ROS): A Complex Relationship Regulated by the cAMP/PKA Signaling Pathway. Cells 2019; 8:cells8040287. [PMID: 30934711 PMCID: PMC6523352 DOI: 10.3390/cells8040287] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/20/2019] [Indexed: 12/23/2022] Open
Abstract
Mitochondrial biogenesis is a complex process. It requires the contribution of both the nuclear and the mitochondrial genomes and therefore cross talk between the nucleus and mitochondria. Cellular energy demand can vary by great length and it is now well known that one way to adjust adenosine triphosphate (ATP) synthesis to energy demand is through modulation of mitochondrial content in eukaryotes. The knowledge of actors and signals regulating mitochondrial biogenesis is thus of high importance. Here, we review the regulation of mitochondrial biogenesis both in yeast and in mammalian cells through mitochondrial reactive oxygen species.
Collapse
Affiliation(s)
- Cyrielle Bouchez
- Université Bordeaux, IBGC, UMR 5095, 33077 Bordeaux cedex, France.
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1, rue Camille Saint Saëns, 33077 Bordeaux Cedex, France.
| | - Anne Devin
- Université Bordeaux, IBGC, UMR 5095, 33077 Bordeaux cedex, France.
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1, rue Camille Saint Saëns, 33077 Bordeaux Cedex, France.
| |
Collapse
|
21
|
Snelson M, Kellow NJ, Coughlan MT. Modulation of the Gut Microbiota by Resistant Starch as a Treatment of Chronic Kidney Diseases: Evidence of Efficacy and Mechanistic Insights. Adv Nutr 2019; 10:303-320. [PMID: 30668615 PMCID: PMC6416045 DOI: 10.1093/advances/nmy068] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/17/2018] [Accepted: 08/12/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney disease (CKD) has been associated with changes in gut microbial ecology, or "dysbiosis," which may contribute to disease progression. Recent studies have focused on dietary approaches to favorably alter the composition of the gut microbial communities as a treatment method in CKD. Resistant starch (RS), a prebiotic that promotes proliferation of gut bacteria such as Bifidobacteria and Lactobacilli, increases the production of metabolites including short-chain fatty acids, which confer a number of health-promoting benefits. However, there is a lack of mechanistic insight into how these metabolites can positively influence renal health. Emerging evidence shows that microbiota-derived metabolites can regulate the incretin axis and mitigate inflammation via expansion of regulatory T cells. Studies from animal models and patients with CKD show that RS supplementation attenuates the concentrations of uremic retention solutes, including indoxyl sulfate and p-cresyl sulfate. Here, we present the current state of knowledge linking the microbiome to CKD, we explore the efficacy of RS in animal models of CKD and in humans with the condition, and we discuss how RS supplementation could be a promising dietary approach for slowing CKD progression.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Nicole J Kellow
- Be Active Sleep & Eat (BASE) Facility, Department of Nutrition, Dietetics, and Food, Monash University, Notting Hill, Victoria, Australia
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Heart Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Zhang Y, Gu AZ, Xie S, Li X, Cen T, Li D, Chen J. Nano-metal oxides induce antimicrobial resistance via radical-mediated mutagenesis. ENVIRONMENT INTERNATIONAL 2018; 121:1162-1171. [PMID: 30482586 DOI: 10.1016/j.envint.2018.10.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/25/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
The widespread use of nanoparticles has triggered increasing concern and interest due to the adverse effects on global public health and environmental safety. Whether the presence of nano-metal oxides (NMOs) could facilitate the formation of new antimicrobial resistance genes (ARGs) via de novo mutation is largely unknown. Here, we proved that two widely used NMOs could significantly improve the mutation frequencies of CIP- and CHL-resistant E. coli isolates; however, the corresponding metal ions have weaker effects. Distinct concentration-dependent increases of 1.0-14.2 and 1.1-456.3 folds were observed in the resistance mutations after treatment with 0.16-100 mg/L nano-Al2O3 and 0.16-500 mg/L nano-ZnO, respectively, compared with those in the control. The resistant mutants showed resistance to multiple antibiotics and hereditary stability after sub-culturing for 5 days. We also explored the mechanism underlying the induction of antimicrobial resistance by NMOs. Whole-genome sequencing analysis showed that the mutated genes correlated with mono- and multidrug resistance, as well as undetected resistance to antibiotics. Furthermore, NMOs significantly promoted intracellular reactive oxygen species (ROS), which would lead to oxidative DNA damage and an error-prone SOS response, and consequently, mutation rates were enhanced. Our findings indicate that NMOs could accelerate the mutagenesis of multiple-antibiotic resistance and expanded the understanding of the mechanisms in nanoparticle-induced resistance, which may be significant for guiding the production and application of nanoparticles.
Collapse
Affiliation(s)
- Ye Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - April Z Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
| | - Shanshan Xie
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiangyang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Tianyu Cen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
23
|
Mafra D, Gidlund EK, Borges NA, Magliano DC, Lindholm B, Stenvinkel P, von Walden F. Bioactive food and exercise in chronic kidney disease: Targeting the mitochondria. Eur J Clin Invest 2018; 48:e13020. [PMID: 30144313 DOI: 10.1111/eci.13020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 08/11/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022]
Abstract
Chronic kidney disease (CKD), which affects 10%-15% of the population, associates with a range of complications-such as cardiovascular disease, frailty, infections, muscle and bone disorders and premature ageing-that could be related to alterations of mitochondrial number, distribution, structure and function. As mitochondrial biogenesis, bioenergetics and the dynamic mitochondrial networks directly or indirectly regulate numerous intra- and extracellular functions, the mitochondria have emerged as an important target for interventions aiming at preventing or improving the treatment of complications in CKD. In this review, we discuss the possible role of bioactive food compounds and exercise in the modulation of the disturbed mitochondrial function in a uraemic milieu.
Collapse
Affiliation(s)
- Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Eva-Karin Gidlund
- Division of Molecular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Natália Alvarenga Borges
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - D'Angelo Carlo Magliano
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Bengt Lindholm
- Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science Intervention and Technology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ferdinand von Walden
- Division of Pediatric Neurology, Department of Women's and Children's health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Pieniazek A, Gwozdzinski L, Hikisz P, Gwozdzinski K. Indoxyl Sulfate Generates Free Radicals, Decreases Antioxidant Defense, and Leads to Damage to Mononuclear Blood Cells. Chem Res Toxicol 2018; 31:869-875. [PMID: 30110159 DOI: 10.1021/acs.chemrestox.8b00065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Indoxyl sulfate (IS) is a uremic toxin that has been associated with inflammation and oxidative stress as well as with the progression of chronic kidney disease (CKD). IS is a protein metabolite that is concentrated in the serum of CKD patients. IS is a well-known uremic toxin, but there are very few reports on the effect of IS on cells including mononuclear cells (MNCs). We hypothesized that a high concentration of IS in CKD patients may induce changes in redox balance in the in vitro cells exposed. In the present study, we investigated the effect of IS on free radical production, antioxidant capacity, and protein damage in the mononuclear blood cells. As already determined, the concentrations (0.2 or 1 mM) of IS used in this study do not affect the survival rate of MNCs. For both the concentrations of IS, there was an increase in superoxide and nitric oxide and a release of other reactive oxygen species (ROS) inside the cells, as measured using fluorescent probes. However, an increase in other ROS as indicated by H2DCF-DA was found only for 1 mM of IS. Moreover, a decrease in the non-enzymatic antioxidant capacity and an increase in the superoxide dismutase activity after incubation of the cells with IS were observed. Furthermore, we found an increase in the levels of carbonyl compounds and peroxides in the cells treated with both the concentrations of IS. The obtained results show that IS induces oxidative stress and a decrease in antioxidant defense in cells leading to lipid and protein damage.
Collapse
Affiliation(s)
- Anna Pieniazek
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , Lodz 90-236 , Poland
| | - Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology , Medical University of Lodz , Lodz 90-752 , Poland
| | - Paweł Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , Lodz 90-236 , Poland
| | - Krzysztof Gwozdzinski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection , University of Lodz , Lodz 90-236 , Poland
| |
Collapse
|
25
|
The Impact of Uremic Toxins on Cerebrovascular and Cognitive Disorders. Toxins (Basel) 2018; 10:toxins10070303. [PMID: 30037144 PMCID: PMC6071092 DOI: 10.3390/toxins10070303] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Individuals at all stages of chronic kidney disease (CKD) have a higher risk of developing cognitive disorders and dementia. Stroke is also highly prevalent in this population and is associated with a higher risk of neurological deterioration, in-hospital mortality, and poor functional outcomes. Evidence from in vitro studies and in vivo animal experiments suggests that accumulation of uremic toxins may contribute to the pathogenesis of stroke and amplify vascular damage, leading to cognitive disorders and dementia. This review summarizes current evidence on the mechanisms by which uremic toxins may favour the occurrence of cerebrovascular diseases and neurological complications in CKD.
Collapse
|
26
|
Ellis RJ, Small DM, Ng KL, Vesey DA, Vitetta L, Francis RS, Gobe GC, Morais C. Indoxyl Sulfate Induces Apoptosis and Hypertrophy in Human Kidney Proximal Tubular Cells. Toxicol Pathol 2018; 46:449-459. [PMID: 29683083 DOI: 10.1177/0192623318768171] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Indoxyl sulfate (IS) is a protein-bound uremic toxin that accumulates in patients with declining kidney function. Although generally thought of as a consequence of declining kidney function, emerging evidence demonstrates direct cytotoxic role of IS on endothelial cells and cardiomyocytes, largely through the expression of pro-inflammatory and pro-fibrotic factors. The direct toxicity of IS on human kidney proximal tubular epithelial cells (PTECs) remains a matter of debate. The current study explored the effect of IS on primary cultures of human PTECs and HK-2, an immortalized human PTEC line. Pathologically relevant concentrations of IS induced apoptosis and increased the expression of the proapoptotic molecule Bax in both cell types. IS impaired mitochondrial metabolic activity and induced cellular hypertrophy. Furthermore, statistically significant upregulation of pro-fibrotic (transforming growth factor-β, fibronectin) and pro-inflammatory molecules (interleukin-6, interleukin-8, and tumor necrosis factor-α) in response to IS was observed. Albumin had no influence on the toxicity of IS. The results of this study suggest that IS directly induced a pro-inflammatory and pro-fibrotic phenotype in proximal tubular cells. In light of the associated apoptosis, hypertrophy, and metabolic dysfunction, this study demonstrates that IS may play a role in the progression of chronic kidney disease.
Collapse
Affiliation(s)
- Robert J Ellis
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia.,2 Department of Urology, Princess Alexandra Hospital, Brisbane, Australia
| | - David M Small
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia.,3 Department of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Keng Lim Ng
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia.,2 Department of Urology, Princess Alexandra Hospital, Brisbane, Australia
| | - David A Vesey
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia.,4 Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Luis Vitetta
- 5 Sydney Medical School, University of Sydney, Sydney, Australia.,6 Medlab Clinical, Sydney, Australia
| | - Ross S Francis
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia.,4 Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Glenda C Gobe
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia
| | - Christudas Morais
- 1 Centre for Kidney Disease Research, Translational Research Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
27
|
Chirumbolo S, Bjørklund G. The effect of vitamin C on Cyprinus carpio survival in water environment with chemical toxicants. Some comments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:7-8. [PMID: 29407797 DOI: 10.1016/j.aquatox.2018.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/27/2018] [Indexed: 06/07/2023]
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy; Council for Nutritional and Environmenal Medicine (CONEM), Mo i Rana, Norway.
| | - Geir Bjørklund
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy; Council for Nutritional and Environmenal Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
28
|
Stockler-Pinto MB, Soulage CO, Borges NA, Cardozo LFMF, Dolenga CJ, Nakao LS, Pecoits-Filho R, Fouque D, Mafra D. From bench to the hemodialysis clinic: protein-bound uremic toxins modulate NF-κB/Nrf2 expression. Int Urol Nephrol 2017; 50:347-354. [PMID: 29151180 DOI: 10.1007/s11255-017-1748-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/11/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Uremic toxins produced by gut microbiota (indoxyl sulfate-IS, p-cresyl sulfate-p-CS, and indole-3-acetic acid-IAA) accumulate in hemodialysis (HD) patients and exhibit potent inflammatory effects. However, the impact of these toxins on nuclear E2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) expression in HD patients remains poorly defined. The aim of this study was to evaluate the association between uremic toxins and Nrf2/NF-κB expression in vitro (RAW 264.7 macrophage-like cells) and in peripheral blood mononuclear cells from HD patients. METHODS Uremic toxins, C-reactive protein (CRP), interleukin-6 (IL-6) and malondialdehyde (MDA) levels were measured in fifteen HD patients and nine healthy individuals. RAW 264.7 macrophage-like cells were incubated with IS, as a prototype of protein-bound uremic toxin. Nrf2 and NF-κB expressions were analyzed by RT-qPCR. RESULTS HD patients presented high levels of inflammatory markers, MDA and uremic toxins. In addition, they presented high NF-κB and low Nrf2 expression. Uremic toxins were positively correlated with NF-κB expression (IS, ρ = 0.58, p < 0.003; p-CS, ρ = 0.71, p < 0.001; IAA, ρ = 0.62, p < 0.001) and negatively with Nrf2 (IS, ρ = - 0.48, p = 0.01; p-CS, ρ = - 0.46, p < 0.02). Uremic toxins also exhibited positive correlations with CRP and MDA levels. Multivariate analysis revealed that p-CS is a determinant factor of NF-κB expression. In RAW 264.7 culture, NF-κB mRNA expression was stimulated by IS, while Nrf2 was downregulated. CONCLUSIONS Thus, uremic toxins may stimulate NF-κB mRNA and decrease Nrf2 expression in HD patients and, consequently, trigger inflammation and oxidative stress.
Collapse
Affiliation(s)
- Milena B Stockler-Pinto
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Christophe O Soulage
- Univ-Lyon, CarMeN Laboratory, Inserm U1060, INSA Lyon, INRA U1397, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Natália A Borges
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Carla J Dolenga
- Departamento de Patologia Básica, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Lia S Nakao
- Departamento de Patologia Básica, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | | | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université de Lyon, Lyon, France
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
29
|
Mitochondrial Biogenesis in Response to Chromium (VI) Toxicity in Human Liver Cells. Int J Mol Sci 2017; 18:ijms18091877. [PMID: 28906435 PMCID: PMC5618526 DOI: 10.3390/ijms18091877] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022] Open
Abstract
Hexavalent chromium (Cr(VI)) is a ubiquitous environmental pollutant, which poses a threat to human public health. Recent studies have shown that mitochondrial biogenesis can be activated by inflammatory and oxidative stress. However, whether mitochondrial biogenesis is involved in Cr(VI)-induced hepatotoxicity is unclear. Here, we demonstrated the induction of inflammatory response and oxidative stress, as indicated by upregulation of inflammatory factors and reactive oxygen species (ROS). Subsequently, we demonstrated that mitochondrial biogenesis, comprising the mitochondrial DNA copy number and mitochondrial mass, was significantly increased in HepG2 cells exposed to low concentrations of Cr(VI). Expression of genes related to mitochondrial function complex I and complex V was upregulated at low concentrations of Cr(VI). mRNA levels of antioxidant enzymes, including superoxide dismutase 1 and 2 (SOD1 and SOD2, respectively), kech like ECH associate protein 1 (KEAP1) and nuclear respiratory factor 2 (NRF-2), were also upregulated. Consistent with the above results, mRNA and protein levels of key transcriptional regulators of mitochondrial biogenesis such as the peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α), NRF-1 and mitochondrial transcription factor A (TFAM) were increased by low concentrations of Cr(VI) in HepG2 cells. Moreover, we found that PGC-1α and NRF-1 tended to translocate into the nucleus. The expression of genes potentially involved in mitochondrial biogenesis pathways, including mRNA level of silent information regulator-1 (SIRT1), forkhead box class-O (FOXO1), threonine kinase 1 (AKT1), and cAMP response element-binding protein (CREB1), was also upregulated. In contrast, mitochondrial biogenesis was inhibited and the expression of its regulatory factors and antioxidants was downregulated at high and cytotoxic concentrations of Cr(VI) in HepG2 cells. It is believed that pretreatment with α-tocopherol could be acting against the mitochondrial biogenesis imbalance induced by Cr(VI). In conclusion, our study suggests that the homeostasis of mitochondrial biogenesis may be an important cellular compensatory mechanism against Cr(VI)-induced toxicity and a promising detoxification target.
Collapse
|
30
|
Sun CY, Cheng ML, Pan HC, Lee JH, Lee CC. Protein-bound uremic toxins impaired mitochondrial dynamics and functions. Oncotarget 2017; 8:77722-77733. [PMID: 29100420 PMCID: PMC5652810 DOI: 10.18632/oncotarget.20773] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/29/2017] [Indexed: 01/23/2023] Open
Abstract
Protein-bound uremic toxins, indoxyl sulfate and p-cresol sulfate, increase oxidative stress and adversely affect chronic kidney disease progression and cardiovascular complications. In this study, we examined whether mitochondria are the target of indoxyl sulfate and p-cresol sulfate intoxication in vivo and in vitro. The kidneys of 10-week-old male B-6 mice with ½-nephrectomy treated with indoxyl sulfate and p-cresol sulfate were used for the animal study. Cultured human renal tubular cells were used for the in vitro study. Our results indicated that indoxyl sulfate and p-cresol sulfate impaired aerobic and anaerobic metabolism in vivo and in vitro. Indoxyl sulfate and p-cresol sulfate caused mitochondrial fission by modulating the expression of mitochondrial fission–fusion proteins. Mitochondrial dysfunction and impaired biogenesis could be protected by treatment with antioxidants. The in vitro study also demonstrated that indoxyl sulfate and p-cresol sulfate reduced mitochondrial mass by activating autophagic machinery. In summary, our study suggests that mitochondrial injury is one of the major pathological mechanisms for uremic intoxication, which is related to chronic kidney disease and its complications.
Collapse
Affiliation(s)
- Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan.,Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Clinical Phenome Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Heng-Chih Pan
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan.,Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jia-Hung Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan.,Medical Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chan Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
31
|
Carmona A, Guerrero F, Buendia P, Obrero T, Aljama P, Carracedo J. Microvesicles Derived from Indoxyl Sulfate Treated Endothelial Cells Induce Endothelial Progenitor Cells Dysfunction. Front Physiol 2017; 8:666. [PMID: 28951723 PMCID: PMC5599774 DOI: 10.3389/fphys.2017.00666] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/22/2017] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease is a major cause of mortality in chronic kidney disease patients. Indoxyl sulfate (IS) is a typical protein-bound uremic toxin that cannot be effectively cleared by conventional dialysis. Increased IS is associated with the progression of chronic kidney disease and development of cardiovascular disease. After endothelial activation by IS, cells release endothelial microvesicles (EMV) that can induce endothelial dysfunction. We developed an in vitro model of endothelial damage mediated by IS to evaluate the functional effect of EMV on the endothelial repair process developed by endothelial progenitor cells (EPCs). EMV derived from IS-treated endothelial cells were isolated by ultracentrifugation and characterized for miRNAs content. The effects of EMV on healthy EPCs in culture were studied. We observed that IS activates endothelial cells and the generated microvesicles (IsEMV) can modulate the classic endothelial roles of progenitor cells as colony forming units and form new vessels in vitro. Moreover, 23 miRNAs were contained in IsEMV including four (miR-181a-5p, miR-4454, miR-150-5p, and hsa-let-7i-5p) that were upregulated in IsEMV compared with control endothelial microvesicles. Other authors have found that miR-181a-5p, miR-4454, and miR-150-5p are involved in promoting inflammation, apoptosis, and cellular senescence. Interestingly, we observed an increase in NFκB and p53, and a decrease in IκBα in EPCs treated with IsEMV. Our data suggest that IS is capable of inducing endothelial vesiculation with different membrane characteristics, miRNAs and other molecules, which makes maintaining of vascular homeostasis of EPCs not fully functional. These specific characteristics of EMV could be used as novel biomarkers for diagnosis and prognosis of vascular disease.
Collapse
Affiliation(s)
- Andres Carmona
- Maimonides Institute of Biomedical Research of CordobaCordoba, Spain
| | - Fatima Guerrero
- Maimonides Institute of Biomedical Research of CordobaCordoba, Spain
| | - Paula Buendia
- Maimonides Institute of Biomedical Research of CordobaCordoba, Spain
| | - Teresa Obrero
- Maimonides Institute of Biomedical Research of CordobaCordoba, Spain
| | - Pedro Aljama
- Maimonides Institute of Biomedical Research of CordobaCordoba, Spain.,Department of Nephrology, Nephrology Service, Reina Sofia University HospitalCordoba, Spain.,RETICs Red Renal, Instituto de Salud Carlos IIIMadrid, Spain
| | - Julia Carracedo
- Department of Animal Physiology II, Faculty of Biology, Complutense University of MadridMadrid, Spain
| |
Collapse
|
32
|
Chu S, Mao X, Guo H, Wang L, Li Z, Zhang Y, Wang Y, Wang H, Zhang X, Peng W. Indoxyl sulfate potentiates endothelial dysfunction via reciprocal role for reactive oxygen species and RhoA/ROCK signaling in 5/6 nephrectomized rats. Free Radic Res 2017; 51:237-252. [PMID: 28277985 DOI: 10.1080/10715762.2017.1296575] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Accumulative indoxyl sulfate (IS) retained in chronic kidney disease (CKD) can potentiate vascular endothelial dysfunction, and herein, we aim at elucidating the underlying mechanisms from the perspective of possible association between reactive oxygen species (ROS) and RhoA/ROCK pathway. IS-treated nephrectomized rats are administered with antioxidants including NADPH oxidase inhibitor apocynin, SOD analog tempol, and mitochondrion-targeted SOD mimetic mito-TEMPO to scavenge ROS, or ROCK inhibitor fasudil to obstruct RhoA/ROCK pathway. First, we find in response to IS stimulation, antioxidants treatments suppress increased aortic ROCK activity and expression levels. Additionally, ROCK blockade prevent IS-induced increased NADPH oxidase expression (mainly p22phox and p47phox), mitochondrial and intracellular ROS (superoxide and hydrogen peroxide) generation, and decreased Cu/Zn-SOD expression in thoracic aortas. Apocynin, mito-TEMPO, and tempol also reverse these markers of oxidative stress. These results suggest that IS induces excessive ROS production and ROCK activation involving a circuitous relationship in which ROS activate ROCK and ROCK promotes ROS overproduction. Finally, ROS and ROCK depletion attenuate IS-induced decrease in nitric oxide (NO) production and eNOS expression levels, and alleviate impaired vasomotor responses including increased vasocontraction to phenylephrine and decreased vasorelaxation to acetylcholine, thereby preventing cardiovascular complications accompanied by CKD. Taken together, excessive ROS derived from NADPH oxidase and mitochondria coordinate with RhoA/ROCK activation in a form of positive reciprocal relationship to induce endothelial dysfunction through disturbing endothelium-dependent NO signaling upon IS stimulation in CKD status.
Collapse
Affiliation(s)
- Shuang Chu
- a Laboratory of Renal Disease , Putuo Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Xiaodong Mao
- a Laboratory of Renal Disease , Putuo Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Hengjiang Guo
- a Laboratory of Renal Disease , Putuo Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Li Wang
- a Laboratory of Renal Disease , Putuo Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Zezheng Li
- b Department of Nephrology , Putuo Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yang Zhang
- b Department of Nephrology , Putuo Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Yunman Wang
- b Department of Nephrology , Putuo Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Hao Wang
- b Department of Nephrology , Putuo Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| | - Xuemei Zhang
- c Department of Pharmacology, School of Pharmacy , Fudan University , Shanghai , China
| | - Wen Peng
- a Laboratory of Renal Disease , Putuo Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China.,b Department of Nephrology , Putuo Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai , China
| |
Collapse
|
33
|
Lee WC, Chiu CH, Chen JB, Chen CH, Chang HW. Mitochondrial Fission Increases Apoptosis and Decreases Autophagy in Renal Proximal Tubular Epithelial Cells Treated with High Glucose. DNA Cell Biol 2016; 35:657-665. [PMID: 27420408 DOI: 10.1089/dna.2016.3261] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The aim of this study was to examine the effect of mitochondrial morphogenesis changes on apoptosis and autophagy of high-glucose-treated proximal tubular epithelial cells (HK2). Cell viability, apoptosis, and mitochondrial morphogenesis were examined using crystal violet, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL), and mitotracker staining, respectively. High glucose inhibited cell viability and induced mitochondrial fission in HK2 cells. After depleting mitofusin 1 (MFN1), the MFN1(-) HK2 cells (fission type) became more susceptible to high-glucose-induced apoptosis and mitochondrial fragmentation observed by TUNEL and mitotracker assays. In siMFN2 HK2 cells (fission type), mitochondria were highly fragmented (>80% fission rate) with or without high-glucose treatment; however, siFIS1 (mitochondrial fission protein 1) HK2 cells (fusion type) exhibited little fragmentation (<13%). High-glucose treatment induced autophagy, characterized by the formation of autophagosome and microtubule-associated protein light chain 3 (LC3) B-II, as observed by transmission electron microscopy and western blotting, respectively. LC3B-II levels decreased in both MFN1(-) and siMFN2 HK2 cells, but increased in siFIS1 HK2 cells. Moreover, autophagy displays a protective role against high-glucose-induced cell death based on cotreatment with autophagy inhibitors (3-methyladenine and chloroquine). Mitochondrial fission may increase apoptosis and decrease autophagy of high-glucose-treated HK2 cells.
Collapse
Affiliation(s)
- Wen-Chin Lee
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - Chien-Hua Chiu
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - Jin-Bor Chen
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - Chiu-Hua Chen
- 1 Mitochondrial Research Unit, Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Kaohsiung, Taiwan .,2 Department of Biological Sciences, National Sun Yat-Sen University , Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- 3 Institute of Medical Science and Technology, National Sun Yat-Sen University , Kaohsiung, Taiwan .,4 Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University , Kaohsiung, Taiwan
| |
Collapse
|
34
|
Maharjan S, Sakai Y, Hoseki J. Screening of dietary antioxidants against mitochondria-mediated oxidative stress by visualization of intracellular redox state. Biosci Biotechnol Biochem 2016; 80:726-34. [DOI: 10.1080/09168451.2015.1123607] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
Mitochondrial impairment and the resulting generation of reactive oxygen species (ROS) have been associated with aging and its related pathological conditions. Recently, dietary antioxidants have gained significant attention as potential preventive and therapeutic agents against ROS-generated aging and pathological conditions. We previously demonstrated that food-derived antioxidants prevented intracellular oxidative stress under proteasome inhibition conditions, which was attributed to mitochondrial dysfunction and ROS generation, followed by cell death. Here, we further screened dietary antioxidants for their activity as redox modulators by visualization of the redox state using Redoxfluor, a fluorescent protein redox probe. Direct alleviation of ROS by antioxidants, but not induction of antioxidative enzymes, prevented mitochondria-mediated intracellular oxidation. The effective antioxidants scavenged mitochondrial ROS and suppressed cell death. Our study indicates that redox visualization under mitochondria-mediated oxidative stress is useful for screening potential antioxidants to counteract mitochondrial dysfunction, which has been implicated in aging and the pathogenesis of aging-related diseases.
Collapse
Affiliation(s)
- Sunita Maharjan
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Jun Hoseki
- Research Unit for Physiological Chemistry, The Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Chang HS, Tang JY, Yen CY, Huang HW, Wu CY, Chung YA, Wang HR, Chen IS, Huang MY, Chang HW. Antiproliferation of Cryptocarya concinna-derived cryptocaryone against oral cancer cells involving apoptosis, oxidative stress, and DNA damage. Altern Ther Health Med 2016; 16:94. [PMID: 26955958 PMCID: PMC4784356 DOI: 10.1186/s12906-016-1073-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 03/02/2016] [Indexed: 12/20/2022]
Abstract
Background Cryptocarya-derived crude extracts and their compounds have been reported to have an antiproliferation effect on several types of cancers but their impact on oral cancer is less well understood. Methods We examined the cell proliferation effect and mechanism of C. concinna-derived cryptocaryone (CPC) on oral cancer cells in terms of cell viability, apoptosis, reactive oxygen species (ROS), mitochondrial depolarization, and DNA damage. Results We found that CPC dose-responsively reduced cell viability of two types of oral cancer cells (Ca9-22 and CAL 27) in MTS assay. The CPC-induced dose-responsive apoptosis effects on Ca9-22 cells were confirmed by flow cytometry-based sub-G1 accumulation, annexin V staining, and pancaspase analyses. For oral cancer Ca9-22 cells, CPC also induced oxidative stress responses in terms of ROS generation and mitochondrial depolarization. Moreover, γH2AX flow cytometry showed DNA damage in CPC-treated Ca9-22 cells. CPC-induced cell responses in terms of cell viability, apoptosis, oxidative stress, and DNA damage were rescued by N-acetylcysteine pretreatment, suggesting that oxidative stress plays an important role in CPC-induced death of oral cancer cells. Conclusions CPC is a potential ROS-mediated natural product for anti-oral cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12906-016-1073-5) contains supplementary material, which is available to authorized users.
Collapse
|
36
|
Roberts NB, Curtis SA, Milan AM, Ranganath LR. The Pigment in Alkaptonuria Relationship to Melanin and Other Coloured Substances: A Review of Metabolism, Composition and Chemical Analysis. JIMD Rep 2015; 24:51-66. [PMID: 26093627 DOI: 10.1007/8904_2015_453] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 01/02/2023] Open
Abstract
The pigments found in plants, animals and humic substances are well described and classified. In humans considerable progress has been made with the main pigment melanin in defining its biochemistry, the different types and function. However, analytical techniques to show these differences in vivo are still not readily available. NMR and IR spectroscopy are relatively insensitive and reveal only major structural differences. Techniques utilising MS are useful in determining elemental content but require further studies to optimise conditions for accurate mass analysis. How the components may be structurally organised seems to be the most problematic with scanning TEM and the improved FTIR of use in this respect. As regards understanding the nature of the pigment related to HGA seen in patients with Alkaptonuria (AKU), it is still thought of as a melaninlike pigment simply because of its colour and likewise thought to be a polymer of undetermined size. It is important that detailed analysis be carried out to define more accurately this pigment. However, observations suggest it to be the same as the HGA-derived pigment, pyomelanin, produced by bacteria and containing both quinone and phenolic groups. The interesting developments in alkaptonuria will be to understand how such a polymer can cause such profound collagen and connective tissue damage and how best to reverse this process.
Collapse
Affiliation(s)
- N B Roberts
- Department of Clinical Biochemistry and Metabolic Medicine, The Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, L7 8XP, UK.
| | - S A Curtis
- Department of Clinical Biochemistry and Metabolic Medicine, The Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, L7 8XP, UK
| | - A M Milan
- Department of Clinical Biochemistry and Metabolic Medicine, The Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, L7 8XP, UK
| | - L R Ranganath
- Department of Clinical Biochemistry and Metabolic Medicine, The Royal Liverpool and Broadgreen University Hospitals Trust, Liverpool, L7 8XP, UK
| |
Collapse
|