1
|
Kennedy S, Williams C, Tsaturian E, Morgan JT. Dexamethasone Impairs ATP Production and Mitochondrial Performance in Human Trabecular Meshwork Cells. Curr Issues Mol Biol 2024; 46:9867-9880. [PMID: 39329939 PMCID: PMC11430611 DOI: 10.3390/cimb46090587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Mitochondrial damage occurs in human trabecular meshwork (HTM) cells as a result of normal aging and in open angle glaucoma. Using an HTM cell model, we quantified mitochondrial function and ATP generation rates after dexamethasone (Dex) and TGF-β2 treatments, frequently used as in vitro models of glaucoma. Primary HTM cells were assayed for metabolic function using a Seahorse XFp Analyzer. We additionally assessed the mitochondrial copy number and the expression of transcripts associated with mitochondrial biogenesis and oxidative stress regulation. Cells treated with Dex, but not TGF-β2, exhibited a significant decrease in total ATP production and ATP from oxidative phosphorylation relative to that of the control. Dex treatment also resulted in significant decreases in maximal respiration, ATP-linked O2 consumption, and non-mitochondrial O2 consumption. We did not observe significant changes in the level of mitochondrial genomes or mRNA transcripts of genes involved in mitochondrial biogenesis and oxidative stress regulation. Decreased mitochondrial performance and ATP production are consistent with the results of prior studies identifying the effects of Dex on multiple cell types, including HTM cells. Our results are also consistent with in vivo evidence of mitochondrial damage in open-angle glaucoma. Overall, these results demonstrate a decrease in mitochondrial performance in Dex-induced glaucomatous models in vitro, meriting further investigation.
Collapse
Affiliation(s)
- Shane Kennedy
- Department of Molecular, Cell and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Clayton Williams
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, USA
| | - Emily Tsaturian
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, USA
| | - Joshua T. Morgan
- Department of Bioengineering, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Tam PKH, Wells RG, Tang CSM, Lui VCH, Hukkinen M, Luque CD, De Coppi P, Mack CL, Pakarinen M, Davenport M. Biliary atresia. Nat Rev Dis Primers 2024; 10:47. [PMID: 38992031 PMCID: PMC11956545 DOI: 10.1038/s41572-024-00533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 07/13/2024]
Abstract
Biliary atresia (BA) is a progressive inflammatory fibrosclerosing disease of the biliary system and a major cause of neonatal cholestasis. It affects 1:5,000-20,000 live births, with the highest incidence in Asia. The pathogenesis is still unknown, but emerging research suggests a role for ciliary dysfunction, redox stress and hypoxia. The study of the underlying mechanisms can be conceptualized along the likely prenatal timing of an initial insult and the distinction between the injury and prenatal and postnatal responses to injury. Although still speculative, these emerging concepts, new diagnostic tools and early diagnosis might enable neoadjuvant therapy (possibly aimed at oxidative stress) before a Kasai portoenterostomy (KPE). This is particularly important, as timely KPE restores bile flow in only 50-75% of patients of whom many subsequently develop cholangitis, portal hypertension and progressive fibrosis; 60-75% of patients require liver transplantation by the age of 18 years. Early diagnosis, multidisciplinary management, centralization of surgery and optimized interventions for complications after KPE lead to better survival. Postoperative corticosteroid use has shown benefits, whereas the role of other adjuvant therapies remains to be evaluated. Continued research to better understand disease mechanisms is necessary to develop innovative treatments, including adjuvant therapies targeting the immune response, regenerative medicine approaches and new clinical tests to improve patient outcomes.
Collapse
Affiliation(s)
- Paul K H Tam
- Medical Sciences Division, Macau University of Science and Technology, Macau, China.
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Rebecca G Wells
- Division of Gastroenterology and Hepatology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Clara S M Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Vincent C H Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Maria Hukkinen
- Section of Paediatric Surgery, Paediatric Liver and Gut Research Group, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Carlos D Luque
- Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Paolo De Coppi
- NIHR Biomedical Research Centre, Great Ormond Street Hospital for Children NHS Foundation Trust and Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Cara L Mack
- Department of Paediatrics, Division of Paediatric Gastroenterology, Hepatology and Nutrition, Medical College of Wisconsin, Children's Wisconsin, Milwaukee, WI, USA
| | - Mikko Pakarinen
- Section of Paediatric Surgery, Paediatric Liver and Gut Research Group, New Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | - Mark Davenport
- Department of Paediatric Surgery, King's College Hospital, London, UK
| |
Collapse
|
3
|
Xu G, Ma T, Zhou C, Zhao F, Peng K, Li B. Combination of Pirfenidone and Andrographolide Ameliorates Hepatic Stellate Cell Activation and Liver Fibrosis by Mediating TGF- β/Smad Signaling Pathway. Anal Cell Pathol (Amst) 2024; 2024:2751280. [PMID: 38946862 PMCID: PMC11213636 DOI: 10.1155/2024/2751280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/13/2023] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
Background Biliary atresia (BA) is a devastating congenital disease characterized by inflammation and progressive liver fibrosis. Activation of hepatic stellate cells (HSCs) plays a central role in the pathogenesis of hepatic fibrosis. Our study aimed to investigate the pharmacological effect and potential mechanism of pirfenidone (PFD) and andrographolide (AGP) separately and together on liver fibrosis of BA. Materials and Methods The bile ducts of male C57BL/6J mice were ligated or had the sham operation. The in vivo effects of PFD and/or AGP on liver fibrosis of BA were evaluated. Human hepatic stellate cells (LX-2) were also treated with PFD and/or AGP in vitro. Results PFD and/or AGP ameliorates liver fibrosis and inflammation in the mice model of BA, as evidenced by significant downregulated in the accumulation of collagen fibers, hepatic fibrosis markers (α-SMA, collagen I, and collagen IV), and inflammatory markers (IL-1β, IL-6, and TNF-α). Moreover, compared with monotherapy, these changes are more obvious in the combined treatment of PFD and AGP. Consistent with animal experiments, hepatic fibrosis markers (α-SMA, collagen I, and CTGF) and inflammatory markers (IL-1β, IL-6, and TNF-α) were significantly decreased in activated LX-2 cells after PFD and/or AGP treatment. In addition, PFD and/or AGP inhibited the activation of HSCs by blocking the TGF-β/Smad signaling pathway, and the combined treatment of PFD and AGP synergistically inhibited the phosphorylation of Smad2 and Smad3. Conclusion The combined application of PFD and AGP exerted superior inhibitive effects on HSC activation and liver fibrosis by mediating the TGF-β/Smad signaling pathway as compared to monotherapy. Therefore, the combination of PFD and AGP may be a promising treatment strategy for liver fibrosis in BA.
Collapse
Affiliation(s)
- Guang Xu
- Department of Neonatal SurgeryHunan Children's Hospital, Changsha 410007, China
| | - Tidong Ma
- Department of Neonatal SurgeryHunan Children's Hospital, Changsha 410007, China
| | - Chonggao Zhou
- Department of Neonatal SurgeryHunan Children's Hospital, Changsha 410007, China
| | - Fan Zhao
- Department of Neonatal SurgeryHunan Children's Hospital, Changsha 410007, China
| | - Kun Peng
- Department of Neonatal SurgeryHunan Children's Hospital, Changsha 410007, China
| | - Bixiang Li
- Department of Neonatal SurgeryHunan Children's Hospital, Changsha 410007, China
| |
Collapse
|
4
|
Kundlacz C, Pourcelot M, Fablet A, Amaral Da Silva Moraes R, Léger T, Morlet B, Viarouge C, Sailleau C, Turpaud M, Gorlier A, Breard E, Lecollinet S, van Rijn PA, Zientara S, Vitour D, Caignard G. Novel Function of Bluetongue Virus NS3 Protein in Regulation of the MAPK/ERK Signaling Pathway. J Virol 2019; 93:e00336-19. [PMID: 31167915 PMCID: PMC6675888 DOI: 10.1128/jvi.00336-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/22/2019] [Indexed: 12/22/2022] Open
Abstract
Bluetongue virus (BTV) is an arbovirus transmitted by blood-feeding midges to a wide range of wild and domestic ruminants. In this report, we showed that BTV, through its nonstructural protein NS3 (BTV-NS3), is able to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, as assessed by phosphorylation levels of ERK1/2 and the translation initiation factor eukaryotic translation initiation factor 4E (eIF4E). By combining immunoprecipitation of BTV-NS3 and mass spectrometry analysis from both BTV-infected and NS3-transfected cells, we identified the serine/threonine-protein kinase B-Raf (BRAF), a crucial player in the MAPK/ERK pathway, as a new cellular interactor of BTV-NS3. BRAF silencing led to a significant decrease in the MAPK/ERK activation by BTV, supporting a model wherein BTV-NS3 interacts with BRAF to activate this signaling cascade. This positive regulation acts independently of the role of BTV-NS3 in counteracting the induction of the alpha/beta interferon response. Furthermore, the intrinsic ability of BTV-NS3 to bind BRAF and activate the MAPK/ERK pathway is conserved throughout multiple serotypes/strains but appears to be specific to BTV compared to other members of Orbivirus genus. Inhibition of MAPK/ERK pathway with U0126 reduced viral titers, suggesting that BTV manipulates this pathway for its own replication. Altogether, our data provide molecular mechanisms that unravel a new essential function of NS3 during BTV infection.IMPORTANCE Bluetongue virus (BTV) is responsible of the arthropod-borne disease bluetongue (BT) transmitted to ruminants by blood-feeding midges. In this report, we found that BTV, through its nonstructural protein NS3 (BTV-NS3), interacts with BRAF, a key component of the MAPK/ERK pathway. In response to growth factors, this pathway promotes cell survival and increases protein translation. We showed that BTV-NS3 enhances the MAPK/ERK pathway, and this activation is BRAF dependent. Treatment of MAPK/ERK pathway with the pharmacologic inhibitor U0126 impairs viral replication, suggesting that BTV manipulates this pathway for its own benefit. Our results illustrate, at the molecular level, how a single virulence factor has evolved to target a cellular function to increase its viral replication.
Collapse
Affiliation(s)
- Cindy Kundlacz
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Marie Pourcelot
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Aurore Fablet
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | | | - Thibaut Léger
- Mass Spectrometry and Proteomics Facility, Jacques Monod Institute, UMR 7592, Paris Diderot University, CNRS, Paris Cedex 13, France
| | - Bastien Morlet
- Mass Spectrometry and Proteomics Facility, Jacques Monod Institute, UMR 7592, Paris Diderot University, CNRS, Paris Cedex 13, France
| | - Cyril Viarouge
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Corinne Sailleau
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Mathilde Turpaud
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Axel Gorlier
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Emmanuel Breard
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Sylvie Lecollinet
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Stephan Zientara
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Damien Vitour
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Grégory Caignard
- UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| |
Collapse
|
5
|
Kanmani P, Kim H. Immunobiotic Strains Modulate Toll-Like Receptor 3 Agonist Induced Innate Antiviral Immune Response in Human Intestinal Epithelial Cells by Modulating IFN Regulatory Factor 3 and NF-κB Signaling. Front Immunol 2019; 10:1536. [PMID: 31333667 PMCID: PMC6618302 DOI: 10.3389/fimmu.2019.01536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
Many studies have demonstrated that immunobiotics with immunoregulatory functions improve the outcomes of several bacterial and viral infections by modulating the mucosal immune system. However, the precise mechanisms underlying the immunoregulatory and antiviral activities of immunobiotics have not yet been elucidated in detail. The present study was conducted to determine whether selected lactic acid bacteria (LAB) modulate toll-like receptor 3 (TLR3) agonist polyinosinic:polycytidylic acid (PolyI:C) induced viral response in human intestinal epithelial cells (IECs). PolyI:C increased the expression of interferon-β (IFN-β), interleukin-6 (IL-6), interleukin-8 (IL-8), monocyte chemoattractant protein (MCP-1), and interleukin-1β (IL-1β) in HCT116 cells, and these up-regulations were significantly altered when cells were pre-stimulated with LAB isolated from Korean fermented foods. LAB strains were capable to up-regulate IFN-β but down-regulated IL-6, IL-8, MCP-1, and IL-1β mRNA levels as compared with PolyI: C. HCT-116 cell treatment with LABs beneficially modulated the mRNA levels of C-X-C motif chemokine 10 (CXCL-10), 2-5A oligoadenylate synthetase 1 (OSA1), myxovirus resistance protein (MxA), TLR3, and retinoic acid inducible gene-I (RIG-I), and TLR negative regulators. In addition, LABs increased IFN-β, IFN-α, and interleukin-10 (IL-10) and decreased tumor necrosis factor-α (TNF-α) and IL-1β protein/mRNA levels in THP-1 cells. LABs also protected the cells by maintaining tight-junction proteins (zonula occludens-1 and occludin). The beneficial effects of these LABs were mediated via modulation of the interferon regulatory factor 3 (IRF3) and nuclear factor-kappa B (NF-κB) pathways. Overall, the results of this study indicate that immunobiotics have potent antiviral and anti-inflammatory activities that may use as antiviral substitutes for human and animal applications.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Ilsan Hospital, Gyeongj-si, South Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Ilsan Hospital, Gyeongj-si, South Korea
| |
Collapse
|
6
|
Abstract
Biliary atresia (BA) is the most common cause of pediatric end-stage liver disease and the etiology is poorly understood. There is no effective therapy for BA partly due to lack of human BA models. Towards developing in vitro human models of BA, disease-specific induced pluripotent stem cells (iPSCs) from 6 BA patients were generated using non-integrating episomal plasmids. In addition, to determine the functional significance of BA-susceptibility genes identified by genome-wide association studies (GWAS) in biliary development, a genome-editing approach was used to create iPSCs with defined mutations in these GWAS BA loci. Using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, isogenic iPSCs deficient in BA-associated genes (GPC1 and ADD3) were created from healthy iPSCs. Both the BA patient-iPSCs and the knock out (KO) iPSCs were studied for their in vitro biliary differentiation potential. These BA-specific iPSCs demonstrated significantly decreased formation of ductal structures, decreased expression of biliary markers including CK7, EpCAM, SOX9, CK19, AE2, and CFTR and increased fibrosis markers such as alpha smooth muscle actin, Loxl2, and Collagen1 compared to controls. Both the patient- and the KO-iPSCs also showed increased yes-associated protein (YAP, a marker of bile duct proliferation/fibrosis). Collagen and YAP were reduced by treatment with the anti-fibrogenic drug pentoxifylline. In summary, these BA-specific human iPSCs showed deficiency in biliary differentiation along with increased fibrosis, the 2 key disease features of BA. These iPSCs can provide new human BA models for understanding the molecular basis of abnormal biliary development and opportunities to identify drugs that have therapeutic effects on BA.
Collapse
|
7
|
Chaudhari P, Tian L, Kim A, Zhu Q, Anders R, Schwarz KB, Sharkis S, Ye Z, Jang YY. Transient c-Src Suppression During Endodermal Commitment of Human Induced Pluripotent Stem Cells Results in Abnormal Profibrotic Cholangiocyte-Like Cells. Stem Cells 2018; 37:306-317. [PMID: 30471152 DOI: 10.1002/stem.2950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/05/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
Directed differentiation of human induced pluripotent stem cells (iPSCs) toward hepatobiliary lineages has been increasingly used as models of human liver development/diseases. As protein kinases are important components of signaling pathways regulating cell fate changes, we sought to define the key molecular mediators regulating human liver development using inhibitors targeting tyrosine kinases during hepatic differentiation of human iPSCs. A library of tyrosine kinase inhibitors was used for initial screening during the multistage differentiation of human iPSCs to hepatic lineage. Among the 80 kinase inhibitors tested, only Src inhibitors suppressed endoderm formation while none had significant effect on later stages of hepatic differentiation. Transient inhibition of c-Src during endodermal induction of human iPSCs reduced endodermal commitment and expression of endodermal markers, including SOX17 and FOXA2, in a dose-dependent manner. Interestingly, the transiently treated cells later developed into profibrogenic cholangiocyte-like cells expressing both cholangiocyte markers, such as CK7 and CK19, and fibrosis markers, including Collagen1 and smooth muscle actin. Further analysis of these cells revealed colocalized expression of collagen and yes-associated protein (YAP; a marker associated with bile duct proliferation/fibrosis) and an increased production of interleukin-6 and tumor necrosis factor-α. Moreover, treatment with verteporfin, a YAP inhibitor, significantly reduced expression of fibrosis markers. In summary, these results suggest that c-Src has a critical role in cell fate determination during endodermal commitment of human iPSCs, and its alteration in early liver development in human may lead to increased production of abnormal YAP expressing profibrogenic proinflammatory cholangiocytes, similar to those seen in livers of patients with biliary fibrosis. Stem Cells 2019;37:306-317.
Collapse
Affiliation(s)
- Pooja Chaudhari
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lipeng Tian
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Kim
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qingfeng Zhu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathleen B Schwarz
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saul Sharkis
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhaohui Ye
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yoon-Young Jang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Yang L, Mizuochi T, Shivakumar P, Mourya R, Luo Z, Gutta S, Bezerra JA. Regulation of epithelial injury and bile duct obstruction by NLRP3, IL-1R1 in experimental biliary atresia. J Hepatol 2018; 69:1136-1144. [PMID: 29886157 PMCID: PMC6314850 DOI: 10.1016/j.jhep.2018.05.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 05/04/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Biliary atresia (BA) results from a neonatal inflammatory and fibrosing obstruction of bile ducts of unknown etiology. Although the innate immune system has been linked to the virally induced mechanism of disease, the role of inflammasome-mediated epithelial injury remains largely undefined. Here, we hypothesized that disruption of the inflammasome suppresses the neonatal proinflammatory response and prevents experimental BA. METHODS We determined the expression of key inflammasome-related genes in livers from infants at diagnosis of BA and in extrahepatic bile ducts (EHBDs) of neonatal mice after infection with rotavirus (RRV) immediately after birth. Then, we determined the impact of the wholesale inactivation of the genes encoding IL-1R1 (Il1r1-/-), NLRP3 (Nlrp3-/-) or caspase-1 (Casp1-/-) on epithelial injury and bile duct obstruction. RESULTS IL1R1, NLRP3 and CASP1 mRNA increased significantly in human livers at the time of diagnosis, and in EHBDs of RRV-infected mice. In Il1r1-/- mice, the epithelial injury of EHBDs induced by RRV was suppressed, with dendritic cells unable to activate natural killer cells. A similar protection was observed in Nlrp3-/- mice, with decreased injury and inflammation of livers and EHBDs. Long-term survival was also improved. In contrast, the inactivation of the Casp1 gene had no impact on tissue injury, and all mice died. Tissue analyses in Il1r1-/- and Nlrp3-/- mice showed decreased populations of dendritic cells and natural killer cells and suppressed expression of type-1 cytokines and chemokines. CONCLUSIONS Genes of the inflammasome are overexpressed at diagnosis of BA in humans and in the BA mouse model. In the experimental model, the targeted loss of IL-1R1 or NLRP3, but not of caspase-1, protected neonatal mice against RRV-induced bile duct obstruction. LAY SUMMARY Biliary atresia is a severe inflammatory and obstructive disease of bile ducts occurring in infancy. Although the cause is unknown, activation of the innate and adaptive immune systems injures the bile duct epithelium. In this study we found that patients' livers had increased expression of inflammasome genes. Using mice engineered to inactivate individual inflammasome genes, the epithelial injury and bile duct obstruction were prevented by the loss of Il1r1 or Nlrp3, with a decreased activation of natural killer cells and expression of cytokines and chemokines. In contrast, the loss of Casp1 did not change the disease phenotype. Combined, the findings point to a differential role of inflammasome gene products in the pathogenic mechanisms of biliary atresia.
Collapse
Affiliation(s)
- Li Yang
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA; Division of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tatsuki Mizuochi
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA; Department of Pediatrics and Child Health, Kurume University School of Medicine, 67 Asahi-Machi, Kurume 830-0011, Japan
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Zhenhua Luo
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Sridevi Gutta
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA
| | - Jorge A Bezerra
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, Cincinnati, OH 45229, USA.
| |
Collapse
|
9
|
Frassetto R, Parolini F, Marceddu S, Satta G, Papacciuoli V, Pinna MA, Mela A, Secchi G, Galleri G, Manetti R, Bercich L, Villanacci V, Dessanti A, Antonucci R, Tanda F, Alberti D, Schwarz KB, Clemente MG. Intrahepatic bile duct primary cilia in biliary atresia. Hepatol Res 2018; 48:664-674. [PMID: 29330965 DOI: 10.1111/hepr.13060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 12/25/2022]
Abstract
AIM The etiopathogenesis of non-syndromic biliary atresia (BA) is obscure. The primary aim was to investigate intrahepatic bile duct cilia (IHBC) in BA at diagnosis and its correlation with clinical outcome. The secondary aim was to analyze IHBC in routine paraffin-embedded liver biopsies using conventional scanning electron microscopy (SEM). METHODS Surgical liver biopsies taken at diagnosis from 22 BA infants (age range, 39-116 days) and from eight children with non-BA chronic cholestasis (age range, 162 days -16.8 years) were evaluated for IHBC by immunofluorescence (IF) and SEM. A minimum 18-month follow-up after surgery was available for all patients. RESULTS By IF, cilia were present in 6/8 (75%) non-BA but only in 3/22 (14%) BA cases, and cilia were reduced or absent in 19/22 (86%) BA and 2/8 (25%) non-BA livers (P < 0.01). In BA, cilia presence was found to be associated with clearance of jaundice at 6-month follow-up (P < 0.05). However, high overall survival rates with native liver, >90% at 12 months, and >70% at 24 months post-surgery, were recorded regardless of cilia presence/absence at diagnosis. Electron microscopy was able to detect bile ducts and cilia in routine liver biopsies, revealing significant abnormalities in 100% BA livers. CONCLUSIONS The presence of IHBC in BA livers at the diagnosis was associated with resolution of cholestasis, although was not predictive of short-term survival with native liver. Scanning electron microscopy represents a powerful new tool to study routine liver biopsies in biliary disorders. Cilia dysfunction in BA pathogenesis and/or disease progression warrants further investigation.
Collapse
Affiliation(s)
- Roberta Frassetto
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Filippo Parolini
- Department of Pediatric Surgery, "Spedali Civili" Children's Hospital, Brescia, Italy
| | - Salvatore Marceddu
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), Sassari, Italy
| | - Giulia Satta
- Pathology, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Valeria Papacciuoli
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Maria Antonia Pinna
- Pathology, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Alessandra Mela
- Experimental Immunology and Cytofluorimetry Laboratory, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Giannina Secchi
- Experimental Immunology and Cytofluorimetry Laboratory, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Grazia Galleri
- Experimental Immunology and Cytofluorimetry Laboratory, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Roberto Manetti
- Experimental Immunology and Cytofluorimetry Laboratory, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Luisa Bercich
- Institute of Pathology, "Spedali Civili" Children's Hospital, Brescia, Italy
| | - Vincenzo Villanacci
- Institute of Pathology, "Spedali Civili" Children's Hospital, Brescia, Italy
| | - Antonio Dessanti
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Roberto Antonucci
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Francesco Tanda
- Pathology, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Daniele Alberti
- Department of Pediatric Surgery, "Spedali Civili" Children's Hospital, Brescia, Italy
| | - Kathleen B Schwarz
- Pediatric Liver Center, Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Maria Grazia Clemente
- Pediatric Clinic, Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
10
|
Tian Y, Li Y, Li J, Feng S, Li S, Mao J, Xie Y, Liu X, Dong H, Zheng W, Wang M. Bufei Yishen Granules Combined with Acupoint Sticking Therapy Suppress Inflammation in Chronic Obstructive Pulmonary Disease Rats: Via JNK/p38 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:1768243. [PMID: 29234369 PMCID: PMC5682917 DOI: 10.1155/2017/1768243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/16/2017] [Accepted: 10/02/2017] [Indexed: 12/14/2022]
Abstract
The present study was initiated to explore the mechanism of the effects of Bufei Yishen granules combined with acupoint sticking therapy (Shu-Fei Tie) on inflammation regulated by c-Jun N-terminal kinase (JNK) and p38 MAPK signaling in COPD rats. Seventy-two rats were divided into healthy control (Control), Model, Bufei Yishen (BY), acupoint sticking (AS), Bufei Yishen + acupoint sticking (BY + AS), and aminophylline (APL) groups (n = 12 each). COPD rats were exposed to cigarette smoke and bacteria and were given the various treatments from weeks 9 through 20; all animals were sacrificed at the end of week 20. MCP-1, IL-2, IL-6, and IL-10 concentrations in BALF and lung tissue as well as JNK and p38 mRNA and protein levels in lung were measured. The results showed that all the four treatment protocols (BY, AS, BY + AS, and APL) markedly reduced the concentrations of IL-2, IL-6, and MCP-1 and levels of JNK and p38 MAPK mRNA, and the effects of Bufei Yishen granules combined with acupoint sticking therapy were better than acupoint sticking therapy only and aminophylline. In conclusion, the favorable effect of Bufei Yishen granules combined with Shu-Fei Tie may be due to decreased inflammation through regulation of the JNK/p38 signaling pathways.
Collapse
Affiliation(s)
- Yange Tian
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Ya Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Central Laboratory and Respiratory Pharmacological Laboratory of Chinese Medicine, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan 450008, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Institute of Respiratory Diseases, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan 450008, China
| | - Suxiang Feng
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Institute of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Suyun Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Institute of Respiratory Diseases, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan 450008, China
| | - Jing Mao
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Yang Xie
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Institute of Respiratory Diseases, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan 450008, China
| | - Xuefang Liu
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Haoran Dong
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Wanchun Zheng
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Minghang Wang
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
- Institute of Respiratory Diseases, The First Affiliated Hospital, Henan University of Chinese Medicine, Zhengzhou, Henan 450008, China
| |
Collapse
|
11
|
Harada K. Immunopathology of Biliary Atresia. PATHOLOGY OF THE BILE DUCT 2017:121-137. [DOI: 10.1007/978-981-10-3500-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Ji M, Lu Y, Zhao C, Gao W, He F, Zhang J, Zhao D, Qiu W, Wang Y. C5a Induces the Synthesis of IL-6 and TNF-α in Rat Glomerular Mesangial Cells through MAPK Signaling Pathways. PLoS One 2016; 11:e0161867. [PMID: 27583546 PMCID: PMC5008626 DOI: 10.1371/journal.pone.0161867] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/13/2016] [Indexed: 12/16/2022] Open
Abstract
Inflammatory response has been reported to contribute to the renal lesions in rat Thy-1 nephritis (Thy-1N) as an animal model of human mesangioproliferative glomerulonephritis (MsPGN). Besides C5b-9 complex, C5a is also a potent pro-inflammatory mediator and correlated to severity of various nephritic diseases. However, the role of C5a in mediating pro-inflammatory cytokine production in rats with Thy-1N is poorly defined. In the present studies, the levels of C5a, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were first determined in the renal tissues of rats with Thy-1N. Then, the expression of IL-6 and TNF-α was detected in rat glomerular mesangial cells (GMC) stimulated with our recombinant rat C5a in vitro. Subsequently, the activation of mitogen-activated protein kinase (MAPK) signaling pathways (p38 MAPK, ERK1/2 and JNK) and their roles in the regulation of IL-6 and TNF-α production were examined in the GMC induced by C5a. The results showed that the levels of C5a, IL-6 and TNF-α were markedly increased in the renal tissues of Thy-1N rats. Rat C5a stimulation in vitro could up-regulate the expression of IL-6 and TNF-α in rat GMC, and the activation of MAPK signaling pathways was involved in the induction of IL-6 and TNF-α. Mechanically, p38 MAPK activation promoted IL-6 production, while either ERK1/2 or JNK activation promoted TNF-α production in the GMC with exposure to C5a. Taken together, these data implicate that C5a induces the synthesis of IL-6 and TNF-α in rat GMC through the activation of MAPK signaling pathways.
Collapse
Affiliation(s)
- Mingde Ji
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu, 210029, P.R. China
| | - Yanlai Lu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Chenhui Zhao
- Department of Medicine, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, P.R. China
| | - Wenxing Gao
- Basic Medical Science of Basic Medical College, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Fengxia He
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Jing Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Dan Zhao
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| | - Wen Qiu
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
- * E-mail:
| | - Yingwei Wang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, P.R. China
| |
Collapse
|
13
|
Vlasova AN, Shao L, Kandasamy S, Fischer DD, Rauf A, Langel SN, Chattha KS, Kumar A, Huang HC, Rajashekara G, Saif LJ. Escherichia coli Nissle 1917 protects gnotobiotic pigs against human rotavirus by modulating pDC and NK-cell responses. Eur J Immunol 2016; 46:2426-2437. [PMID: 27457183 DOI: 10.1002/eji.201646498] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/07/2016] [Accepted: 07/19/2016] [Indexed: 12/23/2022]
Abstract
Lactobacillus rhamnosus GG (LGG), a gram-positive lactic acid bacterium, is one of the most widely used probiotics; while fewer gram-negative probiotics including Escherichia coli Nissle 1917 (EcN) are characterized. A mechanistic understanding of their individual and interactive effects on human rotavirus (HRV) and immunity is lacking. In this study, noncolonized, EcN-, LGG-, and EcN + LGG-colonized neonatal gnotobiotic (Gn) pigs were challenged with HRV. EcN colonization is associated with a greater protection against HRV, and induces the highest frequencies of plasmacytoid dendritic cells (pDCs), significantly increased NK-cell function and decreased frequencies of apoptotic and TLR4+ mononuclear cells (MNCs). Consistent with the highest NK-cell activity, splenic CD172+ MNCs (DC enriched fraction) of EcN-colonized pigs produced the highest levels of IL-12 in vitro. LGG colonization has little effect on the above parameters, which are intermediate in EcN + LGG-colonized pigs, suggesting that probiotics modulate each other's effects. Additionally, in vitro EcN-treated splenic or intestinal MNCs produce higher levels of innate, immunoregulatory and immunostimulatory cytokines, IFN-α, IL-12, and IL-10, compared to MNCs of pigs treated with LGG. These results indicate that the EcN-mediated greater protection against HRV is associated with potent stimulation of the innate immune system and activation of the DC-IL-12-NK immune axis.
Collapse
Affiliation(s)
- Anastasia N Vlasova
- Veterinary Preventive Medicine Department, Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA.
| | - Lulu Shao
- Veterinary Preventive Medicine Department, Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Sukumar Kandasamy
- Veterinary Preventive Medicine Department, Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - David D Fischer
- Veterinary Preventive Medicine Department, Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Abdul Rauf
- Veterinary Preventive Medicine Department, Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Stephanie N Langel
- Veterinary Preventive Medicine Department, Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Kuldeep S Chattha
- Veterinary Preventive Medicine Department, Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Anand Kumar
- Veterinary Preventive Medicine Department, Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Huang-Chi Huang
- Veterinary Preventive Medicine Department, Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Gireesh Rajashekara
- Veterinary Preventive Medicine Department, Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| | - Linda J Saif
- Veterinary Preventive Medicine Department, Food Animal Health Research Program (FAHRP), The Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, USA
| |
Collapse
|