1
|
Shao H, Ma M, Wang Q, Yan T, Zhao B, Guo S, Tong S. Advances in the superhydrophilicity-modified titanium surfaces with antibacterial and pro-osteogenesis properties: A review. Front Bioeng Biotechnol 2022; 10:1000401. [PMID: 36147527 PMCID: PMC9485881 DOI: 10.3389/fbioe.2022.1000401] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, the rate of implant failure has been increasing. Microbial infection was the primary cause, and the main stages included bacterial adhesion, biofilm formation, and severe inhibition of implant osseointegration. Various biomaterials and their preparation methods have emerged to produce specific implants with antimicrobial or bactericidal properties to reduce implant infection caused by bacterial adhesion and effectively promote bone and implant integration. In this study, we reviewed the research progress of bone integration promotion and antibacterial action of superhydrophilic surfaces based on titanium alloys. First, the adverse reactions caused by bacterial adhesion to the implant surface, including infection and bone integration deficiency, are briefly introduced. Several commonly used antibacterial methods of titanium alloys are introduced. Secondly, we discuss the antibacterial properties of superhydrophilic surfaces based on ultraviolet photo-functionalization and plasma treatment, in contrast to the antibacterial principle of superhydrophobic surface morphology. Thirdly, the osteogenic effects of superhydrophilic surfaces are described, according to the processes of osseointegration: osteogenic immunity, angiogenesis, and osteogenic related cells. Finally, we discuss the challenges and prospects for the development of this superhydrophilic surface in clinical applications, as well as the prominent strategies and directions for future research.
Collapse
Affiliation(s)
- Hanyu Shao
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Mingchen Ma
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Tingting Yan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Baohong Zhao
- School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| | - Shuang Tong
- Department of Plastic Surgery, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Kurishima H, Mori Y, Ishii K, Inoue H, Mokudai T, Fujimori S, Itoi E, Hanada S, Masahashi N, Aizawa T. Antibacterial Activity of an Anodized TiNbSn Alloy Prepared in Sodium Tartrate Electrolyte. Front Bioeng Biotechnol 2022; 10:883335. [PMID: 35480976 PMCID: PMC9035674 DOI: 10.3389/fbioe.2022.883335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we anodized a TiNbSn alloy with low Young’s modulus in an electrolyte of sodium tartrate with and without hydrogen peroxide (H2O2). The photo-induced characteristics of the anodized alloy were analyzed for crystallinity and electrochemical conditions with comparisons to the effect with the addition of H2O2. The antibacterial activity was evaluated using methicillin-resistant Staphylococcus aureus and other pathogenic bacteria according to ISO 27447, and time decay antibacterial tests were also conducted. The anodized oxide had a porous microstructure with anatase- and rutile-structured titanium dioxide (TiO2). In contrast, the peaks of rutile-structured TiO2 were accelerated in the anodized TiNbSn alloy with H2O2. The formation of hydroxyl radicals and methylene blue breaching performance under ultraviolet irradiation was confirmed in the anodic oxide on TiNbSn alloy with and without H2O2. The anodic oxide on TiNbSn alloy had a robust antibacterial activity, and no significant difference was detected with or without H2O2. We conclude that anodized TiNbSn alloy with sodium tartrate electrolyte may be a functional biomaterial with a low Young’s modulus and an antibacterial function.
Collapse
Affiliation(s)
- Hiroaki Kurishima
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Mori
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Yu Mori,
| | - Keiko Ishii
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Inoue
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Japan
| | - Takayuki Mokudai
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Satoko Fujimori
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Eiji Itoi
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuji Hanada
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Naoya Masahashi
- Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Toshimi Aizawa
- Department of Orthopedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Ungureanu C, Barbulescu L, Dumitriu C, Manole C, Pirvu C. Titanium industrial residues surface modification towards its reuse as antimicrobial surfaces. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38224-38237. [PMID: 33733411 DOI: 10.1007/s11356-021-13359-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
In this study, a new material obtained from titanium ingots residue was coated with natural carotenoids having antibacterial properties. The waste is a no recycling titanium scrap from technological production process which was pressed and transformed into disks titanium samples. Through anodization and annealing procedures of the titanium disk, a nanostructured titanium dioxide surface with photocatalytic and antibacterial properties was successfully obtained. The titanium scrap impurities (V, Al, and N), unwanted for production process, have shown to improve electrochemical and semiconductor properties of the residue surfaces. The nanostructured titanium scrap surface was modified with two different carotenoids, torularhodin and β-carotene, to potentiate the antibacterial properties. The bactericidal tests were performed against Salmonella typhimurium and Escherichia coli, both Gram-negative. The best bactericidal effect is obtained for nanostructured titanium scrap disks immersed in torularhodin, with a percentage of growth inhibition around 60% against both tested bacteria. The results suggest that this low-cost waste material is suitable for efficient reuse as antibacterial surface after a few simple and inexpensive treatments.
Collapse
Affiliation(s)
- Camelia Ungureanu
- General Chemistry Department, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu, 011061, Bucharest, Romania
| | - Laura Barbulescu
- General Chemistry Department, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu, 011061, Bucharest, Romania
- National Research & Development Institute for Non-Ferrous and Rare Metals, 102 Biruintei Blvd, 077145, Pantelimon, Ilfov, Romania
| | - Cristina Dumitriu
- General Chemistry Department, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu, 011061, Bucharest, Romania
| | - Claudiu Manole
- General Chemistry Department, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu, 011061, Bucharest, Romania
| | - Cristian Pirvu
- General Chemistry Department, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Polizu, 011061, Bucharest, Romania.
| |
Collapse
|
4
|
Zhao Y, Lu R, Wang X, Huai X, Wang C, Wang Y, Chen S. Visible light-induced antibacterial and osteogenic cell proliferation properties of hydrogenated TiO 2 nanotubes/Ti foil composite. NANOTECHNOLOGY 2021; 32:195101. [PMID: 33513586 DOI: 10.1088/1361-6528/abe156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We successfully fabricated the hydrogenated TiO2 nanotubes/Ti foil (H-TNTs/f-Ti) composite via one-step anodization and two-step annealing. H-TNTs/f-Ti composite had a higher visible light-induced photoelectric response and more hydroxyl functional groups compared with Ti foil and unmodified TiO2 nanotubes/Ti foil composite, which contributed to limiting the proliferation of Streptococcus mutans and Porphyromonas gingivalis, promoting the proliferation of MC3T3-E1 cell on the hydroxylated surface, and improving the biocompatibility with osteogenic cells. Our study provides a simple and effective method for significantly improving dental implant efficacy.
Collapse
Affiliation(s)
- Yu Zhao
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Ran Lu
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xin Wang
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xiaochen Huai
- Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Caiyun Wang
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Yuji Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, People's Republic of China
- Beijing Laboratory of Biomedical Materials, School of Pharmaceutical Sciences; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing 100069, People's Republic of China
| | - Su Chen
- Laboratory of Biomaterials and Biomechanics, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
- Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
5
|
Song W, Ge S. Application of Antimicrobial Nanoparticles in Dentistry. Molecules 2019; 24:E1033. [PMID: 30875929 PMCID: PMC6470852 DOI: 10.3390/molecules24061033] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/03/2019] [Accepted: 03/08/2019] [Indexed: 02/04/2023] Open
Abstract
Oral cavity incessantly encounters a plethora of microorganisms. Plaque biofilm-a major cause of caries, periodontitis and other dental diseases-is a complex community of bacteria or fungi that causes infection by protecting pathogenic microorganisms from external drug agents and escaping the host defense mechanisms. Antimicrobial nanoparticles are promising because of several advantages such as ultra-small sizes, large surface-area-to-mass ratio and special physical and chemical properties. To better summarize explorations of antimicrobial nanoparticles and provide directions for future studies, we present the following critical review. The keywords "nanoparticle," "anti-infective or antibacterial or antimicrobial" and "dentistry" were retrieved from Pubmed, Scopus, Embase and Web of Science databases in the last five years. A total of 172 articles met the requirements were included and discussed in this review. The results show that superior antibacterial properties of nanoparticle biomaterials bring broad prospects in the oral field. This review presents the development, applications and underneath mechanisms of antibacterial nanoparticles in dentistry including restorative dentistry, endodontics, implantology, orthodontics, dental prostheses and periodontal field.
Collapse
Affiliation(s)
- Wenjing Song
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan 250012, China.
- Department of Periodontology, School of Stomatology, Shandong University, Jinan 250012, China.
| | - Shaohua Ge
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan 250012, China.
- Department of Periodontology, School of Stomatology, Shandong University, Jinan 250012, China.
| |
Collapse
|
6
|
Yeniyol S, Ricci JL. Alkaline phosphatase levels of murine pre-osteoblastic cells on anodized and annealed titanium surfaces. Eur Oral Res 2018; 52:12-19. [PMID: 30574594 PMCID: PMC6300123 DOI: 10.26650/eor.2018.78387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/01/2017] [Accepted: 09/28/2017] [Indexed: 11/20/2022] Open
Abstract
Purpose This study aimed to evaluate the initial adhesion morphology and alkaline phosphatase (ALP) activity of murine pre-osteoblastic MC3T3-E1 cells cultured on anatase/rutile mixed-phase TiO2 thin films with photocatalytical activity with previously confirmed antibacterial properties. Materials and methods Anatase/rutile mixed-phase TiO2 thin films fabricated by anodization and annealing of cpTi were used to culture MC3T3-E1 cells to evaluate the initial cellular adhesion morphology and ALP activity in vitro. Results Compared with MC3T3-E1 cells cultured on cpTi substrates and the control group, cells cultured on anatase/rutile mixed-phase TiO2 thin films exhibited similar ALP levels after cell culture day 9. Conclusion Anodizing and annealing processes fabricate multifunctional surfaces on cpTi with improved osteogenic properties for implants.
Collapse
Affiliation(s)
- Sinem Yeniyol
- Department of Oral Implantology, İstanbul University, Faculty of Dentistry, İstanbul, Turkey
| | - John Lawrence Ricci
- Department of Biomaterials and Biomimetics, New York University College of Dentistry, New York, USA
| |
Collapse
|
7
|
Safaei M, Taran M. Optimal conditions for producing bactericidal sodium hyaluronate-TiO 2 bionanocomposite and its characterization. Int J Biol Macromol 2017; 104:449-456. [PMID: 28619641 DOI: 10.1016/j.ijbiomac.2017.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/27/2017] [Accepted: 06/04/2017] [Indexed: 12/23/2022]
Abstract
In this research, the creation of optimum conditions for the formation of sodium hyaluronate-TiO2 bionanocomposite and its antibacterial effect on gram positive and gram negative bacteria was evaluated. The Fourier transform infrared spectroscopy spectra, scanning electron microscopy images and energy dispersive X-ray spectroscopy pattern confirmed the formation of the bionanocomposite. Thermogravimetric analysis and differential thermal analysis indicated that the thermal stability rate had significantly improved with formation of the bionanocomposite. Nine experiments were designed based on the Taguchi method by applying different proportions of sodium hyaluronate biopolymer and TiO2 nanoparticles at different stirring times. Bionanocomposite produced under conditions of experiment 5 (TiO2 4mg/ml, sodium hyaluronate 1mg/ml and stirring time of 90min) and experiment 9 (TiO2 8mg/ml, sodium hyaluronate 2mg/ml and stirring time of 60min) completely prevented the growth of Staphylococcus aureus and Escherichia coli. It can be concluded that sodium hyaluronate-TiO2 bionanocomposite can be used as an effective antimicrobial compound in food, pharmaceutical, medical and environmental sectors.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Nanobiotechnology, Faculty of Science, Razi University, Kermanshah, Iran; Microbiology Laboratory, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Mojtaba Taran
- Department of Nanobiotechnology, Faculty of Science, Razi University, Kermanshah, Iran; Microbiology Laboratory, Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
8
|
Lv L, Li K, Xie Y, Cao Y, Zheng X. Enhanced osteogenic activity of anatase TiO 2 film: Surface hydroxyl groups induce conformational changes in fibronectin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:96-104. [PMID: 28576072 DOI: 10.1016/j.msec.2017.04.056] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/10/2017] [Indexed: 01/31/2023]
Abstract
In this study, with an attempt to identify the effects of TiO2 crystalline phase compositions on the osteogenic properties, the anatase and rutile TiO2 thin films with similar film thickness, surface topography and hydrophilicity were prepared on Si (100) substrates by atomic layer deposition (ALD), subsequent thermal annealing and ultraviolet irradiation. The films were studied with XRD, XPS, FE-SEM, AFM, FTIR and contact angle measurements. In vitro cellular assays showed that the anatase phase led to better osteoblast compatibility in terms of adhesion, proliferation, differentiation, mineralization as well as osteogenesis-related gene expression when compared with the rutile phase. We investigated the difference between the anatase and rutile TiO2 films at the biomolecular level to explain the enhanced osteogenic activity of the anatase film. It was found that the presence of more TiOH groups on anatase surface induced more cell-binding sites of fibronectin (FN) exposed on its surface, causing a more active conformation of the adsorbed FN for subsequent osteoblast behaviors.
Collapse
Affiliation(s)
- Lin Lv
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, PR China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| | - Yunzhen Cao
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, PR China.
| |
Collapse
|