1
|
Zarczynska I, Gorska-Arcisz M, Cortez AJ, Kujawa KA, Wilk AM, Skladanowski AC, Stanczak A, Skupinska M, Wieczorek M, Lisowska KM, Sadej R, Kitowska K. p38 Mediates Resistance to FGFR Inhibition in Non-Small Cell Lung Cancer. Cells 2021; 10:cells10123363. [PMID: 34943871 PMCID: PMC8699485 DOI: 10.3390/cells10123363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
FGFR signalling is one of the most prominent pathways involved in cell growth and development as well as cancer progression. FGFR1 amplification occurs in approximately 20% of all squamous cell lung carcinomas (SCC), a predominant subtype of non-small cell lung carcinoma (NSCLC), indicating FGFR as a potential target for the new anti-cancer treatment. However, acquired resistance to this type of therapies remains a serious clinical challenge. Here, we investigated the NSCLC cell lines response and potential mechanism of acquired resistance to novel selective FGFR inhibitor CPL304110. We found that despite significant genomic differences between CPL304110-sensitive cell lines, their resistant variants were characterised by upregulated p38 expression/phosphorylation, as well as enhanced expression of genes involved in MAPK signalling. We revealed that p38 inhibition restored sensitivity to CPL304110 in these cells. Moreover, the overexpression of this kinase in parental cells led to impaired response to FGFR inhibition, thus confirming that p38 MAPK is a driver of resistance to a novel FGFR inhibitor. Taken together, our results provide an insight into the potential direction for NSCLC targeted therapy.
Collapse
Affiliation(s)
- Izabela Zarczynska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
| | - Monika Gorska-Arcisz
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
| | - Alexander Jorge Cortez
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
| | - Katarzyna Aleksandra Kujawa
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (K.A.K.); (K.M.L.)
| | - Agata Małgorzata Wilk
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Andrzej Cezary Skladanowski
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
| | - Aleksandra Stanczak
- Clinical Development Department, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland; (A.S.); (M.W.)
| | - Monika Skupinska
- Preclinical Development Departament, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland;
| | - Maciej Wieczorek
- Clinical Development Department, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland; (A.S.); (M.W.)
| | - Katarzyna Marta Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (K.A.K.); (K.M.L.)
| | - Rafal Sadej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
- Correspondence: (R.S.); (K.K.)
| | - Kamila Kitowska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
- Correspondence: (R.S.); (K.K.)
| |
Collapse
|
2
|
Shi Y, Ma Z, Cheng Q, Wu Y, Parris AB, Kong L, Yang X. FGFR1 overexpression renders breast cancer cells resistant to metformin through activation of IRS1/ERK signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118877. [PMID: 33007330 DOI: 10.1016/j.bbamcr.2020.118877] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023]
Abstract
Metformin has been suggested as an anti-cancer agent. However, increasing reports show that some tumors are resistant to metformin. Identification of factors affecting metformin mediated cancer therapy is of great significance. FGFR1 is a receptor-tyrosine-kinase that is frequently overexpressed in breast cancer, which is associated with poor-prognosis. To investigate the effect of FGFR1 overexpression on metformin-induced inhibition of breast cancer cells, we demonstrated that FGFR1 overexpression rendered MCF-7 and T47D cells resistant to metformin. In particular, we found that, in addition to AKT and ERK1/2 activation, FGFR1-induced activation of IRS1 and IGF1R, key regulators connecting metabolism and cancer, was associated with metformin resistance. Targeting IRS with IRS1 KO or IRS inhibitor NT157 significantly sensitized FGFR1 overexpressing cells to metformin. Combination of NT157 with metformin induced enhanced inhibition of p-IGF1R, p-ERK1/2 and p-mTOR. Moreover, we demonstrated that IRS1 functions as a critical mediator of the crosstalk between FGFR1 and IGF1R pathways, which involves a feedback loop between IRS1 and MAPK/ERK. Our study highlights the significance of FGFR1 status and IRS1 activation in metformin-resistance, which will facilitate the development of strategies targeting FGFR overexpression-associated metformin resistance.
Collapse
Affiliation(s)
- Yujie Shi
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China
| | - Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, United States of America
| | - Qiong Cheng
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China; Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, United States of America
| | - Yudan Wu
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, United States of America
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, United States of America
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450003, PR China.
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, United States of America; Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| |
Collapse
|
3
|
Elakad O, Lois AM, Schmitz K, Yao S, Hugo S, Lukat L, Hinterthaner M, Danner BC, von Hammerstein-Equord A, Reuter-Jessen K, Schildhaus HU, Ströbel P, Bohnenberger H. Fibroblast growth factor receptor 1 gene amplification and protein expression in human lung cancer. Cancer Med 2020; 9:3574-3583. [PMID: 32207251 PMCID: PMC7288860 DOI: 10.1002/cam4.2994] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Targeting fibroblast growth factor receptor 1 (FGFR1) is a potential treatment for squamous cell lung cancer (SQCLC). So far, treatment decision in clinical studies is based on gene amplification. However, only a minority of patients have shown durable response. Furthermore, former studies have revealed contrasting results regarding the impact of FGFR1 amplification and expression on patient's prognosis. AIMS Here, we analyzed prevalence and correlation of FGFR1 gene amplification and protein expression in human lung cancer and their impact on overall survival. MATERIALS & METHODS: FGFR1 gene amplification and protein expression were analyzed by fluorescence in situ hybridization and immunohistochemistry (IHC) in 208 SQCLC and 45 small cell lung cancers (SCLC). Furthermore, FGFR1 protein expression was analyzed in 121 pulmonary adenocarcinomas (ACs). Amplification and expression were correlated to each other, clinicopathological characteristics, and overall survival. RESULTS FGFR1 was amplified in 23% of SQCLC and 8% of SCLC. Amplification was correlated to males (P = .027) but not to overall survival. Specificity of immunostaining was verified by cellular CRISPR/Cas9 FGFR1 knockout. FGFR1 was strongly expressed in 9% of SQCLC, 35% of AC, and 4% of SCLC. Expression was correlated to females (P = .0187) and to the absence of lymph node metastasis in SQCLC (P = .018) with no significant correlation to overall survival. Interestingly, no significant correlation between amplification and expression was detected. DISCUSSION FGFR1 gene amplification does not seem to correlate to protein expression. CONCLUSION We believe that patient selection for FGFR1 inhibitors in clinical studies should be reconsidered. Neither FGFR1 amplification nor expression influences patient's prognosis.
Collapse
MESH Headings
- Adenocarcinoma of Lung/drug therapy
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/pathology
- Adult
- Aged
- Aged, 80 and over
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Female
- Gene Amplification
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Prognosis
- Protein Kinase Inhibitors/therapeutic use
- Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Small Cell Lung Carcinoma/drug therapy
- Small Cell Lung Carcinoma/genetics
- Small Cell Lung Carcinoma/metabolism
- Small Cell Lung Carcinoma/pathology
Collapse
Affiliation(s)
- Omar Elakad
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Anna-Maria Lois
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Katja Schmitz
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Sha Yao
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Sara Hugo
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Laura Lukat
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Marc Hinterthaner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | - Bernhard C Danner
- Department of Thoracic and Cardiovascular Surgery, University Medical Center, Göttingen, Germany
| | | | | | | | - Philipp Ströbel
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | | |
Collapse
|
4
|
Miao JL, Zhou JH, Cai JJ, Liu RJ. The association between fibroblast growth factor receptor 1 gene amplification and lung cancer: a meta-analysis. Arch Med Sci 2020; 16:16-26. [PMID: 32051701 PMCID: PMC6963147 DOI: 10.5114/aoms.2020.91284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/11/2017] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Identifying target oncogenic alterations in lung cancer represents a major development in disease management. We examined the association of fibroblast growth factor receptor 1 (FGFR1) gene amplification with pathological characteristics and geographic region. MATERIAL AND METHODS We conducted a meta-analysis of studies published between January 2010 and October 2016. Relative risks (RR) and corresponding 95% confidence intervals (CI) were calculated regarding the rate of FGFR1 amplification in different lung cancer types and geographic region. RESULTS Twenty-three studies (5252 patients) were included. There was heterogeneity between studies. However, in subgroup analyses for squamous cell carcinoma (SCC), small cell lung cancer (SCLC), studies using the same definition of FGFR1 amplification, and those from Australia, no significant heterogeneity was detected. The prevalence of FGFR1 amplification in these studies ranged from 4.9% to 49.2% in non-small cell lung cancer (NSCLC), 5.1% to 41.5% in SCC, 0% to 14.7% in adenocarcinoma, and 0% to 7.8% in SCLC. The prevalence of FGFR1 amplification was significantly higher in SCC than in adenocarcinoma (RR = 5.2) and SCLC (RR = 4.2). The prevalence of FGFR1 amplification ranged from 5.6% to 22.2% in Europe, 4.1% to 18.2% in the United States, 7.8% to 49.2% in Asia, and 14.2% to 18.6% in Australia. The rate of FGFR1 amplification was higher in Asians than in non-Asians (RR = 1.9) in NSCLC. CONCLUSIONS These results suggest that FGFR1 amplification occurs more frequently in SCC and in Asians. FGFR1 amplification may be a potential new therapeutic target for specific patients and lung cancer subtypes.
Collapse
Affiliation(s)
- Jian-Long Miao
- Department of Respiratory Medicine, Shandong Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Jin-Hua Zhou
- Department of Respiratory Medicine, Shandong Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Jing-Jing Cai
- Department of Respiratory Medicine, Shandong Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Rui-Juan Liu
- Department of Respiratory Medicine, Shandong Jining No. 1 People's Hospital, Jining, Shandong, China
| |
Collapse
|
5
|
Zhang PF, Pei X, Li KS, Jin LN, Wang F, Wu J, Zhang XM. Circular RNA circFGFR1 promotes progression and anti-PD-1 resistance by sponging miR-381-3p in non-small cell lung cancer cells. Mol Cancer 2019; 18:179. [PMID: 31815619 PMCID: PMC6900862 DOI: 10.1186/s12943-019-1111-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/25/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Immune system evasion, distance tumor metastases, and increased cell proliferation are the main reasons for the progression of non-small cell lung cancer (NSCLC) and the death of NSCLC patients. Dysregulation of circular RNAs plays a critical role in the progression of NSCLC; therefore, further understanding the biological mechanisms of abnormally expressed circRNAs is critical to discovering novel, promising therapeutic targets for NSCLC treatment. METHODS The expression of circular RNA fibroblast growth factor receptor 1 (circFGFR1) in NSCLC tissues, paired nontumor tissues, and cell lines was detected by RT-qPCR. The role of circFGFR1 in NSCLC progression was assessed both in vitro by CCK-8, clonal formation, wound healing, and Matrigel Transwell assays and in vivo by a subcutaneous tumor mouse assay. In vivo circRNA precipitation, RNA immunoprecipitation, and luciferase reporter assays were performed to explore the interaction between circFGFR1 and miR-381-3p. RESULTS Here, we report that circFGFR1 is upregulated in NSCLC tissues, and circFGFR1 expression is associated with deleterious clinicopathological characteristics and poor prognoses for NSCLC patients. Forced circFGFR1 expression promoted the migration, invasion, proliferation, and immune evasion of NSCLC cells. Mechanistically, circFGFR1 could directly interact with miR-381-3p and subsequently act as a miRNA sponge to upregulate the expression of the miR-381-3p target gene C-X-C motif chemokine receptor 4 (CXCR4), which promoted NSCLC progression and resistance to anti-programmed cell death 1 (PD-1)- based therapy. CONCLUSION Taken together, our results suggest the critical role of circFGFR1 in the proliferation, migration, invasion, and immune evasion abilities of NSCLC cells and provide a new perspective on circRNAs during NSCLC progression.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Pei
- Department of Cardiothoracic Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ke-Sang Li
- Department of Hematology and Oncology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Zrhejiang, Ningbo, China
| | - Li-Na Jin
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Wang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Wu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xue-Mei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Daaboul N, Nicholas G, Laurie SA. Algorithm for the treatment of advanced or metastatic squamous non-small-cell lung cancer: an evidence-based overview. ACTA ACUST UNITED AC 2018; 25:S77-S85. [PMID: 29910650 DOI: 10.3747/co.25.3792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The treatment of squamous non-small-cell lung cancer (nsclc) is evolving. In the past, the backbone of treatment was chemotherapy, with very few other options available. Fortunately, that situation is changing, especially with a better understanding of tumour biology. Various strategies have been tried to improve patient outcomes. The most notable advance must be immunotherapy, which has revolutionized the treatment paradigm for lung cancer in patients without a driver mutation. Immunotherapy is now the treatment of choice in patients who have progressed after chemotherapy and is replacing chemotherapy as upfront therapy in a selected population. Other strategies have also been tried, such as the addition of targeted therapy to chemotherapy. Targeted agents include ramucirumab, an inhibitor of vascular endothelial growth factor receptor 2, and necitumumab, a monoclonal antibody against epithelial growth factor receptor. Recently, advances in molecular profiling have also been applied to tumours of squamous histology, in which multiple genetic alterations, including mutations and amplifications, have been described. Research is actively seeking targetable mutations and testing various therapies in the hopes of further improving prognosis for patients with squamous nsclc. Here, we review the various advances in the treatment of squamous nsclc and present a proposed treatment algorithm based on current evidence.
Collapse
Affiliation(s)
- N Daaboul
- Division of Medical Oncology, The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, ON
| | - G Nicholas
- Division of Medical Oncology, The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, ON
| | - S A Laurie
- Division of Medical Oncology, The Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, ON
| |
Collapse
|
7
|
Dubot C, Bernard V, Sablin MP, Vacher S, Chemlali W, Schnitzler A, Pierron G, Ait Rais K, Bessoltane N, Jeannot E, Klijanienko J, Mariani O, Jouffroy T, Calugaru V, Hoffmann C, Lesnik M, Badois N, Berger F, Le Tourneau C, Kamal M, Bieche I. Comprehensive genomic profiling of head and neck squamous cell carcinoma reveals FGFR1 amplifications and tumour genomic alterations burden as prognostic biomarkers of survival. Eur J Cancer 2018; 91:47-55. [PMID: 29331751 DOI: 10.1016/j.ejca.2017.12.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/25/2017] [Accepted: 12/09/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND We aimed at identifying deleterious genomic alterations from untreated head and neck squamous cell carcinoma (HNSCC) patients, and assessing their prognostic value. PATIENTS AND METHODS We retrieved 122 HNSCC patients who underwent primary surgery. Targeted NGS was used to analyse a panel of 100 genes selected among the most frequently altered genes in HNSCC and potential therapeutic targets. We selected only deleterious (activating or inactivating) single nucleotide variations, and copy number variations for analysis. Univariate and multivariate analyses were performed to assess the prognostic value of altered genes. RESULTS A median of 2 (range: 0-10) genomic alterations per sample was observed. Most frequently altered genes involved the cell cycle pathway (TP53 [60%], CCND1 [30%], CDKN2A [25%]), the PI3K/AKT/MTOR pathway (PIK3CA [12%]), tyrosine kinase receptors (EGFR [9%], FGFR1 [5%]) and cell differentiation (FAT1 [7%], NOTCH1 [4%]). TP53 mutations (p = 0.003), CCND1 amplifications (p = 0.04), CDKN2A alterations (p = 0.02) and FGFR1 amplifications (p = 0.003), correlated with shorter overall survival (OS). The number of genomic alterations was significantly higher in the HPV-negative population (p = 0.029) and correlated with a shorter OS (p < 0.0001). Only TP53 mutation and FGFR1 amplification status remained statistically significant in the multivariate analysis. CONCLUSION These results suggest that genomic alterations involving the cell cycle (TP53, CCND1, CDKN2A), as well as FGFR1 amplifications and tumour genomic alterations burden are prognostic biomarkers and might be therapeutic targets for patients with HNSCC.
Collapse
Affiliation(s)
- C Dubot
- Department of Medical Oncology, Institut Curie, Paris, Saint-Cloud, France; Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France.
| | - V Bernard
- Unit of Bioinformatics, Next Generation Sequencing Platform-ICGex, Institut Curie, Paris, France
| | - M P Sablin
- Department of Medical Oncology, Institut Curie, Paris, Saint-Cloud, France
| | - S Vacher
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - W Chemlali
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - A Schnitzler
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France
| | - G Pierron
- Unit of Somatic Genomics, Department of Genetics, Institut Curie, Paris, France
| | - K Ait Rais
- Unit of Somatic Genomics, Department of Genetics, Institut Curie, Paris, France
| | - N Bessoltane
- Unit of Bioinformatics, Next Generation Sequencing Platform-ICGex, Institut Curie, Paris, France
| | - E Jeannot
- Department of Biopathology, Institut Curie, Paris, France
| | - J Klijanienko
- Department of Biopathology, Institut Curie, Paris, France
| | - O Mariani
- Department of Biopathology, Institut Curie, Paris, France
| | - T Jouffroy
- Department of Surgery, Institut Curie, Paris, France
| | - V Calugaru
- Department of Radiotherapy, Institut Curie, Paris, France
| | - C Hoffmann
- Department of Surgery, Institut Curie, Paris, France
| | - M Lesnik
- Department of Surgery, Institut Curie, Paris, France
| | - N Badois
- Department of Surgery, Institut Curie, Paris, France
| | - F Berger
- Department of Biostatistics, Institut Curie, Paris, France
| | - C Le Tourneau
- Department of Medical Oncology, Institut Curie, Paris, Saint-Cloud, France; INSERM U900 Research Unit, Saint-Cloud, France
| | - M Kamal
- Department of Medical Oncology, Institut Curie, Paris, Saint-Cloud, France
| | - I Bieche
- Unit of Pharmacogenomics, Department of Genetics, Institut Curie, Paris, France; EA7331, Paris Descartes University, Faculty of Pharmaceutical and Biological Sciences, Paris, France
| |
Collapse
|
8
|
Flockerzi FA, Roggia C, Langer F, Holleczek B, Bohle RM. FGFR1 gene amplification in squamous cell carcinomas of the lung: a potential favorable prognostic marker for women and for patients with advanced cancer. Virchows Arch 2017; 472:759-769. [PMID: 29270870 DOI: 10.1007/s00428-017-2282-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 12/01/2022]
Abstract
In squamous cell carcinoma (SCC) of the lung, mutations within the genes of fibroblast growth factor receptors (FGFR) such as K660N/K660E in FGFR2 and R248C/S249C in FGFR3 and FGFR1 gene amplification have been described, but their prognostic relevance still remains unclear. In order to detect the mutation frequencies and to define their prognostic value for associated clinicopathologic features and survival of patients, resected ΔNp63/p40-positive SCC of the lung (n = 101) were screened for FGFR1 gene amplification by fluorescence in situ hybridization performed on formalin-fixed paraffin embedded tissues and for the presumed driver mutations in genes of FGFR2 and FGFR3 by PCR and Sanger sequencing. Twenty-two of 101 SCCs (22%) were positive for amplification based on a FGFR1/centromere (chromosome 8) ratio > 2.0 or higher. In advanced tumor stages (III-IV), the overall survival of patients carrying FGFR1 gene amplification was significantly higher (p = 0.006). Among women, FGFR1 gene amplification was significantly associated with longer overall survival (p = 0.023). The presence of FGFR1 gene amplification was associated with patient age (65 versus 69 years, p = 0.046), but not with gender, tumor stage, histologic subtype, tumor grade, or ΔNp63/p40 immunoreactivity. The S249C mutation in the FGFR3 gene was identified in one out of 101 SCCs (1%); the K600N, K660E, or R248C mutations were not identified. These results suggest that FGFR1 gene amplification is a frequent alteration in SCC of the lung and appears not to be a negative but rather a favorable prognostic marker for women and particularly for patients with advanced SCC of the lung (stage III-IV).
Collapse
Affiliation(s)
- Fidelis Andrea Flockerzi
- Department of Pathology, Saarland University Medical Center, Homburg, Building 26, 66421, Homburg, Germany.
| | - Cristiana Roggia
- Department of Pathology, Saarland University Medical Center, Homburg, Building 26, 66421, Homburg, Germany.,Department of Interdisciplinary Division of Neuro-Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Frank Langer
- Department of Thoracic and Cardiovascular Surgery, Saarland University Medical Center, Homburg, Germany
| | | | - Rainer M Bohle
- Department of Pathology, Saarland University Medical Center, Homburg, Building 26, 66421, Homburg, Germany.,Cancer Center Saarland, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
9
|
Chen B, Liu S, Gan L, Wang J, Hu B, Xu H, Tong R, Yang H, Cristina I, Xue J, Hu X, Lu Y. FGFR1 signaling potentiates tumor growth and predicts poor prognosis in esophageal squamous cell carcinoma patients. Cancer Biol Ther 2017; 19:76-86. [PMID: 29257923 DOI: 10.1080/15384047.2017.1394541] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fibroblast growth factor receptor-1 (FGFR1) over-expression was broadly found in squamous cancer, where it induced cellular proliferation, differentiation, and metastasis by activating various signaling pathway. However, the role of FGFR1 gene expression in predicting prognosis of Esophageal Squamous Cell Carcinoma (ESCC) and its regulatory function in the progression of ESCC are not well understood. Therefore, we performed an analysis of FGFR1 mRNA expression by quantitative RT-PCR in tumor tissue of 145 patients with ESCC. The relationships between FGFR1 gene expression and clinicopathological parameters, also the prognosis were further examined. Results suggested that higher FGFR1 gene expression predicted worse overall survival (HR = 1.502, 95%[CI] = 1.005-2.246, P = 0.045). Disease-free survival tends to be shorter in patients with higher FGFR1 expression but without statistical significance (HR = 1.398, 95%[CI] = 0.942-2.074, P = 0.096). FGFR1 was up regulated in multiple ESCC cell lines. Subsequent in vitro experiments demonstrated that anti-FGFR1 treatment by PD173074 inhibited TE-1 and EC9706 cell viability along with the attenuation of MEK-ERK signaling pathway. In vivo, PD173074 administration also had shown potent ESCC growth arresting effect. Overall, our study suggested that FGFR1 gene expression could be an independent prognosis predictive factor in patients with ESCC. Anti-FGFR1 inhibited ESCC growth and could be a potential strategy in ESCC targeted therapy.
Collapse
Affiliation(s)
- Baoqing Chen
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China.,b Huaxi Student Society of Oncology Research, West China School of Medicine, Sichuan University , Chengdu , Sichuan , China
| | - Shurui Liu
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Lu Gan
- c Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Jingwen Wang
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Binbin Hu
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - He Xu
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Ruizhan Tong
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Hui Yang
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China.,b Huaxi Student Society of Oncology Research, West China School of Medicine, Sichuan University , Chengdu , Sichuan , China
| | - Ivan Cristina
- d Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center , Houston , Texas , USA
| | - Jianxin Xue
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - Xun Hu
- e Huaxi Biobank, West China Hospital, Sichuan University , Chengdu , Sichuan , China
| | - You Lu
- a Department of Thoracic Oncology , Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University , Chengdu , Sichuan , China.,b Huaxi Student Society of Oncology Research, West China School of Medicine, Sichuan University , Chengdu , Sichuan , China
| |
Collapse
|
10
|
Miao JL, Liu RJ, Zhou JH, Meng SH. Fibroblast Growth Factor Receptor 1 Gene Amplification in Nonsmall Cell Lung Cancer. Chin Med J (Engl) 2017; 129:2868-2872. [PMID: 27901003 PMCID: PMC5146797 DOI: 10.4103/0366-6999.194649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: To review the prevalence and prognostic significance of fibroblast growth factor receptor 1 (FGFR1) amplification and to establish an association between FGFR1 amplification and the clinical characteristics of nonsmall cell lung cancer (NSCLC). Data Sources: We searched PubMed for English-language studies published between January 2010 and May 2016. Study Selection: We included all relevant articles, with no limitation of study design. Results: FGFR1 amplification was reported in 8.7–20.0% of NSCLC cases and was significantly more frequent in squamous cell carcinomas (SCCs) (9.7–28.3%) than in adenocarcinomas (ADCs) (0–15.0%). The rates of FGFR1 amplification were as follows: males, 13.9–22.1%; females, 0–20.1%; Stage I NSCLC, 9.3–24.1%; Stage II NSCLC, 12.9–25.0%; Stage III NSCLC, 8.2–19.5%; Stage IV NSCLC, 0–12.5%; current smokers, 13.3–29.0%; former smokers, 2.5–23.0%; and nonsmokers, 0–22.2%. Overall survival was 43.9–70.8 months in patients with FGFR1 amplification and 42.4–115.0 months in patients with no FGFR1 amplification; disease-free survival was 22.5–58.5 months and 52.4–94.6 months, respectively. Conclusions: FGFR1 amplification is more frequent in SCCs than in ADCs. The association between FGFR1 amplification and clinical characteristics (gender, smoking status, and disease stage) and the prognostic significance of FGFR1 amplification in NSCLC remain controversial.
Collapse
Affiliation(s)
- Jian-Long Miao
- Department of Respiratory Medicine, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272000, China
| | - Rui-Juan Liu
- Department of Respiratory Medicine, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272000, China
| | - Jin-Hua Zhou
- Department of Respiratory Medicine, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272000, China
| | - Shu-Hua Meng
- Zouping County Institute for Tuberculosis Prevention and Control, Binzhou, Shandong 256200, China
| |
Collapse
|
11
|
Inokuchi M, Murase H, Otsuki S, Kawano T, Kojima K. Different clinical significance of FGFR1-4 expression between diffuse-type and intestinal-type gastric cancer. World J Surg Oncol 2017; 15:2. [PMID: 28056982 PMCID: PMC5217622 DOI: 10.1186/s12957-016-1081-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/22/2016] [Indexed: 12/18/2022] Open
Abstract
Background Receptor tyrosine kinases promote tumor progression in many cancers, although oncologic activation differs between diffuse-type gastric cancer (DGC) and intestinal-type gastric cancer (IGC). Fibroblast growth factor receptor (FGFR) is one RTK, and we previously reported the clinical significance of FGFR1, 2, 3, and 4 in gastric cancer. The aim of the present study was to reevaluate the clinical significance of FGFR1–4 expression separately in DGC and IGC. Methods Tumor samples, including 109 DGCs and 100 IGCs, were obtained from patients who underwent gastrectomy between 2003 and 2007 in our institution. The expression levels of FGFR1, 2, 3, and 4 were measured in the tumors by immunohistochemical analysis. Results In DGC, high expression of FGFR1, FGFR2, or FGFR4 was significantly associated with the depth of invasion, lymph-node metastasis, pathological stage, and distant metastasis or recurrent disease. Patients with high expression of FGFR1, FGFR2, or FGFR4 had significantly poorer disease-specific survival (DSS) (p = 0.009, p = 0.001, and p = 0.023, respectively). In IGC, only FGFR4 expression was significantly associated with factors relative to tumor progression and with shorter DSS (p = 0.012). Conclusion In conclusion, high FGFR4 expression correlated with tumor progression and survival in both DGC and IGC, whereas high expression of FGFR1 and 2 correlated with tumor progression and survival in only DGC.
Collapse
Affiliation(s)
- Mikito Inokuchi
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8519, Japan.
| | - Hideaki Murase
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Sho Otsuki
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Tatsuyuki Kawano
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Kazuyuki Kojima
- Department of Minimally Invasive Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8519, Japan
| |
Collapse
|