1
|
Zhang K, Chen L, Zhu C, Zhang M, Liang C. Current Knowledge of Th22 Cell and IL-22 Functions in Infectious Diseases. Pathogens 2023; 12:pathogens12020176. [PMID: 36839448 PMCID: PMC9965464 DOI: 10.3390/pathogens12020176] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
T helper 22 (Th22) cells, a newly defined CD4+ T-cell lineage, are characterized by their distinct cytokine profile, which primarily consists of IL-13, IL-22 and TNF-α. Th22 cells express a wide spectrum of chemokine receptors, such as CCR4, CCR6 and CCR10. The main effector molecule secreted by Th22 cells is IL-22, a member of the IL-10 family, which acts by binding to IL-22R and triggering a complex downstream signaling system. Th22 cells and IL-22 have been found to play variable roles in human immunity. In preventing the progression of infections such as HIV and influenza, Th22/IL-22 exhibited protective anti-inflammatory characteristics, and their deleterious proinflammatory activities have been demonstrated to exacerbate other illnesses, including hepatitis B and Helicobacter pylori infection. Herein, we review the current understanding of Th22 cells, including their definition, differentiation and mechanisms, and the effect of Th22/IL-22 on human infectious diseases. According to studies on Th22 cells, Th22/IL-22 may be a promising therapeutic target and an effective treatment strategy for various infections.
Collapse
Affiliation(s)
- Kunyu Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Lei Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
| | - Chenyu Zhu
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- The Second Clinical Medical College, Anhui Medical University, Hefei 230032, China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230022, China
- Institute of Urology, Anhui Medical University, Hefei 230022, China
- Correspondence: (M.Z.); (C.L.); Tel./Fax: +86-55162922034 (M.Z.); +86-55162922034 (C.L.)
| |
Collapse
|
2
|
Tsai M, Osman W, Adair J, ElMergawy R, Chafin L, Johns F, Farkas D, Elhance A, Londino J, Mallampalli RK. The E3 ligase subunit FBXO45 binds the interferon-λ receptor and promotes its degradation during influenza virus infection. J Biol Chem 2022; 298:102698. [PMID: 36379255 PMCID: PMC9747586 DOI: 10.1016/j.jbc.2022.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022] Open
Abstract
Influenza remains a major public health challenge, as the viral infection activates multiple biological networks linked to altered host innate immunity. Following infection, IFN-λ, a ligand crucial for the resolution of viral infections, is known to bind to its cognate receptor, IFNLR1, in lung epithelia. However, little is known regarding the molecular expression and regulation of IFNLR1. Here, we show that IFNLR1 is a labile protein in human airway epithelia that is rapidly degraded after influenza infection. Using an unbiased proximal ligation biotin screen, we first identified that the Skp-Cullin-F box E3 ligase subunit, FBXO45, binds to IFNLR1. We demonstrate that FBXO45, induced in response to influenza infection, mediates IFNLR1 protein polyubiquitination and degradation through the ubiquitin-proteasome system by docking with its intracellular receptor domain. Furthermore, we found ectopically expressed FBXO45 and its silencing in cells differentially regulated both IFNLR1 protein stability and interferon-stimulated gene expression. Mutagenesis studies also indicated that expression of a K319R/K320R IFNLR1 variant in cells exhibited reduced polyubiquitination, yet greater stability and proteolytic resistance to FBXO45 and influenza-mediated receptor degradation. These results indicate that the IFN-λ-IFNLR1 receptor axis is tightly regulated by the Skp-Cullin-F box ubiquitin machinery, a pathway that may be exploited by influenza infection as a means to limit antiviral responses.
Collapse
|
3
|
Shohan M, Dehghani R, Khodadadi A, Dehnavi S, Ahmadi R, Joudaki N, Houshmandfar S, Shamshiri M, Shojapourian S, Bagheri N. Interleukin-22 and intestinal homeostasis: Protective or destructive? IUBMB Life 2020; 72:1585-1602. [PMID: 32365282 DOI: 10.1002/iub.2295] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 12/16/2022]
Abstract
Interleukin (IL)-22 is a member of IL-10 family cytokines with various immunologic functions. As its name implies, IL-22 is known to be secreted mainly by Th22 cells, a recently discovered lineage of CD4+ T cells. Also, Th17, Th1, natural killer cells, γδT cells, and innate immune cells along with some nonlymphoid cells have been confirmed as secondary cellular sources of IL-22. Different cell types such as bronchial and intestinal epithelial cells, keratinocytes, hepatocytes, dermal fibroblasts, and tubular epithelial cells are affected by IL-22. Both pathologic and protective roles have been attributed to IL-22 in maintaining gut homeostasis and inflammation. According to the latest fast-growing investigations, IL-22 is significantly involved in various pathologies including allergic diseases, infection, autoimmunity, and cancer development. Regulating gut immune responses, barrier integrity, and inflammation is dependent on a diverse complex of cytokines and mediators which are secreted by mucosal immune cells. Several investigations have been designed to recognize the role of IL-22 in gastrointestinal immunity. This article tries to discuss the latest knowledge on this issue and clarify the potential of IL-22 to be used in the future therapeutic approaches of intestinal disorders including inflammatory bowel diseases and colon cancer.
Collapse
Affiliation(s)
- Mojtaba Shohan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Razieh Dehghani
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Ahmadi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nazanin Joudaki
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sheyda Houshmandfar
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Marziye Shamshiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Shojapourian
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
4
|
Alcorn JF. IL-22 Plays a Critical Role in Maintaining Epithelial Integrity During Pulmonary Infection. Front Immunol 2020; 11:1160. [PMID: 32582219 PMCID: PMC7296169 DOI: 10.3389/fimmu.2020.01160] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Pulmonary infection is a leading cause of hospitalization in world. Lung damage due to infection and host mediated pathology can have life threatening consequences. Factors that limit lung injury and/or promote epithelial barrier function and repair are highly desirable as immunomodulatory therapeutics. Over the last decade, interleukin-22 has been shown to have pulmonary epithelial protective functions at the mucosal immune interface with bacterial and viral pathogens. This article summarizes recent findings in this area and provides perspective regarding the role of IL-22 in mucosal host defense.
Collapse
Affiliation(s)
- John F. Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Shabgah AG, Navashenaq JG, Shabgah OG, Mohammadi H, Sahebkar A. Interleukin-22 in human inflammatory diseases and viral infections. Autoimmun Rev 2017; 16:1209-1218. [PMID: 29037907 DOI: 10.1016/j.autrev.2017.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 12/24/2022]
Abstract
Interleukin-22 (IL22) is one of the members of IL10 family. Elevated levels of this cytokine can be seen in diseases caused by T lymphocytes, such as Psoriasis, Rheumatoid arthritis, interstitial lung diseases. IL22 is produced by different cells in both innate and acquired immunities. Different types of T cells are able to produce IL22, but the major IL22-producing T-cell is the TCD4. TH22 cell is a new line of TCD4 cells, which differentiated from naive T cells in the presence of TNFα and IL6; 50% of peripheral blood IL22 is produced by these cells. IL22 has important functions in host defense at mucosal surfaces as well as in tissue repair. In this review, we assess the current understanding of this cytokine and focus on the possible roles of IL-22 in autoimmune diseases.
Collapse
Affiliation(s)
- Arezoo Gowhari Shabgah
- Immunology Research Center, Avicenna Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Blood Borne Infections Research Center, AcademicCenter for Education, Culture and Research (ACECR), Razavi Khorasan Branch,Mashhad, Iran
| | - Jamshid Gholizadeh Navashenaq
- Immunology Research Center, Avicenna Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Gohari Shabgah
- Parasitology Department, Medical sciencesfaculty, Tarbiat Modares University, Tehran, Iran
| | - Hamed Mohammadi
- ImmunologyResearch Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Sahebkar
- BiotechnologyResearch Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Evankovich J, Lear T, Mckelvey A, Dunn S, Londino J, Liu Y, Chen BB, Mallampalli RK. Receptor for advanced glycation end products is targeted by FBXO10 for ubiquitination and degradation. FASEB J 2017; 31:3894-3903. [PMID: 28515150 DOI: 10.1096/fj.201700031r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/24/2017] [Indexed: 12/14/2022]
Abstract
The receptor for advanced glycation end products (RAGE) is a highly expressed cell membrane receptor serving to anchor lung epithelia to matrix components, and it also amplifies inflammatory signaling during acute lung injury. However, mechanisms that regulate its protein concentrations in cells remain largely unknown. Here we show that RAGE exhibits an extended life span in lung epithelia (t½ 6 h), is monoubiquitinated at K374, and is degraded in lysosomes. The RAGE ligand ODN2006, a synthetic oligodeoxynucleotide resembling pathogenic hypomethylated CpG DNA, promotes rapid lysosomal RAGE degradation through activation of protein kinase Cζ (PKCζ), which phosphorylates RAGE. PKCζ overexpression enhances RAGE degradation, while PKCζ knockdown stabilizes RAGE protein levels and prevents ODN2006-mediated degradation. We identify that RAGE is targeted by the ubiquitin E3 ligase subunit F-box protein O10 (FBXO10), which associates with RAGE to mediate its ubiquitination and degradation. FBXO10 depletion in cells stabilizes RAGE and is required for ODN2006-mediated degradation. These data suggest that modulation of regulators involved in ubiquitin-mediated disposal of RAGE might serve as unique molecular inputs directing RAGE cellular concentrations and downstream responses, which are critical in an array of inflammatory disorders, including acute lung injury.-Evankovich, J., Lear, T., Mckelvey, A., Dunn, S., Londino, J., Liu, Y., Chen, B. B., Mallampalli, R. K. Receptor for advanced glycation end products is targeted by FBXO10 for ubiquitination and degradation.
Collapse
Affiliation(s)
- John Evankovich
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Travis Lear
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; and
| | - Alison Mckelvey
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; and
| | - Sarah Dunn
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; and
| | - James Londino
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yuan Liu
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bill B Chen
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rama K Mallampalli
- Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; .,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Zheng N, Wang Z, Wei W. Ubiquitination-mediated degradation of cell cycle-related proteins by F-box proteins. Int J Biochem Cell Biol 2016; 73:99-110. [PMID: 26860958 PMCID: PMC4798898 DOI: 10.1016/j.biocel.2016.02.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/05/2016] [Accepted: 02/05/2016] [Indexed: 02/06/2023]
Abstract
F-box proteins, subunits of SKP1-cullin 1-F-box protein (SCF) type of E3 ubiquitin ligase complexes, have been validated to play a crucial role in governing various cellular processes such as cell cycle, cell proliferation, apoptosis, migration, invasion and metastasis. Recently, a wealth of evidence has emerged that F-box proteins is critically involved in tumorigenesis in part through governing the ubiquitination and subsequent degradation of cell cycle proteins, and dysregulation of this process leads to aberrant cell cycle progression and ultimately, tumorigenesis. Therefore, in this review, we describe the critical role of F-box proteins in the timely regulation of cell cycle. Moreover, we discuss how F-box proteins involve in tumorigenesis via targeting cell cycle-related proteins using biochemistry studies, engineered mouse models, and pathological gene alternations. We conclude that inhibitors of F-box proteins could have promising therapeutic potentials in part through controlling of aberrant cell cycle progression for cancer therapies.
Collapse
Affiliation(s)
- Nana Zheng
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02215, USA.
| |
Collapse
|