1
|
Wang Y, Song X, Xia Y, Zhang W, Li W, Wang Y, Li J, Geng Z, Zhang X, Wang L, Zuo L, Hu J. Complanatuside A ameliorates 2,4,6-trinitrobenzene sulfonic acid-induced colitis in mice by regulating the Th17/Treg balance via the JAK2/STAT3 signaling pathway. FASEB J 2024; 38:e23667. [PMID: 38742812 DOI: 10.1096/fj.202301127rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Immunity imbalance of T helper 17 (Th17)/regulatory T (Treg) cells is involved in the pathogenesis of Crohn's disease (CD). Complanatuside A (CA), a flavonol glycoside, exerts anti-inflammatory activities and our study aimed to identify its effect on TNBS-induced colitis and the possible mechanisms. We found that CA alleviated the symptoms of colitis in TNBS mice, as demonstrated by prevented weight loss and colon length shortening, as well as decreased disease activity index scores, inflammatory scores, and levels of proinflammatory factors. Flow cytometry analysis showed that CA markedly reduced the percentage of Th17 cells while increasing the percentage of Treg cells in TNBS mice. Under Th17 cell polarizing conditions, CA inhibited the differentiation of Th17 cells while the Treg cell differentiation was elevated under Treg cell polarizing conditions. Furthermore, it was observed that JAK2 interacted with CA through six hydrogen bonds via molecular docking. The phosphorylation of JAK2/STAT3 was reduced by CA, which might be correlated with the protective effect of CA on colitis. In conclusion, CA reduced the imbalance of Th17/Treg cells by inhibiting the JAK2/STAT3 signaling pathway in TNBS-induced colitis, which may provide novel strategies for CD treatment.
Collapse
Affiliation(s)
- Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yongsheng Xia
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Wenjing Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Wenjie Li
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Yu Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Xiaofeng Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lian Wang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| |
Collapse
|
2
|
Wojcik-Grzybek D, Sliwowski Z, Kwiecien S, Ginter G, Surmiak M, Hubalewska-Mazgaj M, Chmura A, Wojcik A, Kosciolek T, Danielak A, Targosz A, Strzalka M, Szczyrk U, Ptak-Belowska A, Magierowski M, Bilski J, Brzozowski T. Alkaline Phosphatase Relieves Colitis in Obese Mice Subjected to Forced Exercise via Its Anti-Inflammatory and Intestinal Microbiota-Shaping Properties. Int J Mol Sci 2024; 25:703. [PMID: 38255781 PMCID: PMC10815191 DOI: 10.3390/ijms25020703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Intestinal alkaline phosphatase (IAP) is an enzyme that plays a protective role in the gut. This study investigated the effect of IAP treatment on experimental colitis in mice subjected to forced exercise on a high-fat diet. C57BL/6 mice with TNBS colitis were fed a high-fat diet and subjected to forced treadmill exercise with or without IAP treatment. Disease activity, oxidative stress, inflammatory cytokines, and gut microbiota were assessed. Forced exercise exacerbated colitis in obese mice, as evidenced by increased disease activity index (DAI), oxidative stress markers, and proinflammatory adipokines and cytokines. IAP treatment significantly reduced these effects and promoted the expression of barrier proteins in the colonic mucosa. Additionally, IAP treatment altered the gut microbiota composition, favoring beneficial Verrucomicrobiota and reducing pathogenic Clostridia and Odoribacter. IAP treatment ameliorates the worsening effect of forced exercise on murine colitis by attenuating oxidative stress, downregulating proinflammatory biomarkers, and modulating the gut microbiota. IAP warrants further investigation as a potential therapeutic strategy for ulcerative colitis.
Collapse
Affiliation(s)
- Dagmara Wojcik-Grzybek
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Zbigniew Sliwowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Slawomir Kwiecien
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Grzegorz Ginter
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Marcin Surmiak
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, 31-008 Cracow, Poland
| | - Magdalena Hubalewska-Mazgaj
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Anna Chmura
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Adrianna Wojcik
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland
| | - Aleksandra Danielak
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Aneta Targosz
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Malgorzata Strzalka
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Urszula Szczyrk
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Agata Ptak-Belowska
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Marcin Magierowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| | - Jan Bilski
- Department of Biomechanics and Kinesiology, Chair of Biomedical Sciences, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Cracow, Poland;
| | - Tomasz Brzozowski
- Department of Physiology, Faculty of Medicine, Jagiellonian University Medical College, 31-531 Cracow, Poland; (D.W.-G.); (S.K.); (G.G.)
| |
Collapse
|
3
|
Baptista BG, Lima LS, Ribeiro M, Britto IK, Alvarenga L, Kemp JA, Cardozo LFMF, Berretta AA, Mafra D. Royal jelly: a predictive, preventive and personalised strategy for novel treatment options in non-communicable diseases. EPMA J 2023; 14:381-404. [PMID: 37605655 PMCID: PMC10439876 DOI: 10.1007/s13167-023-00330-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/26/2023] [Indexed: 08/23/2023]
Abstract
Royal jelly (RJ) is a bee product produced by young adult worker bees, composed of water, proteins, carbohydrates and lipids, rich in bioactive components with therapeutic properties, such as free fatty acids, mainly 10-hydroxy-trans-2-decenoic acid (10-H2DA) and 10-hydroxydecanoic acid (10-HDA), and major royal jelly proteins (MRJPs), as well as flavonoids, most flavones and flavonols, hormones, vitamins and minerals. In vitro, non-clinical and clinical studies have confirmed its vital role as an antioxidant and anti-inflammatory. This narrative review discusses the possible effects of royal jelly on preventing common complications of non-communicable diseases (NCDs), such as inflammation, oxidative stress and intestinal dysbiosis, from the viewpoint of predictive, preventive and personalised medicine (PPPM/3PM). It is concluded that RJ, predictively, can be used as a non-pharmacological therapy to prevent and mitigate complications related to NCDs, and the treatment must be personalised.
Collapse
Affiliation(s)
- Beatriz G. Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ligia S. Lima
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Isadora K. Britto
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
| | - Livia Alvarenga
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Julie A. Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Ludmila FMF Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
| | - Andresa A. Berretta
- Research, Development, and Innovation Department, Apis Flora Indl. Coml. Ltda, Ribeirão Preto, SP Brazil
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Graduate Program in Biological Sciences – Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ Brazil
- Unidade de Pesquisa Clínica, UPC, Rua Marquês de Paraná, 303/4 Andar, Niterói, RJ 24033-900 Brazil
| |
Collapse
|
4
|
Functionalised penetrating peptide-chondroitin sulphate‑gold nanoparticles: Synthesis, characterization, and applications as an anti-Alzheimer's disease drug. Int J Biol Macromol 2023; 230:123125. [PMID: 36603725 DOI: 10.1016/j.ijbiomac.2022.123125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
The purpose of this study was to construct a transmembrane peptide-chondroitin sulphate‑gold nanoparticle (TAT-CS@Au) delivery system and investigate its activity as an anti-Alzheimer's disease (AD) drug. We successfully prepared TAT-CS@Au nanoparticles, investigated their anti-AD effects, and explored the possible mechanisms in in vitro models. TAT-CS@Au exhibited excellent cellular uptake and transport capacity, effectively inhibited the accumulation of Aβ1-40, and significantly reduced Aβ1-40-induced apoptosis in SH-SY5Y cells. Furthermore, TAT-CS@Au significantly reduced oxidative stress damage and cholinergic injury induced by Aβ1-40 by regulating intracellular concentrations of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and acetylcholine (ACh). Western blotting results demonstrated that TAT-CS@Au inhibited aberrant tau phosphorylation (Ser199, Thr205, Ser404, and Ser396) through GSK3β inactivation. TAT-CS@Au decreased the levels of inflammatory factors, specifically TNF-α, IL-6, and IL-1β, by inhibiting NF-κB nuclear translocation by activating MAPK signalling pathways. Overall, these results indicate that TAT-CS@Au exhibits excellent transmembrane ability, inhibits Aβ1-40 accumulation, antagonises oxidative stress, reduces aberrant tau phosphorylation, and suppresses the expression of inflammatory factors. TAT-CS@Au may be a multi-target anti-AD drug with good cell permeability, providing new insights into the design and research of anti-AD therapeutics.
Collapse
|
5
|
Royal Jelly Protected against Dextran-Sulfate-Sodium-Induced Colitis by Improving the Colonic Mucosal Barrier and Gut Microbiota. Nutrients 2022; 14:nu14102069. [PMID: 35631210 PMCID: PMC9143990 DOI: 10.3390/nu14102069] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Royal jelly (RJ) is a natural bee product that contains a variety of biologically active ingredients and has antitumor, antiallergic, antibacterial and immune-regulating effects. Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the intestine that can cause abdominal pain and diarrhea. With this study, we aimed to explore the protective effect of RJ on DSS-induced colitis in mice. The physiochemical parameters (water, protein, 10-hydroxy-2-decenoic acid, total sugar, starch, ash and acidity) of the RJ samples used in this study met the requirements of the international and Chinese national standards. Treatment with RJ improved symptoms and colonic cell apoptosis and decreased intestinal permeability by increasing the expression of tight-junction protein, goblet cells and their secretion mucin, MUC2, in DSS-induced ulcerative colitis mice. RJ also reduced the expression of proinflammatory cytokine IL-6 and increased the expression of anti-inflammatory cytokine IL-10 and sIgA. DSS resulted in an increase in the relative abundance of Parabacteroides, Erysipelotrichaceae, Proteobacteria (Gammaproteobacteria, Enterobacteriales and Enterobacteriaceae) and Escherichia Shigella in the colon and a decrease in the relative abundance of Muribaculum. In the RJ treatment group, the relative abundance of the above intestinal flora was improved by treatment with 2.0 g/kg RJ. These results suggested that RJ alleviated DSS-induced colitis by improving the colonic mucosal barrier.
Collapse
|
6
|
The Combination of Intestinal Alkaline Phosphatase Treatment with Moderate Physical Activity Alleviates the Severity of Experimental Colitis in Obese Mice via Modulation of Gut Microbiota, Attenuation of Proinflammatory Cytokines, Oxidative Stress Biomarkers and DNA Oxidative Damage in Colonic Mucosa. Int J Mol Sci 2022; 23:ijms23062964. [PMID: 35328382 PMCID: PMC8955215 DOI: 10.3390/ijms23062964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are commonly considered as Crohn's disease and ulcerative colitis, but the possibility that the alterations in gut microbiota and oxidative stress may affect the course of experimental colitis in obese physically exercising mice treated with the intestinal alkaline phosphatase (IAP) has been little elucidated. Mice fed a high-fat-diet (HFD) or normal diet (ND) for 14 weeks were randomly assigned to exercise on spinning wheels (SW) for 7 weeks and treated with IAP followed by intrarectal administration of TNBS. The disease activity index (DAI), grip muscle strength test, oxidative stress biomarkers (MDA, SOD, GSH), DNA damage (8-OHdG), the plasma levels of cytokines IL-2, IL-6, IL-10, IL-12p70, IL-17a, TNF-α, MCP-1 and leptin were assessed, and the stool composition of the intestinal microbiota was determined by next generation sequencing (NGS). The TNBS-induced colitis was worsened in obese sedentary mice as manifested by severe colonic damage, an increase in DAI, oxidative stress biomarkers, DNA damage and decreased muscle strength. The longer running distance and weight loss was observed in mice given IAP or subjected to IAP + SW compared to sedentary ones. Less heterogeneous microbial composition was noticed in sedentary obese colitis mice and this effect disappeared in IAP + SW mice. Absence of Alistipes, lower proportion of Turicibacter, Proteobacteria and Faecalibacterium, an increase in Firmicutes and Clostridium, a decrease in oxidative stress biomarkers, 8-OHdG content and proinflammatory cytokines were observed in IAP + SW mice. IAP supplementation in combination with moderate physical activity attenuates the severity of murine colitis complicated by obesity through a mechanism involving the downregulation of the intestinal cytokine/chemokine network and oxidative stress, the modulation of the gut microbiota and an improvement of muscle strength.
Collapse
|
7
|
Guo J, Wang Z, Chen Y, Cao J, Tian W, Ma B, Dong Y. Active components and biological functions of royal jelly. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
8
|
Gao F, Zhao J, Liu P, Ji D, Zhang L, Zhang M, Li Y, Xiao Y. Preparation and in vitro evaluation of multi-target-directed selenium-chondroitin sulfate nanoparticles in protecting against the Alzheimer's disease. Int J Biol Macromol 2019; 142:265-276. [PMID: 31593732 DOI: 10.1016/j.ijbiomac.2019.09.098] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/21/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
Abstract
The purpose of this study was to ascertain the effect of selenium-chondroitin sulfate nanoparticles (CS@Se) on multi-target-directed therapy for the treatment of Alzheimer's disease (AD). CS@Se nanoparticles were successfully synthesized, and their therapeutic effects were studied in in vitro AD models. CS@Se effectively inhibited amyloid-β (Aβ) aggregation and protected SH-SY5Y cells from Aβ1-42-induced cytotoxicity. Moreover, CS@Se significantly decreased okadaic acid-induced actin cytoskeleton instability in SH-SY5Y cells. In addition, CS@Se decreased the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) and increased the levels of glutathione peroxidase (GSH-Px). The Western blot results indicated that CS@Se attenuated the hyperphosphorylation of tau (Ser396/Ser404) by regulating the expression of GSK-3β. In summary, this study demonstrated that CS@Se could inhibit the aggregation of Aβ, reduce damage to the cytoskeleton, mitigate oxidative stress and attenuate the hyperphosphorylation of tau protein. CS@Se might be a potent multi-functional agent for the treatment of AD and thus warrants further research and evaluation.
Collapse
Affiliation(s)
- Fei Gao
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Jing Zhao
- Department of Pharmacy, Taishan Sanatorium of Shandong Province, Taian 271000, Shandong, China
| | - Ping Liu
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China; Department of Pharmacy, Affiliated Hospital of Heze Medical College, Heze 274000, Shandong, China
| | - Dongsheng Ji
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Litao Zhang
- Department of Imaging, Taian Central Hospital, Taian 271000, Shandong, China
| | - Mengxiao Zhang
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China
| | - Yuqin Li
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China.
| | - Yuliang Xiao
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, Shandong, China.
| |
Collapse
|
9
|
Hossen MS, Nahar T, Gan SH, Khalil MI. Bioinformatics and Therapeutic Insights on Proteins in Royal Jelly. CURR PROTEOMICS 2019. [DOI: 10.2174/1570164615666181012113130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
To date, there is no x-ray crystallography or structures from nuclear magnetic resonance (NMR) on royal jelly proteins available in the online data banks. In addition, characterization of proteins in royal jelly is not fully accomplished to date. Although new investigations unravel novel proteins in royal jelly, the majority of a protein family is present in high amounts (80-90%).
Objective:
In this review, we attempted to predict the three-dimensional structure of royal jelly proteins (especially the major royal jelly proteins) to allow visualization of the four protein surface properties (aromaticity, hydrophobicity, ionizability and (hydrogen (H)-bond) by using bioinformatics tools. Furthermore, we gathered the information on available therapeutic activities of crude royal jelly and its proteins.
Methods:
For protein modeling, prediction and analysis, the Phyre2 web portal systematically browsed in which the modeling mode was intensive. On the other side, to build visualized understanding of surface aromaticity, hydrophobicity, ionizability and H-bond of royal jelly proteins, the Discovery Studio 4.1 (Accelrys Software Inc.) was used.
Results:
Our in silico study confirmed that all proteins treasure these properties, including aromaticity, hydrophobicity, ionizability and (hydrogen (H)-bond. Another finding was that newly discovered proteins in royal jelly do not belong to the major royal jelly protein group.
Conclusion:
In conclusion, the three dimensional structure of royal jelly proteins along with its major characteristics were successfully elucidated in this review. Further studies are warranted to elucidate the detailed physiochemical properties and pharmacotherapeutics of royal jelly proteins.
Collapse
Affiliation(s)
- Md. Sakib Hossen
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Taebun Nahar
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Md. Ibrahim Khalil
- Laboratory of Preventive and Integrative Biomedicine, Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| |
Collapse
|
10
|
Kocot J, Kiełczykowska M, Luchowska-Kocot D, Kurzepa J, Musik I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7074209. [PMID: 29854089 PMCID: PMC5954854 DOI: 10.1155/2018/7074209] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023]
Abstract
Honeybees products comprise of numerous substances, including propolis, bee pollen, and royal jelly, which have long been known for their medicinal and health-promoting properties. Their wide biological effects have been known and used since antiquity. Bee products are considered to be a potential source of natural antioxidants such as flavonoids, phenolic acids, or terpenoids. Nowadays, the still growing concern in natural substances capable of counteracting the effects of oxidative stress underlying the pathogenesis of numerous diseases, such as neurodegenerative disorders, cancer, diabetes, and atherosclerosis, as well as negative effects of different harmful factors and drugs, is being observed. Having regarded the importance of acquiring drugs from natural sources, this review is aimed at updating the current state of knowledge of antioxidant capacity of selected bee products, namely, propolis, bee pollen, and royal jelly, and of their potential antioxidant-related therapeutic applications. Moreover, the particular attention has been attributed to the understanding of the mechanisms underlying antioxidant properties of bee products. The influence of bee species, plant origin, geographic location, and seasonality as well as type of extraction solutions on the composition of bee products extracts were also discussed.
Collapse
Affiliation(s)
- Joanna Kocot
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Małgorzata Kiełczykowska
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Dorota Luchowska-Kocot
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| | - Irena Musik
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki Street, 20-093 Lublin, Poland
| |
Collapse
|