1
|
Huang L, Sun R, Song H, Chen Z, Hong Y, Yang H, Zhang Y, Wei L, Fei F, Li J. The first-in-human study of QHRD106 functioning as a safe and effective long-acting kallikrein drug potentially aiding ischemic stroke. Expert Opin Investig Drugs 2024; 33:1257-1265. [PMID: 39545461 DOI: 10.1080/13543784.2024.2430200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND This study assessed the pharmacokinetics (PK), pharmacodynamics (PD) and safety of QHRD106, and made a comparison with urinary kallindinogenase (UKN) in healthy volunteers. METHODS This study comprised a randomized, double-blind, placebo-controlled, single-dose escalation phase and an open-label, multiple-dose escalation phase. Ninety-four subjects received intramuscular injections of QHRD106/placebo only once and 30 subjects received QHRD106 four times. Six subjects received 0.15 PNA units UKN intravenously for 7 d. PK and PD analysis were conducted by using a electrochemiluminescent assay and a liquid chromatography/mass spectrometry methodology, respectively. Cerebral circulation was assessed by the magnetic resonance imaging system. RESULTS QHRD106 exhibited a slow absorption profile in the human body. Compared to UKN, QHRD106-induced changes in bradykinin concentration later, but with a noticeably prolonged duration. Compared to baseline, cerebral blood flow exhibited a significant improvement on d 7 after a single dose of 18,900 IU and an improvement from d 2 to d 14 after multiple doses of 8400 IU of QHRD106. QHRD106 appeared generally good safety and no severe adverse events occurred in all the groups. CONCLUSIONS This study provided initial evidence of potential treatment for ischemic strokes that the QHRD106 injection functioned as a safe and effective long-acting kallikrein drug. REGISTRATION This study was registered on ClinicalTrials.gov with the identifier NCT06380699 and NCT06388772.
Collapse
Affiliation(s)
- Lei Huang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hengwen Song
- Achievements Transformation Management Department, Qianhong Bio-pharma Co., Ltd. Changzhou, China
| | - Zhiyou Chen
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuxin Hong
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Haoyi Yang
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuwen Zhang
- Phase I Clinical Trials Unit, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Lijun Wei
- Achievements Transformation Management Department, Qianhong Bio-pharma Co., Ltd. Changzhou, China
| | - Fei Fei
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juan Li
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Mairuae N, Palachai N, Noisa P. An anthocyanin-rich extract from Zea mays L. var. ceratina alleviates neuronal cell death caused by hydrogen peroxide-induced cytotoxicity in SH-SY5Y cells. BMC Complement Med Ther 2024; 24:162. [PMID: 38632534 PMCID: PMC11025150 DOI: 10.1186/s12906-024-04458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
The incidence of dementia is rising, with neuronal cell death from oxidative stress and apoptosis recognized as a significant contributor to its development. However, effective strategies to combat this condition are lacking, necessitating further investigation. This study aimed to assess the potential of an anthocyanin-rich extract from Zea mays L. var. ceratina (AZC) in alleviating neuronal cell death.Neurotoxicity was induced in SH-SY5Y cells using hydrogen peroxide (H2O2) at a concentration of 200 µM. Cells were pretreated with varying doses (31.25 and 62.5 µg/mL) of AZC. Cell viability was assessed using the MTT assay, and molecular mechanisms including reactive oxygen species (ROS) levels, antioxidant enzyme activities (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)), malondialdehyde (MDA) levels for oxidative stress, and the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), cAMP response element-binding protein (CREB), and apoptotic factors (B-cell lymphoma 2 (Bcl-2), caspase 3) were explored.Results showed that AZC significantly improved cell viability, reduced ROS production and MDA levels, and downregulated caspase 3 expression. It enhanced CAT, SOD, and GSH-Px activities, activated ERK1/2 and CREB, and upregulated Bcl-2 expression. These findings support the neuroprotective effects of AZC, suggesting it activates ERK1/2, leading to CREB activation and subsequent upregulation of Bcl-2 expression while suppressing caspase 3. AZC may mitigate neuronal cell death by reducing ROS levels through enhanced scavenging enzyme activities.In conclusion, this study underscores the potential of AZC as a neuroprotective agent against neuronal cell death. However, further investigations including toxicity assessments, in vivo studies, and clinical trials are necessary to validate its benefits in neuroprotection.
Collapse
Affiliation(s)
- Nootchanat Mairuae
- Faculty of Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Nut Palachai
- Faculty of Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand.
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
3
|
Xu SY, Jia JQ, Sun M, Bao XY, Xia SN, Shu S, Liu PY, Ji SL, Ye L, Cao X, Xu Y. QHRD106 ameliorates ischemic stroke injury as a long-acting tissue kallikrein preparation. iScience 2023; 26:107268. [PMID: 37496671 PMCID: PMC10366503 DOI: 10.1016/j.isci.2023.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
Ischemic stroke is the second leading cause of death worldwide, and there are limited effective treatment strategies. QHRD106, a polyethyleneglycol (PEG)-modified long-acting tissue kallikrein preparation, has not been reported previously. In this study, we aimed to investigate the therapeutic effect of QHRD106 in ischemic stroke and its possible mechanism. We found that QHRD106 treatment alleviated brain injury after stroke via bradykinin (BK) receptor B2 (B2R) instead of BK receptor B1 (B1R). Mechanistically, QHRD106 reduced high-mobility group box 1 (HMGB1)-induced apoptosis and inflammation after ischemic stroke in vivo and in vitro. Moreover, we confirmed that QHRD106 reduced the level of acetylated HMGB1 and reduced the binding between heat shock protein 90 alpha family class A member 1 (HSP90AA1) and HMGB1, thus inhibiting the translocation and release of HMGB1. In summary, these findings indicate that QHRD106 treatment has therapeutic potential for cerebral ischemic stroke.
Collapse
Affiliation(s)
- Si-Yi Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu 210008, P.R. China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Jun-Qiu Jia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Min Sun
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xin-Yu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Sheng-Nan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Shu Shu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Pin-yi Liu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Sen-lin Ji
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Ye
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu 210008, P.R. China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu 210008, P.R. China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, Jiangsu 210008, P.R. China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
4
|
Ran X, Wang DW, Yu Z, Wu R, Zhang Q. Decreased Tissue Kallikrein Levels and the Risk of Ischemic Stroke: A Community-Based Cross-Sectional Study in China. J Inflamm Res 2022; 15:117-126. [PMID: 35023947 PMCID: PMC8747795 DOI: 10.2147/jir.s343972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022] Open
Abstract
AIM Tissue kallikrein (TK) exerts protective effects on cardiac cerebrovascular diseases (CCVDs). Changes in TK level in plasma are associated with ischemic stroke and coronary artery disease (CAD); however, a causal correlation could not be established. Therefore, we investigated the association between TK levels and CCVDs in a community-based cross-sectional study in China. METHODS A total of 6043 subjects (4242 men and 1801 women) were enrolled in this community-based cross-sectional study. Then, TK levels were measured using an enzyme-linked immunosorbent assay kit. Multivariate linear regression model and logistic regression were used to assess the correlations between TK levels and CCVDs. Subsequently, the receiver operating characteristic (ROC) curve was drawn to assess the value of TK level in evaluating the risk of ischemic stroke. Finally, the influence of various medications was evaluated on TK levels. RESULTS The TK level was significantly lower in subjects with ischemic stroke (P < 0.001) and hypertension (P < 0.001) and negatively associated with ischemic stroke (P < 0.001) but not associated with hypertension, coronary heart disease, and diabetes compared to the traditional risk factors. The diagnostic accuracy for ischemic stroke, as quantified by the area under the curve, was 0.892 (95% CI, 0.884-0.900) for TK level, deeming it as a promising assessment tool. Moreover, no appreciable influence of various drugs therapy was found in TK levels (P = 0.222) except for those taking antilipemic agents. CONCLUSION TK is a strong and independent endogenous protective factor against ischemic stroke in the Chinese population and could be a promising biomarker for the risk of ischemic stroke.
Collapse
Affiliation(s)
- Xiao Ran
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Dao Wen Wang
- The Institute of Hypertension and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Zhen Yu
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Rongxue Wu
- Department of Biological Sciences Division/ Cardiology, University of Chicago, Chicago, IL, 60637, USA
| | - Qin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| |
Collapse
|
5
|
Saklani P, Khan H, Gupta S, Kaur A, Singh TG. Neuropeptides: Potential neuroprotective agents in ischemic injury. Life Sci 2022; 288:120186. [PMID: 34852271 DOI: 10.1016/j.lfs.2021.120186] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
AIM Ischemic damage to the brain is linked to an increased rate of morbidity and mortality worldwide. In certain parts of the world, it remains a leading cause of mortality and the primary cause of long-term impairment. Ischemic injury is exacerbated when particular neuropeptides are removed, or their function in the brain is blocked, whereas supplying such neuropeptides lowers ischemic harm. Here, we have discussed the role of neuropeptides in ischemic injury. MATERIALS & METHODS Numerous neuropeptides had their overexpression following cerebral ischemia. Neuropeptides such as NPY, CGRP, CART, SP, BK, PACAP, oxytocin, nociception, neurotensin and opioid peptides act as transmitters, documented in several "in vivo" and "in vitro" studies. Neuropeptides provide neuroprotection by activating the survival pathways or inhibiting the death pathways, i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB. KEY FINDINGS Neuropeptides have numerous beneficial effects in ischemic models, including antiapoptotic, anti-inflammatory, and antioxidant actions that provide a powerful protective impact in neurons when combined. These innovative therapeutic substances have the potential to treat ischemia injury due to their pleiotropic modes of action. SIGNIFICANCE This review emphasizes the neuroprotective role of neuropeptides in ischemic injury via modulation of various signalling pathways i.e., MAPK, BDNF, Nitric Oxide, PI3k/Akt and NF-κB.
Collapse
Affiliation(s)
- Priyanka Saklani
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | |
Collapse
|
6
|
Zhang Q, Tan J, Wan L, Chen C, Wu B, Ke X, Wu R, Ran X. Increase in Blood-Brain Barrier Permeability is Modulated by Tissue Kallikrein via Activation of Bradykinin B1 and B2 Receptor-Mediated Signaling. J Inflamm Res 2021; 14:4283-4297. [PMID: 34511968 PMCID: PMC8417820 DOI: 10.2147/jir.s322225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/24/2021] [Indexed: 12/22/2022] Open
Abstract
AIM Disruption of the blood-brain barrier (BBB) is a critical pathological feature after stroke. Although tissue kallikrein (TK) has used in the treatment of stroke in China, the role of TK in modulating BBB permeability is not clear. METHODS We investigated the effect of different doses of TK on BBB by in vivo assessments of Evans blue (EB) and sodium-fluorescein isothiocyanate (FITC) leakage and in vitro assessments of the integrity of BBB and monolayers of microvascular endothelial cells (BMVECs). The expression of zonula occludens-1 (ZO-1) and bradykinin receptor-mediated signaling in BMVECs was detected. RESULTS A significant increase in BBB permeability was observed in the mice treated with high dose of TK. However, standard and medium doses of TK could only enable sodium-FITC to enter the brain. The result of in vitro study indicated that high-doses of TK, but not standard and medium-dose of TK, reduced normal BBB integrity accompanied by a decreased expression of zonula occludens-1 (ZO-1), upregulated the mRNA levels of bradykinin 2 receptor (B2R) and endothelial nitric oxide synthase (eNOS) and the abundance of B2R. Moreover, standard-dose of TK exacerbated lipopolysaccharide-induced BBB hyperpermeability, upregulated the mRNA levels of bradykinin 1 receptor (B1R) and inducible nitric oxide synthase (iNOS), increased the abundance of B1R and reduced the abundance of ZO-1; these effects were inhibited by TK inhibitor. CONCLUSION TK can disrupt tight junctions and increase normal BBB permeability via B2R-dependent eNOS signaling pathway, aggravate impairment of BBB via B1R-dependent iNOS signaling pathway, and consequently serve as a useful adjunctive treatment for enhancing the efficacy of other neurotherapeutics.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Juan Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Li Wan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Chao Chen
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Bin Wu
- Laboratory of Platelet and Endothelium Biology, Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine (Wuhan No.1 Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Xijian Ke
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| | - Rongxue Wu
- Department of Biological Sciences Division/ Cardiology, University of Chicago, Chicago, IL, 60637, USA
| | - Xiao Ran
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, People’s Republic of China
| |
Collapse
|
7
|
Chen X, Xu W, Zhuo S, Chen X, Chen P, Guan S, Huang D, Sun X, Cheng Y. Syntaphilin downregulation facilitates radioresistance via mediating mitochondria distribution in esophageal squamous cell carcinoma. Free Radic Biol Med 2021; 165:348-359. [PMID: 33577962 DOI: 10.1016/j.freeradbiomed.2021.01.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 10/22/2022]
Abstract
Syntaphilin (SNPH) halts mitochondrial movements and regulates proliferation-motility phenotype switching of cancer cells. We sought to investigate the significance of SNPH-mediated mitochondria distribution in radioresistant (RR) phenotype switching in esophageal squamous cell carcinoma (ESCC). RR ESCC cells were established by long-term exposure to radiation. Effects of SNPH on proliferation, migration, mitochondrial distribution, radiation-induced oxidative damage and radiosensitivity were investigated by overexpressing or silencing SNPH. The mechanisms regulating SNPH expression and the potential molecules mediating the SNPH-re-expression-induced radiosensitization were explored. SNPH expression in specimens from 156 patients was analyzed to evaluate its clinical significance. We found that RR ESCC cells had a sparse mitochondrial network and lower SNPH level. SNPH reconstitution in RR ESCC cells inhibited migration, induced proliferation and mitochondrial aggregation, exacerbated the radiation-induced oxidative damage and ultimately promoted radiosensitization. Mechanistically, ubiquitin-proteasomal degradation and histone modification contributed to SNPH downregulation in RR ESCC cells. Subsequently, we found that CREB dephosphorylation facilitated the SNPH re-expression-induced radiosensitization. Furthermore, SNPH expression was correlated with the radiotherapeutic efficacy and served as an independent prognostic factor for survival of ESCC patients. Our study revealed that low SNPH expression was a novel indicator for radioresistance, and targeting SNPH could be a promising regimen to improve the radiotherapeutic efficiency in ESCC patients.
Collapse
Affiliation(s)
- Xuan Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, West Wenhua Rd. 107, Jinan, 250012, China
| | - Wenzhe Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University and Institute of Brain and Brain-Inspired Science, Shandong University, West Wenhua Rd. 107, Jinan, 250012, China
| | - Shichao Zhuo
- Department of Pathology, Xuzhou Central Hospital, South Jiefang Rd 199, Xuzhou, 221009, China
| | - Xue Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, West Wenhua Rd. 107, Jinan, 250012, China
| | - Pengxiang Chen
- Department of Radiation Oncology, Qilu Hospital of Shandong University, West Wenhua Rd. 107, Jinan, 250012, China
| | - Shanghui Guan
- Department of Radiation Oncology, Qilu Hospital of Shandong University, West Wenhua Rd. 107, Jinan, 250012, China
| | - Di Huang
- Department of Radiation Oncology, Qilu Hospital of Shandong University, West Wenhua Rd. 107, Jinan, 250012, China
| | - Xiaozheng Sun
- Department of Radiation Oncology, Qilu Hospital of Shandong University, West Wenhua Rd. 107, Jinan, 250012, China
| | - Yufeng Cheng
- Department of Radiation Oncology, Qilu Hospital of Shandong University, West Wenhua Rd. 107, Jinan, 250012, China.
| |
Collapse
|
8
|
Barić A, Dobrivojević Radmilović M. Microglia and bradykinin cross talk in poststroke cognitive impairment in diabetes. Am J Physiol Cell Physiol 2021; 320:C613-C618. [PMID: 33502951 DOI: 10.1152/ajpcell.00402.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stroke is one of the leading causes of mortality and the leading cause of long-term disability worldwide. Although cognitive impairment is a common consequence of stroke, the underlying pathophysiological processes that lead to it are still poorly understood. Recently, more studies have shown evidence of the involvement of diabetes in producing a chronic neuroinflammatory state, which ultimately alters the recovery of function and cognition after stroke. To better understand the impact of diabetes on poststroke recovery, here we highlight the recent insights on the role of diabetes in neuroinflammation, especially regarding its effect on microglial function, and the emerging data on the involvement of kinins in both diabetes and neuroinflammation.
Collapse
Affiliation(s)
- Anja Barić
- Department of Histology and Embryology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marina Dobrivojević Radmilović
- Department of Histology and Embryology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
9
|
Systems Pharmacology-Dissection of the Molecular Mechanisms of Dragon's Blood in Improving Ischemic Stroke Prognosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4858201. [PMID: 32508949 PMCID: PMC7251463 DOI: 10.1155/2020/4858201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 12/30/2022]
Abstract
Materials and Methods (1) Based on system-pharmacology platform, the potential active compounds of DB are screened out according to ADME. (2) The ischemic stroke-related targets are predicted by utilizing these active compounds as probes, mapping the targets to the CTD database to establish a molecular-target-disease network. (3) To analyze the mechanism of DB treatment for the prognosis of ischemic stroke, we used the Metascape and DAVID databases to construct "ischemic stroke pathways". (4) PC12 cells were used to explore the protective effect of loureirin B on oxygen-glucose deprivation/reperfusion (OGD/R) injury, and BV-2 cells were used to determine the anti-inflammation effect of 4',7-dihydroxyflavone. Results Finally, we obtained 38 active compounds and 58 stroke-related targets. Network and pathway analysis indicate that DB is effective in the treatment of ischemic stroke by enhancing cell survival and inhibiting inflammatory and antiplatelet activation. In in vitro experiments, the main component loureirin B promoted the expression of HO-1 and Bcl-2 via positive regulation of PI3K/AKT/CREB and Nrf2 signaling pathways in PC12 cells against OGD/R damage. And the anti-inflammatory activity of 4',7-dihydroxyflavone was related to the inhibition of COX-2, TNF-α, and IL-6 in LPS-induced BV-2 cells. Conclusions In our study, the results illustrated that DB in improving ischemic stroke prognosis may involve enhancing cell survival and antioxidant, anti-inflammation, and antiplatelet activities.
Collapse
|
10
|
Protective effects of Clec11a in islets against lipotoxicity via modulation of proliferation and lipid metabolism in mice. Exp Cell Res 2019; 384:111613. [PMID: 31494095 DOI: 10.1016/j.yexcr.2019.111613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 01/12/2023]
Abstract
The lipotoxicity is considered as one of the risk for diabetes. Here we report C-type lectin domain family 11, member A (Clec11a) as a new regulator in islet playing a protective role in lipotoxicity induced dysfunction. Islet transcriptome sequencing was performed using the high-fat diet induced obesity (DIO) mice model. We found a significant decrease of Clec11a expression in islets of DIO mice compared to normal control mice, which was further confirmed by real-time PCR. Immunostaining demonstrated the localization of the Clec11a protein in mouse islets. Administration of recombinant human Clec11a (rClec11a) protein promoted the proliferation of islet cells and rescued the inhibition of fatty acid on cell proliferation, which involved the activation of Erk signaling pathway. We also found that the rClec11a altered the expression of genes involved in lipid metabolism.
Collapse
|
11
|
Sabir N, Hussain T, Liao Y, Wang J, Song Y, Shahid M, Cheng G, Mangi MH, Yao J, Yang L, Zhao D, Zhou X. Kallikrein 12 Regulates Innate Resistance of Murine Macrophages against Mycobacterium bovis Infection by Modulating Autophagy and Apoptosis. Cells 2019; 8:cells8050415. [PMID: 31060300 PMCID: PMC6562459 DOI: 10.3390/cells8050415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis (Mtb) complex causing bovine tuberculosis (TB) and imposing a high zoonotic threat to human health. Kallikreins (KLKs) belong to a subgroup of secreted serine proteases. As their role is established in various physiological and pathological processes, it is likely that KLKs expression may mediate a host immune response against the M. bovis infection. In the current study, we report in vivo and in vitro upregulation of KLK12 in the M. bovis infection. To define the role of KLK12 in immune response regulation of murine macrophages, we produced KLK12 knockdown bone marrow derived macrophages (BMDMs) by using siRNA transfection. Interestingly, the knockdown of KLK12 resulted in a significant downregulation of autophagy and apoptosis in M. bovis infected BMDMs. Furthermore, we demonstrated that this KLK12 mediated regulation of autophagy and apoptosis involves mTOR/AMPK/TSC2 and BAX/Bcl-2/Cytochrome c/Caspase 3 pathways, respectively. Similarly, inflammatory cytokines IL-1β, IL-6, IL-12 and TNF-α were significantly downregulated in KLK12 knockdown macrophages but the difference in IL-10 and IFN-β expression was non-significant. Taken together, these findings suggest that upregulation of KLK12 in M. bovis infected murine macrophages plays a substantial role in the protective immune response regulation by modulating autophagy, apoptosis and pro-inflammatory pathways. To our knowledge, this is the first report on expression and the role of KLK12 in the M. bovis infection and the data may contribute to a new paradigm for diagnosis and treatment of bovine TB.
Collapse
Affiliation(s)
- Naveed Sabir
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Tariq Hussain
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yi Liao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jie Wang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Yinjuan Song
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Muhammad Shahid
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Guangyu Cheng
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Mazhar Hussain Mangi
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jiao Yao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Lifeng Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Deming Zhao
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Xiangmei Zhou
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
12
|
Zhang W, Song JK, Yan R, Li L, Xiao ZY, Zhou WX, Wang ZZ, Xiao W, Du GH. Diterpene ginkgolides protect against cerebral ischemia/reperfusion damage in rats by activating Nrf2 and CREB through PI3K/Akt signaling. Acta Pharmacol Sin 2018. [PMID: 29542683 DOI: 10.1038/aps.2017.149] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diterpene ginkgolides meglumine injection (DGMI) is a therapeutic extract of Ginkgo biloba L, which has been used for the treatment of cerebral ischemic stroke in China. Ginkgolides A, B and C are the main components of DGMI. This study was designed to investigate the neuroprotective effects of DGMI components against ischemic stroke in vivo and in vitro. Acute cerebral ischemic injury was induced in rats by occlusion of the middle cerebral artery (MCA) for 1.5 h followed by 24 h reperfusion. The rats were treated with DGMI (1, 3 and 10 mg/kg, iv) at the onset of reperfusion and 12 h after reperfusion. Administration of DGMI significantly decreased rat neurological deficit scores, reduced brain infarct volume, and induced protein kinase B (Akt) phosphorylation, which prompted the nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and phosphorylation of the survival regulatory protein cyclic AMP-responsive element binding protein (CREB). Nrf2 activation led to expression of the downstream protein heme oxygenase-1 (HO-1). In addition, PC12 cells were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) in vitro, treatment with DGMI (1, 10 and 20 μg/mL) or ginkgolides A, B or C (10 μmol/L for each) significantly reduced PC12 cell death and increased phosphorylation of Akt, nuclear translocation of Nrf2 and activation of CREB. Activation of Nrf2 and CREB could be reversed by co-treatment with a phosphoinositide-3-kinase (PI3K) inhibitor LY294002. These observations suggest that ginkgolides act as novel extrinsic regulators activating both Akt/Nrf2 and Akt/CREB signaling pathways, protecting against cerebral ischemia/reperfusion (I/R) damage in vivo and in vitro.
Collapse
|
13
|
Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Kobeissy F. Implication of the Kallikrein-Kinin system in neurological disorders: Quest for potential biomarkers and mechanisms. Prog Neurobiol 2018; 165-167:26-50. [PMID: 29355711 PMCID: PMC6026079 DOI: 10.1016/j.pneurobio.2018.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023]
Abstract
Neurological disorders represent major health concerns in terms of comorbidity and mortality worldwide. Despite a tremendous increase in our understanding of the pathophysiological processes involved in disease progression and prevention, the accumulated knowledge so far resulted in relatively moderate translational benefits in terms of therapeutic interventions and enhanced clinical outcomes. Aiming at specific neural molecular pathways, different strategies have been geared to target the development and progression of such disorders. The kallikrein-kinin system (KKS) is among the most delineated candidate systems due to its ubiquitous roles mediating several of the pathophysiological features of these neurological disorders as well as being implicated in regulating various brain functions. Several experimental KKS models revealed that the inhibition or stimulation of the two receptors of the KKS system (B1R and B2R) can exhibit neuroprotective and/or adverse pathological outcomes. This updated review provides background details of the KKS components and their functions in different neurological disorders including temporal lobe epilepsy, traumatic brain injury, stroke, spinal cord injury, Alzheimer's disease, multiple sclerosis and glioma. Finally, this work will highlight the putative roles of the KKS components as potential neurotherapeutic targets and provide future perspectives on the possibility of translating these findings into potential clinical biomarkers in neurological disease.
Collapse
Affiliation(s)
- Amaly Nokkari
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mark S Kindy
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; James A. Haley VA Medical Center, Tampa, FL, USA
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Department of Medicine, Medical University of South, Charleston, SC, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Center for Neuroproteomics & Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Li J, Yan D, Liu X, Wang Y, Zhao X, Zhang Y, Zhang C. U0126 protects hippocampal CA1 neurons against forebrain ischemia-induced apoptosis via the ERK1/2 signaling pathway and NMDA receptors. Neurol Res 2018; 40:318-323. [DOI: 10.1080/01616412.2018.1441693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jianguo Li
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Deping Yan
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xiaoyan Liu
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ye Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xin Zhao
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ce Zhang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
15
|
Mechanisms of macular edema: Beyond the surface. Prog Retin Eye Res 2017; 63:20-68. [PMID: 29126927 DOI: 10.1016/j.preteyeres.2017.10.006] [Citation(s) in RCA: 413] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Macular edema consists of intra- or subretinal fluid accumulation in the macular region. It occurs during the course of numerous retinal disorders and can cause severe impairment of central vision. Major causes of macular edema include diabetes, branch and central retinal vein occlusion, choroidal neovascularization, posterior uveitis, postoperative inflammation and central serous chorioretinopathy. The healthy retina is maintained in a relatively dehydrated, transparent state compatible with optimal light transmission by multiple active and passive systems. Fluid accumulation results from an imbalance between processes governing fluid entry and exit, and is driven by Starling equation when inner or outer blood-retinal barriers are disrupted. The multiple and intricate mechanisms involved in retinal hydro-ionic homeostasis, their molecular and cellular basis, and how their deregulation lead to retinal edema, are addressed in this review. Analyzing the distribution of junction proteins and water channels in the human macula, several hypotheses are raised to explain why edema forms specifically in the macular region. "Pure" clinical phenotypes of macular edema, that result presumably from a single causative mechanism, are detailed. Finally, diabetic macular edema is investigated, as a complex multifactorial pathogenic example. This comprehensive review on the current understanding of macular edema and its mechanisms opens perspectives to identify new preventive and therapeutic strategies for this sight-threatening condition.
Collapse
|
16
|
Neuroprotection of bradykinin/bradykinin B2 receptor system in cerebral ischemia. Biomed Pharmacother 2017; 94:1057-1063. [DOI: 10.1016/j.biopha.2017.08.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022] Open
|
17
|
Sang H, Qiu Z, Cai J, Lan W, Yu L, Zhang H, Li M, Xie Y, Guo R, Ye R, Liu X, Liu L, Zhang R. Early Increased Bradykinin 1 Receptor Contributes to Hemorrhagic Transformation After Ischemic Stroke in Type 1 Diabetic Rats. Transl Stroke Res 2017; 8:597-611. [DOI: 10.1007/s12975-017-0552-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/26/2022]
|