1
|
Liu N, Tu J, Yi F, Zhang X, Zhong X, Wang L, Xie L, Zhou J. The Identification of Potential Anti-Depression/Anxiety Drug Targets by Stress-Induced Rat Brain Regional Proteome and Network Analyses. Neurochem Res 2024; 49:2957-2971. [PMID: 39088164 DOI: 10.1007/s11064-024-04220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Depression and anxiety disorders are prevalent stress-related neuropsychiatric disorders and involve multiple molecular changes and dysfunctions across various brain regions. However, the specific and shared pathophysiological mechanisms occurring in these regions remain unclear. Previous research used a rat model of chronic mild stress (CMS) to segregate and identify depression-susceptible, anxiety-susceptible, and insusceptible groups; then the proteomes of six distinct brain regions (the hippocampus, prefrontal cortex, hypothalamus, pituitary, olfactory bulb, and striatum) were separately and quantitatively analyzed. To gain a comprehensive and systematic understanding of the molecular abnormalities, this study aimed to investigate and compare differential proteomics data from the six regions. Differentially expressed proteins (DEPs) were identified in between specific regions and across all regions and subjected to a series of bioinformatics analyses. Regional comparisons showed that stress-induced proteomic changes and corresponding gene ontology and pathway enrichments were largely distinct, attributable to differences in cell populations, protein compositions, and brain functions of these areas. Additionally, a notable degree of overlap in the significantly enriched terms was identified, potentially suggesting strong connections in the enrichment across different regions. Furthermore, intra-regional and inter-regional protein-protein interaction networks and drug-target-DEP networks were constructed. Integrated analysis of the three association networks in the six regions, along with the DisGeNET database, identified ten DEPs as potential targets for anti-depression/anxiety drugs. Collectively, these findings revealed commonalities and differences across different brain regions at the protein level induced by CMS, and identified several novel protein targets for the development of new therapeutics for depression and anxiety.
Collapse
Affiliation(s)
- Nan Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jiaxin Tu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Faping Yi
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xiong Zhang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xianhui Zhong
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lili Wang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Jian Zhou
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
2
|
Gaffke L, Rintz E, Pierzynowska K, Węgrzyn G. Actin Cytoskeleton Polymerization and Focal Adhesion as Important Factors in the Pathomechanism and Potential Targets of Mucopolysaccharidosis Treatment. Cells 2023; 12:1782. [PMID: 37443816 PMCID: PMC10341097 DOI: 10.3390/cells12131782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The main approach used in the current therapy of mucopolysaccharidosis (MPS) is to reduce the levels of glycosaminoglycans (GAGs) in cells, the deposits considered to be the main cause of the disease. Previous studies have revealed significant differences in the expression of genes encoding proteins involved in many processes, like those related to actin filaments, in MPS cells. Since the regulation of actin filaments is essential for the intracellular transport of specific molecules, the process which may affect the course of MPSs, the aim of this study was to evaluate the changes that occur in the actin cytoskeleton and focal adhesion in cells derived from patients with this disease, as well as in the MPS I mouse model, and to assess whether they could be potential therapeutic targets for different MPS types. Western-blotting, flow cytometry and transcriptomic analyses were employed to address these issues. The levels of the key proteins involved in the studied processes, before and after specific treatment, were assessed. We have also analyzed transcripts whose levels were significantly altered in MPS cells. We identified genes whose expressions were changed in the majority of MPS types and those with particularly highly altered expression. For the first time, significant changes in the expression of genes involved in the actin cytoskeleton structure/functions were revealed which may be considered as an additional element in the pathogenesis of MPSs. Our results suggest the possibility of using the actin cytoskeleton as a potential target in therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Lidia Gaffke
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (E.R.); (K.P.); (G.W.)
| | | | | | | |
Collapse
|
3
|
Myers KR, Fan Y, McConnell P, Cooper JA, Zheng JQ. Actin capping protein regulates postsynaptic spine development through CPI-motif interactions. Front Mol Neurosci 2022; 15:1020949. [PMID: 36245917 PMCID: PMC9557104 DOI: 10.3389/fnmol.2022.1020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 12/02/2022] Open
Abstract
Dendritic spines are small actin-rich protrusions essential for the formation of functional circuits in the mammalian brain. During development, spines begin as dynamic filopodia-like protrusions that are then replaced by relatively stable spines containing an expanded head. Remodeling of the actin cytoskeleton plays a key role in the formation and modification of spine morphology, however many of the underlying regulatory mechanisms remain unclear. Capping protein (CP) is a major actin regulating protein that caps the barbed ends of actin filaments, and promotes the formation of dense branched actin networks. Knockdown of CP impairs the formation of mature spines, leading to an increase in the number of filopodia-like protrusions and defects in synaptic transmission. Here, we show that CP promotes the stabilization of dendritic protrusions, leading to the formation of stable mature spines. However, the localization and function of CP in dendritic spines requires interactions with proteins containing a capping protein interaction (CPI) motif. We found that the CPI motif-containing protein Twinfilin-1 (Twf1) also localizes to spines where it plays a role in CP spine enrichment. The knockdown of Twf1 leads to an increase in the density of filopodia-like protrusions and a decrease in the stability of dendritic protrusions, similar to CP knockdown. Finally, we show that CP directly interacts with Shank and regulates its spine accumulation. These results suggest that spatiotemporal regulation of CP in spines not only controls the actin dynamics underlying the formation of stable postsynaptic spine structures, but also plays an important role in the assembly of the postsynaptic apparatus underlying synaptic function.
Collapse
Affiliation(s)
- Kenneth R. Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Yanjie Fan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Patrick McConnell
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
| | - John A. Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Wennagel D, Braz BY, Capizzi M, Barnat M, Humbert S. Huntingtin coordinates dendritic spine morphology and function through cofilin-mediated control of the actin cytoskeleton. Cell Rep 2022; 40:111261. [PMID: 36044862 DOI: 10.1016/j.celrep.2022.111261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Compelling evidence indicates that in Huntington's disease (HD), mutation of huntingtin (HTT) alters several aspects of early brain development such as synaptogenesis. It is not clear to what extent the partial loss of wild-type HTT function contributes to these abnormalities. Here we investigate the function of HTT in the formation of spines. Although larger spines normally correlate with more synaptic activity, cell-autonomous depletion of HTT leads to enlarged spines but reduced excitatory synaptic function. We find that HTT is required for the proper turnover of endogenous actin and to recruit AMPA receptors at active synapses; loss of HTT leads to LIM kinase (LIMK) hyperactivation, which maintains cofilin in its inactive state. HTT therefore influences actin dynamics through the LIMK-cofilin pathway. Loss of HTT uncouples spine structure from synaptic function, which may contribute to the ultimate development of HD symptoms.
Collapse
Affiliation(s)
- Doris Wennagel
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France
| | - Barbara Yael Braz
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France
| | - Mariacristina Capizzi
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France; Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Monia Barnat
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France
| | - Sandrine Humbert
- University Grenoble Alpes, Inserm, U1216, Grenoble Institute Neurosciences, Bâtiment Edmond J. Safra, Chemin Fortuné Ferrini, 38000 Grenoble, La Tronche, France; Institut du Cerveau-Paris Brain Institute (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
5
|
Yaremenko LM, Grabovoy AN, Shepelev SE. Expression of Cytoskeletal Proteins in Neurons of the Rat Sensorimotor Cortex upon Hypoperfusion of the Brain and Sensitization by Cerebral Antigen. NEUROPHYSIOLOGY+ 2022. [DOI: 10.1007/s11062-022-09917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Rigoni D, Avalos MP, Boezio MJ, Guzmán AS, Calfa GD, Perassi EM, Pierotti SM, Bisbal M, Garcia-Keller C, Cancela LM, Bollati F. Stress-induced vulnerability to develop cocaine addiction depends on cofilin modulation. Neurobiol Stress 2021; 15:100349. [PMID: 34169122 PMCID: PMC8209265 DOI: 10.1016/j.ynstr.2021.100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Actin dynamics in dendritic spines can be associated with the neurobiological mechanisms supporting the comorbidity between stress exposure and cocaine increase rewards. The actin cytoskeleton remodeling in the nucleus accumbens (NA) has been implicated in the expression of stress-induced cross-sensitization with cocaine. The present study evaluates the involvement of cofilin, a direct regulator of actin dynamics, in the impact of stress on vulnerability to cocaine addiction. We assess whether the neurobiological mechanisms that modulate repeated-cocaine administration also occur in a chronic restraint stress-induced cocaine self-administration model. We also determine if chronic stress induces alterations in dendritic spines through dysregulation of cofilin activity in the NA core. Here, we show that the inhibition of cofilin expression in the NA core using viral short-hairpin RNA is sufficient to prevent the cocaine sensitization induced by chronic stress. The reduced cofilin levels also impede a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor surface expression enhancement and promote the reduction of head diameter in animals pre-exposed to stress after a cocaine challenge in the NA core. Moreover, downregulation of cofilin expression prevents facilitation of the acquisition of cocaine self-administration (SA) in male rats pre-exposed to chronic stress without modifying performance in sucrose SA. These findings reveal a novel, crucial role for cofilin in the neurobiological mechanisms underpinning the comorbidity between stress exposure and addiction-related disorders.
Collapse
Affiliation(s)
- Daiana Rigoni
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Maria P. Avalos
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Maria J. Boezio
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Andrea S. Guzmán
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Gaston D. Calfa
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Eduardo M. Perassi
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Silvia M. Pierotti
- Cátedra de Bioestadística I y II (Departamento de Matemática), Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Avenida Velez Sarfield 161, (5000), Córdoba, Argentina
| | - Mariano Bisbal
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, Colinas de Vélez Sarsfield (5016) Córdoba, Argentina
| | - Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA
| | - Liliana M. Cancela
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| | - Flavia Bollati
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre and Medina Allende, Ciudad Universitaria, (5000), Córdoba, Argentina
| |
Collapse
|
7
|
Dutta P, Bharti P, Kumar J, Maiti S. Role of actin cytoskeleton in the organization and function of ionotropic glutamate receptors. Curr Res Struct Biol 2021; 3:277-289. [PMID: 34766008 PMCID: PMC8569634 DOI: 10.1016/j.crstbi.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/04/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
Neural networks with precise connection are compulsory for learning and memory. Various cellular events occur during the genesis of dendritic spines to their maturation, synapse formation, stabilization of the synapse, and proper signal transmission. The cortical actin cytoskeleton and its multiple regulatory proteins are crucial for the above cellular events. The different types of ionotropic glutamate receptors (iGluRs) present on the postsynaptic density (PSD) are also essential for learning and memory. Interaction of the iGluRs in association of their auxiliary proteins with actin cytoskeleton regulated by actin-binding proteins (ABPs) are required for precise long-term potentiation (LTP) and long-term depression (LTD). There has been a quest to understand the mechanistic detail of synapse function involving these receptors with dynamic actin cytoskeleton. A major, emerging area of investigation is the relationship between ABPs and iGluRs in synapse development. In this review we have summarized the current understanding of iGluRs functioning with respect to the actin cytoskeleton, scaffolding proteins, and their regulators. The AMPA, NMDA, Delta and Kainate receptors need the stable underlying actin cytoskeleton to anchor through synaptic proteins for precise synapse formation. The different types of ABPs present in neurons play a critical role in dynamizing/stabilizing the actin cytoskeleton needed for iGluRs function.
Collapse
Affiliation(s)
- Priyanka Dutta
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Pratibha Bharti
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Janesh Kumar
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Sankar Maiti
- Indian Institute of Science Education and Research, Kolkata, 741246, India
| |
Collapse
|
8
|
Chemical Stimulation of Rodent and Human Cortical Synaptosomes: Implications in Neurodegeneration. Cells 2021; 10:cells10051174. [PMID: 34065927 PMCID: PMC8151714 DOI: 10.3390/cells10051174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022] Open
Abstract
Synaptic plasticity events, including long-term potentiation (LTP), are often regarded as correlates of brain functions of memory and cognition. One of the central players in these plasticity-related phenomena is the α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor (AMPAR). Increased levels of AMPARs on postsynaptic membranes thus constitute a biochemical measure of LTP. Isolated synaptic terminals (synaptosomes) are an excellent ex vivo tool to monitor synaptic physiology in healthy and diseased brains, particularly in human research. We herein describe three protocols for chemically-induced LTP (cLTP) in synaptosomes from both rodent and human brain tissues. Two of these chemical stimulation protocols are described for the first time in synaptosomes. A pharmacological block of synaptosomal actin dynamics confirmed the efficiency of the cLTP protocols. Furthermore, the study prototypically evaluated the deficiency of cLTP in cortical synaptosomes obtained from human cases of early-onset Alzheimer’s disease (EOAD) and frontotemporal lobar degeneration (FLTD), as well as an animal model that mimics FLTD.
Collapse
|
9
|
Yang X, Annaert W. The Nanoscopic Organization of Synapse Structures: A Common Basis for Cell Communication. MEMBRANES 2021; 11:248. [PMID: 33808285 PMCID: PMC8065904 DOI: 10.3390/membranes11040248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022]
Abstract
Synapse structures, including neuronal and immunological synapses, can be seen as the plasma membrane contact sites between two individual cells where information is transmitted from one cell to the other. The distance between the two plasma membranes is only a few tens of nanometers, but these areas are densely populated with functionally different proteins, including adhesion proteins, receptors, and transporters. The narrow space between the two plasma membranes has been a barrier for resolving the synaptic architecture due to the diffraction limit in conventional microscopy (~250 nm). Various advanced super-resolution microscopy techniques, such as stimulated emission depletion (STED), structured illumination microscopy (SIM), and single-molecule localization microscopy (SMLM), bypass the diffraction limit and provide a sub-diffraction-limit resolving power, ranging from 10 to 100 nm. The studies using super-resolution microscopy have revealed unprecedented details of the nanoscopic organization and dynamics of synaptic molecules. In general, most synaptic proteins appear to be heterogeneously distributed and form nanodomains at the membranes. These nanodomains are dynamic functional units, playing important roles in mediating signal transmission through synapses. Herein, we discuss our current knowledge on the super-resolution nanoscopic architecture of synapses and their functional implications, with a particular focus on the neuronal synapses and immune synapses.
Collapse
Affiliation(s)
| | - Wim Annaert
- VIB Center for Brain and Disease Research and KU Leuven, Department of Neurosciences, Gasthuisberg, B-3000 Leuven, Belgium;
| |
Collapse
|
10
|
Acuña-Hinrichsen F, Covarrubias-Pinto A, Ishizuka Y, Stolzenbach MF, Martin C, Salazar P, Castro MA, Bramham CR, Otth C. Herpes Simplex Virus Type 1 Neuronal Infection Triggers the Disassembly of Key Structural Components of Dendritic Spines. Front Cell Neurosci 2021; 15:580717. [PMID: 33708072 PMCID: PMC7940845 DOI: 10.3389/fncel.2021.580717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a widespread neurotropic virus. Primary infection of HSV-1 in facial epithelium leads to retrograde axonal transport to the central nervous system (CNS) where it establishes latency. Under stressful conditions, the virus reactivates, and new progeny are transported anterogradely to the primary site of infection. During the late stages of neuronal infection, axonal damage can occur, however, the impact of HSV-1 infection on the morphology and functional integrity of neuronal dendrites during the early stages of infection is unknown. We previously demonstrated that acute HSV-1 infection in neuronal cell lines selectively enhances Arc protein expression - a major regulator of long-term synaptic plasticity and memory consolidation, known for being a protein-interaction hub in the postsynaptic dendritic compartment. Thus, HSV-1 induced Arc expression may alter the functionality of infected neurons and negatively impact dendritic spine dynamics. In this study we demonstrated that HSV-1 infection induces structural disassembly and functional deregulation in cultured cortical neurons, an altered glutamate response, Arc accumulation within the somata, and decreased expression of spine scaffolding-like proteins such as PSD-95, Drebrin and CaMKIIβ. However, whether these alterations are specific to the HSV-1 infection mechanism or reflect a secondary neurodegenerative process remains to be determined.
Collapse
Affiliation(s)
- Francisca Acuña-Hinrichsen
- Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Post-graduate Program, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Adriana Covarrubias-Pinto
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Post-graduate Program, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
- Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile
| | - Yuta Ishizuka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Carolina Martin
- School of Medical Technology, Austral University of Chile, Puerto Montt, Chile
| | - Paula Salazar
- Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Maite A. Castro
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
- Institute of Biochemistry and Microbiology, Faculty of Science, Universidad Austral de Chile, Valdivia, Chile
- Janelia Research Campus, HHMI, VA, United States
| | | | - Carola Otth
- Institute of Clinical Microbiology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile
- Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
11
|
Bucher M, Fanutza T, Mikhaylova M. Cytoskeletal makeup of the synapse: Shaft versus spine. Cytoskeleton (Hoboken) 2019; 77:55-64. [PMID: 31762205 DOI: 10.1002/cm.21583] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
The ability of neurons to communicate and store information depends on the activity of synapses which can be located on small protrusions (dendritic spines) or directly on the dendritic shaft. The formation, plasticity, and stability of synapses are regulated by the neuronal cytoskeleton. Actin filaments together with microtubules, neurofilaments, septins, and scaffolding proteins orchestrate the structural organization of both shaft and spine synapses, enabling their efficacy in response to synaptic activation. Synapses critically depend on several factors, which are also mediated by the cytoskeleton, including transport and delivery of proteins from the soma, protein synthesis, as well as surface diffusion of membrane proteins. In this minireview, we focus on recent progress made in the field of cytoskeletal elements of the postsynapse and discuss the differences and similarities between synapses located in the spines versus dendritic shaft.
Collapse
Affiliation(s)
- Michael Bucher
- DFG Emmy Noether Group 'Neuronal Protein Transport', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tomas Fanutza
- DFG Emmy Noether Group 'Neuronal Protein Transport', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Mikhaylova
- DFG Emmy Noether Group 'Neuronal Protein Transport', Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Semin Cell Dev Biol 2019; 102:122-131. [PMID: 31630997 DOI: 10.1016/j.semcdb.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
The physiological function of actin filaments is challenging to dissect because of the pleiotropic impact of global disruption of the actin cytoskeleton. Tropomyosin isoforms have provided a unique opportunity to address this issue. A substantial fraction of actin filaments in animal cells consist of co-polymers of actin with specific tropomyosin isoforms which determine the functional capacity of the filament. Genetic manipulation of the tropomyosins has revealed isoform specific roles and identified the physiological function of the different actin filament types based on their tropomyosin isoform composition. Surprisingly, there is remarkably little redundancy between the tropomyosins resulting in highly penetrant impacts of both ectopic overexpression and knockout of isoforms. The physiological roles of the tropomyosins cover a broad range from development and morphogenesis to cell migration and specialised tissue function and human diseases.
Collapse
|
13
|
Duda P, Wójcicka O, Wiśniewski JR, Rakus D. Global quantitative TPA-based proteomics of mouse brain structures reveals significant alterations in expression of proteins involved in neuronal plasticity during aging. Aging (Albany NY) 2019; 10:1682-1697. [PMID: 30026405 PMCID: PMC6075443 DOI: 10.18632/aging.101501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/15/2018] [Indexed: 01/17/2023]
Abstract
Aging is believed to be the result of alterations of protein expression and accumulation of changes in biomolecules. Although there are numerous reports demonstrating changes in protein expression in brain during aging, only few of them describe global changes at the protein level. Here, we present the deepest quantitative proteomic analysis of three brain regions, hippocampus, cortex and cerebellum, in mice aged 1 or 12 months, using the total protein approach technique. In all the brain regions, both in young and middle-aged animals, we quantitatively measured over 5,200 proteins. We found that although the total protein expression in middle-aged brain structures is practically unaffected by aging, there are significant differences between young and middle-aged mice in the expression of some receptors and signaling cascade proteins proven to be significant for learning and memory formation. Our analysis demonstrates that the hippocampus is the most variable structure during natural aging and that the first symptoms of weakening of neuronal plasticity may be observed on protein level in middle-aged animals.
Collapse
Affiliation(s)
- Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw 50-137, Poland
| | - Olga Wójcicka
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw 50-137, Poland
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried 82152, Germany
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, Wroclaw 50-137, Poland
| |
Collapse
|
14
|
van Diggelen F, Hrle D, Apetri M, Christiansen G, Rammes G, Tepper A, Otzen DE. Two conformationally distinct α-synuclein oligomers share common epitopes and the ability to impair long-term potentiation. PLoS One 2019; 14:e0213663. [PMID: 30901378 PMCID: PMC6430514 DOI: 10.1371/journal.pone.0213663] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/26/2019] [Indexed: 02/01/2023] Open
Abstract
Parkinson’s Disease (PD) is a neurodegenerative disease for which there currently is no cure. Aggregation of the pre-synaptic protein α-synuclein (aSN) into oligomers (αSOs) is believed to play a key role in PD pathology, but little is known about αSO formation in vivo and how they induce neurodegeneration. Both the naturally occurring polyunsaturated fatty acid docosahexaenoic acid (DHA) and the lipid peroxidation product 4-hydroxynonenal (HNE), strongly upregulated during ROS conditions, stimulate the formation of αSOs, highlighting a potential role in PD. Yet, insight into αSOs structure and biological effects is still limited as most oligomer preparations studied to date are heterogeneous in composition. Here we have aggregated aSN in the presence of HNE and DHA and purified the αSOs using size exclusion chromatography. Both compounds stimulate formation of spherical αSOs containing anti-parallel β-sheet structure which have the same shape as unmodified αSOs though ca. 2-fold larger. Furthermore, the yield and stabilities of these oligomers are significantly higher than for unmodified aSN. Both modified and unmodified αSOs permeabilize synthetic vesicles, show high co-localisation with glutamatergic synapses and decrease Long Term Potentiation (LTP), in line with the reported synaptotoxic effects of αSOs. We conclude that DHA- and HNE-αSOs are convenient models for pathogenic disease-associated αSOs in PD.
Collapse
Affiliation(s)
- Femke van Diggelen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- Crossbeta Biosciences BV, Utrecht, The Netherlands
| | - Dean Hrle
- Klinik für Anaesthesiologie der Technischen Universität München, Klinikum Rechts der Isar, Munich, Germany
| | | | | | - Gerhard Rammes
- Klinik für Anaesthesiologie der Technischen Universität München, Klinikum Rechts der Isar, Munich, Germany
| | | | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Denmark
- * E-mail:
| |
Collapse
|
15
|
Region-specific inhibition of 14-3-3 proteins induces psychomotor behaviors in mice. NPJ SCHIZOPHRENIA 2019; 5:1. [PMID: 30643138 PMCID: PMC6386769 DOI: 10.1038/s41537-018-0069-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/11/2018] [Indexed: 01/23/2023]
Abstract
The 14-3-3 family of proteins is genetically linked to several psychiatric disorders, including schizophrenia. Our 14-3-3 functional knockout (FKO) mice, as well as other 14-3-3 knockout models, have been shown to exhibit behavioral endophenotypes related to schizophrenia. While specific forebrain regions, such as the prefrontal cortex (PFC) and hippocampus (HP), have been implicated in schizophrenic pathophysiology, the role of these brain regions in the top-down control of specific schizophrenia-associated behaviors has not been examined. Here, we used an adeno-associated virus (AAV) delivered shRNA to knock down the expression of the 14-3-3-inhibitor transgene, thus selectively restoring the function of 14-3-3 in the forebrain of the 14-3-3 FKO mice, we found that injection of the AAV-shRNA into both the PFC and the HP is necessary to attenuate psychomotor activity of the 14-3-3 FKO mice. Furthermore, we found that acute inhibition of 14-3-3, through the delivery of an AAV expressing the 14-3-3 inhibitor to both the PFC and HP, can trigger psychomotor agitation. Interestingly, when assessing the two brain regions separately, we determined that AAV-mediated expression of the 14-3-3 inhibitor specifically within the HP alone is sufficient to induce several behavioral deficits including hyperactivity, impaired associative learning and memory, and reduced sensorimotor gating. In addition, we show that post-synaptic NMDA receptor levels are regulated by acute 14-3-3 manipulations. Taken together, findings from this study directly link 14-3-3 inhibition in specific forebrain regions to certain schizophrenia-associated endophenotypes.
Collapse
|
16
|
Kilinc D. The Emerging Role of Mechanics in Synapse Formation and Plasticity. Front Cell Neurosci 2018; 12:483. [PMID: 30574071 PMCID: PMC6291423 DOI: 10.3389/fncel.2018.00483] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/27/2018] [Indexed: 12/26/2022] Open
Abstract
The regulation of synaptic strength forms the basis of learning and memory, and is a key factor in understanding neuropathological processes that lead to cognitive decline and dementia. While the mechanical aspects of neuronal development, particularly during axon growth and guidance, have been extensively studied, relatively little is known about the mechanical aspects of synapse formation and plasticity. It is established that a filamentous actin network with complex spatiotemporal behavior controls the dendritic spine shape and size, which is thought to be crucial for activity-dependent synapse plasticity. Accordingly, a number of actin binding proteins have been identified as regulators of synapse plasticity. On the other hand, a number of cell adhesion molecules (CAMs) are found in synapses, some of which form transsynaptic bonds to align the presynaptic active zone (PAZ) with the postsynaptic density (PSD). Considering that these CAMs are key components of cellular mechanotransduction, two critical questions emerge: (i) are synapses mechanically regulated? and (ii) does disrupting the transsynaptic force balance lead to (or exacerbate) synaptic failure? In this mini review article, I will highlight the mechanical aspects of synaptic structures-focusing mainly on cytoskeletal dynamics and CAMs-and discuss potential mechanoregulation of synapses and its relevance to neurodegenerative diseases.
Collapse
Affiliation(s)
- Devrim Kilinc
- INSERM U1167, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
17
|
Du J, Zhang X, Cao H, Jiang D, Wang X, Zhou W, Chen K, Zhou J, Jiang H, Ba L. MiR-194 is involved in morphogenesis of spiral ganglion neurons in inner ear by rearranging actin cytoskeleton via targeting RhoB. Int J Dev Neurosci 2017; 63:16-26. [PMID: 28941704 DOI: 10.1016/j.ijdevneu.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/17/2017] [Accepted: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
Many microRNAs participate in the development, differentiation and function preservation of the embryonic and adult inner ear, but many details still need to be elucidated regarding the numerous microRNAs in the inner ear. Based on previous investigations on the microRNA profile in the inner ear, we confirmed that several microRNAs are expressed in the inner ear, and we detected the spatial expression of these microRNAs in the neonatal mouse inner ear. Then we focused on miR-194 for its specific expression with a dynamic spatiotemporal pattern during inner ear development. Overexpression of miR-194 in cultured spiral ganglion cells significantly affected the dendrites of differentiated neurons, with more branching and obviously dispersed nerve fibres. Furthermore, the cytoskeleton of cultured cells was markedly affected, as disordered actin filaments resulting from miR-194 overexpression and enhanced filaments resulting from miR-194 knockdown were observed. Together with the bioinformatic methods, the RT-qPCR and western blot results showed that RhoB is a candidate target of miR-194 in the morphogenesis of spiral ganglion neurons. Additionally, the double luciferase reporter system was used to identify RhoB as a novel target of miR-194. Finally, the inhibition of RhoB activation by Clostridium difficile toxin B disturbed the organization of the actin filament, similar to the effects of miR-194 overexpression. In summary, we investigated microRNA expression in the mouse inner ear, and demonstrated that miR-194 is dynamically expressed during inner ear development; importantly, we found that miR-194 affects neuron morphogenesis positively through Rho B-mediated F-actin rearrangement.
Collapse
Affiliation(s)
- Jintao Du
- Department of Otorhinolaryngology Head & Neck Surgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, 610041, China
| | - Xuemei Zhang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Hui Cao
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Di Jiang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Xianren Wang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Wei Zhou
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China; Department of Otolaryngology, People's Hospital of Meishan, Meishan, Sichuan, 620010, China
| | - Kaitian Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China
| | - Jiao Zhou
- Department of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Jiang
- Department of Otorhinolaryngology, the First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510080, China.
| | - Luo Ba
- Department of Otolaryngology, People's Hospital of the Tibet Autonomous Region, Lasha, China.
| |
Collapse
|