1
|
Buckner JH. Antigen-specific immunotherapies for autoimmune disease. Nat Rev Rheumatol 2025; 21:88-97. [PMID: 39681709 DOI: 10.1038/s41584-024-01201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Antigen-specific therapies have a long history in the treatment of allergy but have not been successful in autoimmunity. However, in the past 20 years, advances in the definition of the self-antigens that promote autoimmunity and the growing understanding of the mechanisms that maintain tolerance in health but fail in autoimmunity have led to antigen-specific approaches being considered for the treatment of autoimmune diseases. The core goal of each antigen-specific treatment approach is to remove the immune response that promotes autoimmunity whilst sparing protective responses. Approaches to antigen-specific therapy range from targeted deletion of autoreactive lymphocytes to tolerization of autoreactive T cells and active inhibition of autoimmune responses. Technologies such as vaccines, nanoparticles, cell-based therapies and gene editing are being harnessed to achieve these goals. Remaining challenges include the selection of the best antigen to target, modality and timing of administration of these therapies and the disease in which the therapies are used; overcoming these challenges will be vital to move antigen-specific therapies forward. Once established, antigen-specific therapy has the potential to be applied broadly in the area of autoimmunity.
Collapse
Affiliation(s)
- Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| |
Collapse
|
2
|
Dhariwal R, Jain M, Mir YR, Singh A, Jain B, Kumar P, Tariq M, Verma D, Deshmukh K, Yadav VK, Malik T. Targeted drug delivery in neurodegenerative diseases: the role of nanotechnology. Front Med (Lausanne) 2025; 12:1522223. [PMID: 39963432 PMCID: PMC11831571 DOI: 10.3389/fmed.2025.1522223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Neurodegenerative diseases, characterized by progressive neuronal loss and cognitive impairments, pose a significant global health challenge. This study explores the potential of nanotherapeutics as a promising approach to enhance drug delivery across physiological barriers, particularly the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (B-CSFB). By employing nanoparticles, this research aims to address critical challenges in the diagnosis and treatment of conditions such as Alzheimer's, Parkinson's, and Huntington's diseases. The multifactorial nature of these disorders necessitates innovative solutions that leverage nanomedicine to improve drug solubility, circulation time, and targeted delivery while minimizing off-target effects. The findings underscore the importance of advancing nanomedicine applications to develop effective therapeutic strategies that can alleviate the burden of neurodegenerative diseases on individuals and healthcare systems.
Collapse
Affiliation(s)
- Rupal Dhariwal
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mukul Jain
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Abhayveer Singh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - Bhavik Jain
- Chitkara Centre for Research and Development, Chitkara University, Baddi, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mohd Tariq
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Khemraj Deshmukh
- Department of Biomedical Engineering, Parul Institute of Technology, Parul University, Vadodara, India
| | | | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research & Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Ovchinnikova LA, Tanygina DY, Dzhelad SS, Evtushenko EG, Bagrov DV, Gabibov AG, Lomakin YA. Targeted macrophage mannose receptor (CD206)-specific protein delivery via engineered extracellular vesicles. Heliyon 2024; 10:e40940. [PMID: 39759348 PMCID: PMC11697562 DOI: 10.1016/j.heliyon.2024.e40940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Extracellular vesicles (EVs) show great potential for therapeutic delivery to human cells, with a focus on modulating immune responses. The most promising targets for inducing humoral and cellular immunity against a specific antigen are macrophages (Mϕs) and dendritic cells (DCs). Targeting mannose receptors (CD206), which are highly expressed on these antigen-presenting cells, to promote the presentation of specific antigens through EV-mediated uptake, is a promising strategy in clinical immunotherapy. Our study compares two EV-fused anti-CD206 nanobodies in delivering cargo proteins to human activated antigen-presenting cells. We demonstrated that nanobody-functionalized EVs exhibit enhanced interaction and increased uptake by CD206+ cells compared to non-targeted EVs. Furthermore, replacing the full-length vesicular stomatitis virus protein G (VSV-G) with its truncated form, fused to a monoclonal anti-CD206 nanobody, significantly improves the specificity of EV uptake by CD206+ cells. Our study outlines an optimized platform for the production of targeted EVs designed for specific protein delivery to CD206-positive human cells.
Collapse
Affiliation(s)
| | - Daria Y. Tanygina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Samir S. Dzhelad
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | - Dmitriy V. Bagrov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Yakov A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
4
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
5
|
Greco G, Sarpietro MG. Liposome-Assisted Drug Delivery in the Treatment of Multiple Sclerosis. Molecules 2024; 29:4689. [PMID: 39407617 PMCID: PMC11477494 DOI: 10.3390/molecules29194689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the nervous system that leads to neurological dysfunctions and severe disabilities. It is worth noting that conventional pharmacotherapy is poorly selective and causes toxicity problems and several systemic side effects. Thus, there is a need to develop new approaches to this medical challenge. The use of nanocarriers for drug delivery represents a good strategy to overcome several issues such as high therapeutic drug doses with side effects, such as diarrhea, nausea, and abdominal pain, and drug degradation processes; in addition, nanocarriers can provide controlled and targeted drug release. This review describes the application of liposomes for the delivery of pharmaceutical actives to target MS. Firstly, MS is explained. Then, liposomes are described along with their preparation, characterization, and stability. The literature about the use of liposomes for the treatment of MS is then analyzed.
Collapse
Affiliation(s)
- Giuliana Greco
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
| | - Maria Grazia Sarpietro
- NANOMED-Research Center on Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95125 Catania, Italy
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
6
|
Kenison JE, Stevens NA, Quintana FJ. Therapeutic induction of antigen-specific immune tolerance. Nat Rev Immunol 2024; 24:338-357. [PMID: 38086932 PMCID: PMC11145724 DOI: 10.1038/s41577-023-00970-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 05/04/2024]
Abstract
The development of therapeutic approaches for the induction of robust, long-lasting and antigen-specific immune tolerance remains an important unmet clinical need for the management of autoimmunity, allergy, organ transplantation and gene therapy. Recent breakthroughs in our understanding of immune tolerance mechanisms have opened new research avenues and therapeutic opportunities in this area. Here, we review mechanisms of immune tolerance and novel methods for its therapeutic induction.
Collapse
Affiliation(s)
- Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolas A Stevens
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
7
|
van Schaik PEM, Zuhorn IS, Baron W. Targeting Fibronectin to Overcome Remyelination Failure in Multiple Sclerosis: The Need for Brain- and Lesion-Targeted Drug Delivery. Int J Mol Sci 2022; 23:8418. [PMID: 35955549 PMCID: PMC9368816 DOI: 10.3390/ijms23158418] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory and neurodegenerative disease with unknown etiology that can be characterized by the presence of demyelinated lesions. Prevailing treatment protocols in MS rely on the modulation of the inflammatory process but do not impact disease progression. Remyelination is an essential factor for both axonal survival and functional neurological recovery but is often insufficient. The extracellular matrix protein fibronectin contributes to the inhibitory environment created in MS lesions and likely plays a causative role in remyelination failure. The presence of the blood-brain barrier (BBB) hinders the delivery of remyelination therapeutics to lesions. Therefore, therapeutic interventions to normalize the pathogenic MS lesion environment need to be able to cross the BBB. In this review, we outline the multifaceted roles of fibronectin in MS pathogenesis and discuss promising therapeutic targets and agents to overcome fibronectin-mediated inhibition of remyelination. In addition, to pave the way for clinical use, we reflect on opportunities to deliver MS therapeutics to lesions through the utilization of nanomedicine and discuss strategies to deliver fibronectin-directed therapeutics across the BBB. The use of well-designed nanocarriers with appropriate surface functionalization to cross the BBB and target the lesion sites is recommended.
Collapse
Affiliation(s)
- Pauline E. M. van Schaik
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wia Baron
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands;
| |
Collapse
|
8
|
Jan Z, Mollazadeh S, Abnous K, Taghdisi SM, Danesh A, Ramezani M, Alibolandi M. Targeted Delivery Platforms for the Treatment of Multiple Sclerosis. Mol Pharm 2022; 19:1952-1976. [PMID: 35501974 DOI: 10.1021/acs.molpharmaceut.1c00892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a neurodegenerative condition of the central nervous system (CNS) that presents with varying levels of disability in patients, displaying the significance of timely and effective management of this complication. Though several treatments have been developed to protect nerves, comprehensive improvement of MS is still considered an essential bottleneck. Therefore, the development of innovative treatment methods for MS is one of the core research areas. In this regard, nanoscale platforms can offer practical and ideal approaches to the diagnosis and treatment of various diseases, especially immunological disorders such as MS, to improve the effectiveness of conventional therapies. It should be noted that there is significant progress in the development of neuroprotective strategies through the implementation of various nanoparticles, monoclonal antibodies, peptides, and aptamers. In this study, we summarize different particle systems as well as targeted therapies, such as antibodies, peptides, nucleic acids, and engineered cells for the treatment of MS, and discuss their potential in the treatment of MS in the preclinical and clinical stages. Future advances in targeted delivery of medical supplies may offer new strategies for complete recovery as well as practical treatment of progressive forms of MS.
Collapse
Affiliation(s)
- Zeinab Jan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, F82C+G8V Bojnurd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Abolghasem Danesh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Science, 7GJP+VPQ Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, 7GJP+VPQ Mashhad, Iran
| |
Collapse
|
9
|
Benne N, Ter Braake D, Stoppelenburg AJ, Broere F. Nanoparticles for Inducing Antigen-Specific T Cell Tolerance in Autoimmune Diseases. Front Immunol 2022; 13:864403. [PMID: 35392079 PMCID: PMC8981588 DOI: 10.3389/fimmu.2022.864403] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Autoimmune diseases affect many people worldwide. Current treatment modalities focus on the reduction of disease symptoms using anti-inflammatory drugs which can lead to side effects due to systemic immune suppression. Restoration of immune tolerance by down-regulating auto-reactive cells in an antigen-specific manner is currently the “holy grail” for the treatment of autoimmune diseases. A promising strategy is the use of nanoparticles that can deliver antigens to antigen-presenting cells which in turn can enhance antigen-specific regulatory T cells. In this review, we highlight some promising cell targets (e.g. liver sinusoidal endothelial cells and splenic marginal zone macrophages) for exploiting natural immune tolerance processes, and several strategies by which antigen-carrying nanoparticles can target these cells. We also discuss how nanoparticles carrying immunomodulators may be able to activate tolerance in other antigen-presenting cell types. Finally, we discuss some important aspects that must be taken into account when translating data from animal studies to patients.
Collapse
Affiliation(s)
- Naomi Benne
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Daniëlle Ter Braake
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Arie Jan Stoppelenburg
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Rheumatology, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Femke Broere
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
10
|
Rahiman N, Zamani P, Badiee A, Arabi L, Alavizadeh SH, Jaafari MR. An insight into the role of liposomal therapeutics in the reversion of Multiple Sclerosis. Expert Opin Drug Deliv 2021; 18:1795-1813. [PMID: 34747298 DOI: 10.1080/17425247.2021.2003327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Multiple Sclerosis (MS), as an autoimmune disease, has complicated immunopathology, which makes its management relevant to various factors. Novel pharmaceutical vehicles, especially liposomes, can support efficacious handling of this disease both in early detection and prognosis and also in a therapeutic manner. The most well-known trigger of MS onset is the predominance of cellular to humoral immunity and enhancement of inflammatory cytokines level. The installation of liposomes as nanoparticles to control this disease holds great promise up to now. AREAS COVERED Various types of liposomes with different properties and purposes have been formulated and targeted immune cells with their surface manipulations. They may be encapsulated with anti-inflammatory, MS-related therapeutics, or immunodominant myelin-specific peptides for attaining a higher therapeutic efficacy of the drugs or tolerance induction. Cationic liposomes are also highly applicable for gene delivery of the anti-inflammatory cytokines or silencing the inflammatory cytokines. Liposomes have also been used as biotools for comprehending MS pathomechanisms or as diagnostic agents. EXPERT OPINION The efforts to manage MS through nanomedicine, especially liposomal therapeutics, pave a new avenue to a high-throughput medication of this autoimmune disease and their translation to the clinic in the future for overcoming the challenges that MS patients confront.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Karaaslan Z, Kurtuncu M, Akcay Hİ, Gunduz T, Altunrende B, Turkoglu R, Eraksoy M, Ulusoy C, Yilmaz V, Tüzün E. CXCL13 Levels Indicate Treatment Responsiveness to Fingolimod in MS Patients. Eur Neurol 2021; 85:69-71. [PMID: 34340233 DOI: 10.1159/000517770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/03/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Zerrin Karaaslan
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey,
| | - Murat Kurtuncu
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Halil İbrahim Akcay
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tuncay Gunduz
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Burcu Altunrende
- Department of Neurology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Recai Turkoglu
- Department of Neurology, Istanbul Haydarpasa Numune Training and Research Hospital, Istanbul, Turkey
| | - Mefkure Eraksoy
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Canan Ulusoy
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
12
|
Lutterotti A, Hayward-Koennecke H, Sospedra M, Martin R. Antigen-Specific Immune Tolerance in Multiple Sclerosis-Promising Approaches and How to Bring Them to Patients. Front Immunol 2021; 12:640935. [PMID: 33828551 PMCID: PMC8019937 DOI: 10.3389/fimmu.2021.640935] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/26/2021] [Indexed: 01/28/2023] Open
Abstract
Antigen-specific tolerance induction aims at treating multiple sclerosis (MS) at the root of its pathogenesis and has the prospect of personalization. Several promising tolerization approaches using different technologies and modes of action have already advanced to clinical testing. The prerequisites for successful tolerance induction include the knowledge of target antigens, core pathomechanisms, and how to pursue a clinical development path that is distinct from conventional drug development. Key aspects including patient selection, outcome measures, demonstrating the mechanisms of action as well as the positioning in the rapidly growing spectrum of MS treatments have to be considered to bring this therapy to patients.
Collapse
Affiliation(s)
- Andreas Lutterotti
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Helen Hayward-Koennecke
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research Section, Neurology Clinic, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Ghafouri-Fard S, Honarmand K, Taheri M. A comprehensive review on the role of chemokines in the pathogenesis of multiple sclerosis. Metab Brain Dis 2021; 36:375-406. [PMID: 33404937 DOI: 10.1007/s11011-020-00648-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) as a chronic inflammatory disorder of the central nervous system (CNS) is thought to be caused by the abnormal induction of immune responses. Chemokines as molecules that can engage leukocytes into the location of inflammation, actively participate in the pathogenesis of MS. Several members of this family of chemo attractants have been shown to be dysregulated in the peripheral blood, cerebrospinal fluid or CNS lesions of MS patients. Studies in animal models of MS particularly experimental autoimmune encephalomyelitis have indicated the critical roles of chemokines in the pathophysiology of MS. In the current review, we summarize the data regarding the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of MS.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Recent Advances in Antigen-Specific Immunotherapies for the Treatment of Multiple Sclerosis. Brain Sci 2020; 10:brainsci10060333. [PMID: 32486045 PMCID: PMC7348736 DOI: 10.3390/brainsci10060333] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system and is considered to be the leading non-traumatic cause of neurological disability in young adults. Current treatments for MS comprise long-term immunosuppressant drugs and disease-modifying therapies (DMTs) designed to alter its progress with the enhanced risk of severe side effects. The Holy Grail for the treatment of MS is to specifically suppress the disease while at the same time allow the immune system to be functionally active against infectious diseases and malignancy. This could be achieved via the development of immunotherapies designed to specifically suppress immune responses to self-antigens (e.g., myelin antigens). The present study attempts to highlight the various antigen-specific immunotherapies developed so far for the treatment of multiple sclerosis (e.g., vaccination with myelin-derived peptides/proteins, plasmid DNA encoding myelin epitopes, tolerogenic dendritic cells pulsed with encephalitogenic epitopes of myelin proteins, attenuated autologous T cells specific for myelin antigens, T cell receptor peptides, carriers loaded/conjugated with myelin immunodominant peptides, etc), focusing on the outcome of their recent preclinical and clinical evaluation, and to shed light on the mechanisms involved in the immunopathogenesis and treatment of multiple sclerosis.
Collapse
|
15
|
Metaxakis A, Petratou D, Tavernarakis N. Molecular Interventions towards Multiple Sclerosis Treatment. Brain Sci 2020; 10:brainsci10050299. [PMID: 32429225 PMCID: PMC7287961 DOI: 10.3390/brainsci10050299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune life-threatening disease, afflicting millions of people worldwide. Although the disease is non-curable, considerable therapeutic advances have been achieved through molecular immunotherapeutic approaches, such as peptides vaccination, administration of monoclonal antibodies, and immunogenic copolymers. The main aims of these therapeutic strategies are to shift the MS-related autoimmune response towards a non-inflammatory T helper 2 (Th2) cells response, inactivate or ameliorate cytotoxic autoreactive T cells, induce secretion of anti-inflammatory cytokines, and inhibit recruitment of autoreactive lymphocytes to the central nervous system (CNS). These approaches can efficiently treat autoimmune encephalomyelitis (EAE), an essential system to study MS in animals, but they can only partially inhibit disease progress in humans. Nevertheless, modern immunotherapeutic techniques remain the most promising tools for the development of safe MS treatments, specifically targeting the cellular factors that trigger the initiation of the disease.
Collapse
Affiliation(s)
- Athanasios Metaxakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Greece; (A.M.); (D.P.)
| | - Dionysia Petratou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Greece; (A.M.); (D.P.)
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Nikolaou Plastira 100, 70013 Heraklion, Greece; (A.M.); (D.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 71110 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-391066
| |
Collapse
|
16
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur J Pharm Biopharm 2020; 149:192-217. [PMID: 31982574 DOI: 10.1016/j.ejpb.2020.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is vulnerable to pathologic processes that lead to the development of neurodegenerative disorders like Alzheimer's, Parkinson's and Huntington's diseases, Multiple sclerosis or Amyotrophic lateral sclerosis. These are chronic and progressive pathologies characterized by the loss of neurons and the formation of misfolded proteins. Additionally, neurodegenerative diseases are accompanied by a structural and functional dysfunction of the blood-brain barrier (BBB). Although serving as a protection for the CNS, the existence of physiological barriers, especially the BBB, limits the access of several therapeutic agents to the brain, constituting a major hindrance in neurotherapeutics advancement. In this regard, nanotechnology-based approaches have arisen as a promising strategy to not only improve drug targeting to the brain, but also to increase bioavailability. Lipid nanocarriers such as liposomes, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), microemulsions and nanoemulsions, have already proven their potential for enhancing brain transport, crossing more easily into the CNS and allowing the administration of medicines that could benefit the treatment of neurological pathologies. Given the socioeconomic impact of such conditions and the advent of nanotechnology that inevitably leads to more effective and superior therapeutics for their management, it is imperative to constantly update on the current knowledge of these topics. Herein, we provide insight on the BBB and the pathophysiology of the main neurodegenerative disorders. Moreover, this review seeks to highlight the several approaches that can be used to improve the delivery of therapeutic agents to the CNS, while also offering an extensive overview of the latest efforts regarding the use of lipid-based nanocarriers in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- M I Teixeira
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - C M Lopes
- FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Centre, Faculty of Health Sciences, Fernando Pessoa University, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - P C Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
17
|
Ghosh S, Lalani R, Patel V, Bhowmick S, Misra A. Surface engineered liposomal delivery of therapeutics across the blood brain barrier: recent advances, challenges and opportunities. Expert Opin Drug Deliv 2019; 16:1287-1311. [DOI: 10.1080/17425247.2019.1676721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Saikat Ghosh
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Rohan Lalani
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Vivek Patel
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Subhas Bhowmick
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Formulation Development Department-Novel Drug Delivery Systems, Sun Pharmaceutical Industries Ltd, Vadodara, India
| | - Ambikanandan Misra
- Department of Pharmaceutics, Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
18
|
Balmasova IP, Lomakin YA, Babaev EA, Tsarev VN, Gabibov AG, Smirnov IV, Knorre VD, Ovchinnikova LA, Gnuchev NV, Khurs EN, Deev MS, Kostin NN, Arutyunov SD. "Shielding" of Cytokine Induction by the Periodontal Microbiome in Patients with Periodontitis Associated with Type 2 Diabetes Mellitus. Acta Naturae 2019; 11:79-87. [PMID: 31993238 PMCID: PMC6977959 DOI: 10.32607/20758251-2019-11-4-79-87] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/02/2019] [Indexed: 12/23/2022] Open
Abstract
Periodontal diseases, especially those with polymicrobial etiology, are often associated with type 2 diabetes mellitus, proceeding more severely and affecting the course of diabetes mellitus. Recently, this feature has been associated with the ability of periodontopathogen microflora to cause not only a local infectious process in the oral cavity, but also to interact with the human immune system and induce various systemic effects. We investigated changes in the salivary cytokine profile of patients with chronic periodontitis, associated and not associated with type 2 diabetes mellitus. We observed a statistically significant decrease of MCP-1/CCL2, GM-CSF, IL-5, IL-6, and IFN-γ in the saliva of patients with chronic periodontitis associated with type 2 diabetes mellitus in comparison with patients with chronic periodontitis only. All of these cytokines are associated with macrophage activation. These data are an important contribution to the elucidation of the mechanism of periodontopathogens involvement in the manifestation of the systemic effects of type 2 diabetes.
Collapse
Affiliation(s)
- I. P. Balmasova
- A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of the Russian Federation, Moscow, 127473 Russia
| | - Y. A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - E. A. Babaev
- A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of the Russian Federation, Moscow, 127473 Russia
| | - V. N. Tsarev
- A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of the Russian Federation, Moscow, 127473 Russia
| | - A. G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - I. V. Smirnov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - V. D. Knorre
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - L. A. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - N. V. Gnuchev
- Engelhardt Institute of Molecular Biology, RAS, Moscow, 119991 Russia
| | - E. N. Khurs
- Engelhardt Institute of Molecular Biology, RAS, Moscow, 119991 Russia
| | - M. S. Deev
- Peoples’ Friendship University of Russia, Moscow, 117198 Russia
| | - N. N. Kostin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997 Russia
| | - S. D. Arutyunov
- A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of the Russian Federation, Moscow, 127473 Russia
| |
Collapse
|
19
|
Bartheldyová E, Turánek Knotigová P, Zachová K, Mašek J, Kulich P, Effenberg R, Zyka D, Hubatka F, Kotouček J, Čelechovská H, Héžová R, Tomečková A, Mašková E, Fojtíková M, Macaulay S, Bystrický P, Paulovičová L, Paulovičová E, Drož L, Ledvina M, Raška M, Turánek J. N-Oxy lipid-based click chemistry for orthogonal coupling of mannan onto nanoliposomes prepared by microfluidic mixing: Synthesis of lipids, characterisation of mannan-coated nanoliposomes and in vitro stimulation of dendritic cells. Carbohydr Polym 2018; 207:521-532. [PMID: 30600036 DOI: 10.1016/j.carbpol.2018.10.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/18/2018] [Accepted: 10/25/2018] [Indexed: 11/26/2022]
Abstract
New synthetic aminooxy lipid was designed and synthesized as a building block for the formulation of functionalised nanoliposomes (presenting onto the outer surface of aminooxy groups) by microfluidic mixing. Orthogonal binding of cellular mannan (Candida glabrata (CCY 26-20-1) onto the outer surface of functionalised nanoliposomes was modified by orthogonal binding of reducing termini of mannans to oxime lipids via a click chemistry reaction based on aminooxy coupling (oxime ligation). The aminooxy lipid was proved as a suitable active component for preparation of functionalised nanoliposomes by the microfluidic mixing method performed with the instrument NanoAssemblr™. This "on-chip technology" can be easily scaled-up. The structure of mannan-liposomes was visualized by transmission and scanning electron microscopy, including immunogold staining of recombinant mannan receptor bound onto mannosylated-liposomes. The observed structures are in a good correlation with data obtained by DLS, NTA, and TPRS methods. In vitro experiments on human and mouse dendritic cells demonstrate selective internalisation of fluorochrome-labelled mannan-liposomes and their ability to stimulate DC comparable to lipopolysaccharide. We describe a potentially new drug delivery platform for mannan receptor-targeted antimicrobial drugs as well as for immunotherapeutics. Furthermore, the platform based on mannans bound orthogonally onto the surface of nanoliposomes represents a self-adjuvanted carrier for construction of liposome-based recombinant vaccines for both systemic and mucosal routes of administration.
Collapse
Affiliation(s)
- Eliška Bartheldyová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic
| | - Pavlína Turánek Knotigová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic
| | - Kateřina Zachová
- Department of Immunology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic
| | - Pavel Kulich
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic
| | - Roman Effenberg
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, 166, 28 Prague 6, Czech Republic
| | - Daniel Zyka
- APIGENEX s.r.o., Poděbradská 173/5, Prague 9, 190 00, Czech Republic
| | - František Hubatka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic
| | - Jan Kotouček
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic
| | - Hana Čelechovská
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic
| | - Renata Héžová
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic
| | - Andrea Tomečková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic
| | - Eliška Mašková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic
| | - Martina Fojtíková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic
| | | | - Peter Bystrický
- Division of Neurosciences, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University, Malá Hora 10701/4A, 036 01 Martin, Slovakia
| | - Lucia Paulovičová
- Department of Immunochemistry of Glycoconjugates, Immunology & Cell Culture Laboratory, Institute of Chemistry, Center for Glycomics Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Ema Paulovičová
- Department of Immunochemistry of Glycoconjugates, Immunology & Cell Culture Laboratory, Institute of Chemistry, Center for Glycomics Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia.
| | - Ladislav Drož
- APIGENEX s.r.o., Poděbradská 173/5, Prague 9, 190 00, Czech Republic
| | - Miroslav Ledvina
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, 166, 28 Prague 6, Czech Republic.
| | - Milan Raška
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic; Department of Immunology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, 775 15 Olomouc, Czech Republic.
| | - Jaroslav Turánek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, v.v.i., Hudcova 70, 621 00 Brno, Czech Republic.
| |
Collapse
|
20
|
Jafarzadeh A, Nemati M. Therapeutic potentials of ginger for treatment of Multiple sclerosis: A review with emphasis on its immunomodulatory, anti-inflammatory and anti-oxidative properties. J Neuroimmunol 2018; 324:54-75. [PMID: 30243185 DOI: 10.1016/j.jneuroim.2018.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/24/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is characterized by chronic inflammatory response-induced demyelination of the neurons and degeneration of the axons within the central nervous system (CNS). A complex network of immunopathological-, inflammatory- and oxidative parameters involve in the development and advancement of MS. The anti-inflammatory, immunomodulatory and anti-oxidative characteristics of the ginger and several of its components have been indicated in some of experimental and clinical investigations. The possible therapeutic potentials of ginger and its ingredients in the treatment of MS may exert mainly through the regulation of the Th1-, Th2-, Th9-, Th17-, Th22- and Treg cell-related immune responses, down-regulation of the B cell-related immune responses, modulation of the macrophages-related responses, modulation of the production of pro- and anti-inflammatory cytokines, down-regulation of the arachidonic acid-derived mediators, interfering with the toll like receptor-related signaling pathways, suppression of the inflammasomes, down-regulation of the oxidative stress, reduction of the adhesion molecules expression, and down-regulation of the expression of the chemokines and chemokine receptors. This review aimed to provide a comprehensive knowledge regarding the immunomodulatory-, anti-inflammatory and anti-oxidative properties of ginger and its components, and highlight novel insights into the possible therapeutic potentials of this plant for treatment of MS. The review encourages more investigations to consider the therapeutic potentials of ginger and its effective components for managing of MS.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Maryam Nemati
- Department of Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
21
|
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system (CNS) characterized by neuroinflammation, neurodegeneration and impaired repair mechanisms that lead to neurological disability. The crux of MS is the patient's own immune cells attacking self-antigens in the CNS, namely the myelin sheath that protects nerve cells of the brain and spinal cord. Restoring antigen-specific tolerance via therapeutic vaccination is an innovative and exciting approach in MS therapy. Indeed, leveraging the body's attempt to prevent autoimmunity, i.e., tolerization, focuses on the underlying cause of the disease and could be the key to solving neuroinflammation. In this perspective, antigen-specific vaccination targets only the detrimental and aberrant immune response against the specific disease-associated antigen(s) involved while retaining the capacity of the immune system to respond to unrelated antigens. We review the experimental approaches of tolerance-inducing vaccination in relapsing and progressive forms of MS that have reached the clinical development phase, including vaccination with autologous T cells, autologous tolerogenic dendritic cells, T cell receptor peptide vaccination, altered peptide ligand, ATX-MS-1467, cluster of differentiation (CD)-206-targeted liposomal myelin basic protein peptides and DNA vaccination. Failures, successes and future directions are discussed.
Collapse
|
22
|
Ivanova VV, Khaiboullina SF, Gomzikova MO, Martynova EV, Ferreira AM, Garanina EE, Sakhapov DI, Lomakin YA, Khaibullin TI, Granatov EV, Khabirov FA, Rizvanov AA, Gabibov A, Belogurov A. Divergent Immunomodulation Capacity of Individual Myelin Peptides-Components of Liposomal Therapeutic against Multiple Sclerosis. Front Immunol 2017; 8:1335. [PMID: 29085375 PMCID: PMC5650689 DOI: 10.3389/fimmu.2017.01335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/03/2017] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination and consequent neuron injury. Although the pathogenesis of MS is largely unknown, a breach in immune self-tolerance to myelin followed by development of autoreactive encephalitogenic T cells is suggested to play the central role. The myelin basic protein (MBP) is believed to be one of the main targets for autoreactive lymphocytes. Recently, immunodominant MBP peptides encapsulated into the mannosylated liposomes, referred as Xemys, were shown to suppress development of experimental autoimmune encephalomyelitis, a rodent model of MS, and furthermore passed the initial stage of clinical trials. Here, we investigated the role of individual polypeptide components [MBP peptides 46-62 (GH17), 124-139 (GK16), and 147-170 (QR24)] of this liposomal peptide therapeutic in cytokine release and activation of immune cells from MS patients and healthy donors. The overall effects were assessed using peripheral blood mononuclear cells (PBMCs), whereas alterations in antigen-presenting capacities were studied utilizing plasmacytoid dendritic cells (pDCs). Among three MBP-immunodominant peptides, QR24 and GK16 activated leukocytes, while GH17 was characterized by an immunosuppressive effect. Peptides QR24 and GK16 upregulated CD4 over CD8 T cells and induced proliferation of CD25+ cells, whereas GH17 decreased the CD4/CD8 T cell ratio and had limited effects on CD25+ T cells. Accordingly, components of liposomal peptide therapeutic differed in upregulation of cytokines upon addition to PBMCs and pDCs. Peptide QR24 was evidently more effective in upregulation of pro-inflammatory cytokines, whereas GH17 significantly increased production of IL-10 through treated cells. Altogether, these data suggest a complexity of action of the liposomal peptide therapeutic that does not seem to involve simple helper T cells (Th)-shift but rather the rebalancing of the immune system.
Collapse
Affiliation(s)
- Vilena V Ivanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana F Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Microbiology and Immunology, University of Nevada, Reno, NV, United States
| | - Marina O Gomzikova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina V Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - André M Ferreira
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina E Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Damir I Sakhapov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yakov A Lomakin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | | | | | | | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alexander Gabibov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Alexey Belogurov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|