1
|
Hou D, Lin H, Feng Y, Zhou K, Li X, Yang Y, Wang S, Yang X, Wang J, Zhao H, Zhang X, Fan J, Lu S, Wang D, Zhu L, Ju D, Chen YZ, Zeng X. CMAUP database update 2024: extended functional and association information of useful plants for biomedical research. Nucleic Acids Res 2024; 52:D1508-D1518. [PMID: 37897343 PMCID: PMC10767869 DOI: 10.1093/nar/gkad921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 10/30/2023] Open
Abstract
Knowledge of the collective activities of individual plants together with the derived clinical effects and targeted disease associations is useful for plant-based biomedical research. To provide the information in complement to the established databases, we introduced a major update of CMAUP database, previously featured in NAR. This update includes (i) human transcriptomic changes overlapping with 1152 targets of 5765 individual plants, covering 74 diseases from 20 027 patient samples; (ii) clinical information for 185 individual plants in 691 clinical trials; (iii) drug development information for 4694 drug-producing plants with metabolites developed into approved or clinical trial drugs; (iv) plant and human disease associations (428 737 associations by target, 220 935 reversion of transcriptomic changes, 764 and 154121 associations by clinical trials of individual plants and plant ingredients); (v) the location of individual plants in the phylogenetic tree for navigating taxonomic neighbors, (vi) DNA barcodes of 3949 plants, (vii) predicted human oral bioavailability of plant ingredients by the established SwissADME and HobPre algorithm, (viii) 21-107% increase of CMAUP data over the previous version to cover 60 222 chemical ingredients, 7865 plants, 758 targets, 1399 diseases, 238 KEGG human pathways, 3013 gene ontologies and 1203 disease ontologies. CMAUP update version is freely accessible at https://bidd.group/CMAUP/index.html.
Collapse
Affiliation(s)
- Dongyue Hou
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Hanbo Lin
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Yuhan Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Kaicheng Zhou
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xingxiu Li
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Yuan Yang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Shuaiqi Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xue Yang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Jiayu Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Hui Zhao
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - SongLin Lu
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Dan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Lyuhan Zhu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Yu Zong Chen
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
- Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| |
Collapse
|
2
|
Dong Md S, Xu Md P, Yang Md P, Jiao Md J, Cheng Md PhD CS, Chen Md PhD L. "Huanglianjiedu Decoction" Against Pancreatic Adenocarcinoma Proliferation of by Downregulating the PI3K/AKT/mTOR and MAPK/ERK1/2 Signaling Pathways. J Evid Based Integr Med 2024; 29:2515690X241291381. [PMID: 39410848 PMCID: PMC11489918 DOI: 10.1177/2515690x241291381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Huanglianjiedu decoction (HLJDD) is a classical Traditional Chinese Medicine (TCM) prescription with thousand years of clinical use against various malignancies, including pancreatic adenocarcinoma (PAAD). However, its potential bioactive component and molecular mechanism remains unclear. AIMS This study is to inspect the HLJDD mechanisms of action against PAAD via integrated computational and pharmacochemistry strategy, in vivo and in vitro experiments to validate associated targets and pathways. METHODS A PAAD xenograft model was established by subcutaneous injecting Panc02 cells into C57BL/6 mice. Ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) was engaged to determine constituents of HLJDD and assessed for pharmacokinetic scheme using the TCM Systems Pharmacology Platform (TCM-SP). Differentially expressed genes (DEGs) of PAAD was retrieved from the transcriptome dataset GSE43795, followed by recognizing overlapping targets the oncogenes and target genes of PAAD and HLJDD, respectively. Putative signaling pathways of HLJDD in treating PAAD were enriched using KEGG and GO analyses. The anti-PAAD effects of HLJDD was assessed in vivo and in vitro, besides, the potential mechanism was validated using immunoblotting and immunohistochemical assays. RESULTS HLJDD significantly suppressed the growth of transplanted PAAD tumors, constrained PAAD progression, and induced apoptosis and S-phase arrest. Seventy-five active components meeting the drug-likeness criteria and 278 target genes of HLJDD were identified. KEGG analysis indicated that the top three enriched pathways were cancer, AGE-RAGE signaling, and IL-17 signaling pathways. Disease enrichment analysis highlighted immune, pharmacological, and cancer-related diseases as the top three categories. A total of 47 potential target genes were identified. Immunoblotting revealed that HLJDD inhibited PI3K and MAPK-related signaling pathways, while immunohistochemical staining confirmed that HLJDD suppressed the expression of phosphorylated MAPK and ERK1/2. CONCLUSION HLJDD inhibited PAAD in vitro and in vivo via the modulation of multiple mechanisms, including regulation of PI3K/AKT/mTOR and MAPK/ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- Shu Dong Md
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Panling Xu Md
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Chinese Integrative Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Peiwen Yang Md
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Juying Jiao Md
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chien-Shan Cheng Md PhD
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University School of Medicine Affiliated Ruijin Hospital, Shanghai, China
| | - Lianyu Chen Md PhD
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhao C, Penttinen P, Zhang L, Dong L, Zhang F, Li Z, Zhang X. Mechanism of Inhibiting the Growth and Aflatoxin B 1 Biosynthesis of Aspergillus flavus by Phenyllactic Acid. Toxins (Basel) 2023; 15:370. [PMID: 37368671 DOI: 10.3390/toxins15060370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phenyllactic acid (PLA), a promising food preservative, is safe and effective against a broad spectrum of food-borne pathogens. However, its mechanisms against toxigenic fungi are still poorly understood. In this study, we applied physicochemical, morphological, metabolomics, and transcriptomics analyses to investigate the activity and mechanism of PLA inhibition of a typical food-contaminating mold, Aspergillus flavus. The results showed that PLA effectively inhibited the growth of A. flavus spores and reduced aflatoxin B1 (AFB1) production by downregulating key genes associated with AFB1 biosynthesis. Propidium iodide staining and transmission electron microscopy analysis demonstrated a dose-dependent disruption of the integrity and morphology of the A. flavus spore cell membrane by PLA. Multi-omics analyses showed that subinhibitory concentrations of PLA induced significant changes in A. flavus spores at the transcriptional and metabolic levels, as 980 genes and 30 metabolites were differentially expressed. Moreover, KEGG pathway enrichment analysis indicated PLA-induced cell membrane damage, energy-metabolism disruption, and central-dogma abnormality in A. flavus spores. The results provided new insights into the anti-A. flavus and -AFB1 mechanisms of PLA.
Collapse
Affiliation(s)
- Chi Zhao
- College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Rd., Chengdu 610066, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China
- Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 1, 00014 Helsinki, Finland
| | - Lingzi Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China
| | - Ling Dong
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Rd., Chengdu 610066, China
| | - Fengju Zhang
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Rd., Chengdu 610066, China
| | - Zhihua Li
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 60 Shizishan Rd., Chengdu 610066, China
| | - Xiaoping Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Rd., Chengdu 611130, China
| |
Collapse
|
4
|
Yu CC, Liu LB, Chen SY, Wang XF, Wang L, Du YJ. Ancient Chinese Herbal Recipe Huanglian Jie Du Decoction for Ischemic Stroke: An Overview of Current Evidence. Aging Dis 2022; 13:1733-1744. [PMID: 36465168 PMCID: PMC9662271 DOI: 10.14336/ad.2022.0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 09/30/2023] Open
Abstract
Ischemic stroke is a major cause of mortality and neurological morbidity worldwide. The underlying pathophysiology of ischemic stroke is highly complicated and correlates with various pathological processes, including neuroinflammation, oxidative stress injury, altered cell apoptosis and autophagy, excitotoxicity, and acidosis. The current treatment for ischemic stroke is limited to thrombolytic therapy such as recombinant tissue plasminogen activator. However, tissue plasminogen activator is limited by a very narrow therapeutic time window (<4.5 hours), selective efficacy, and hemorrhagic complication. Hence, the development of novel therapies to prevent ischemic damage to the brain is urgent. Chinese herbal medicine has a long history in treating stroke and its sequela. In the past decades, extensive studies have focused on the neuroprotective effects of Huanglian Jie Du decoction (HLJDD), an ancient and classical Chinese herbal formula that can treat a wide spectrum of disorders including ischemic stroke. In this review, the current evidence of HLJDD and its bioactive components for ischemic stroke is comprehensively reviewed, and their potential application directions in ischemic stroke management are discussed.
Collapse
Affiliation(s)
- Chao-Chao Yu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
- Department of Integrated Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
| | - Le-Bin Liu
- Department of Rehabilitation Medicine, Hubei Rongjun Hospital, Wuhan, Hubei, China.
| | - Shi-Yuan Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Xiao-Fei Wang
- Department of Rehabilitation Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| |
Collapse
|
5
|
Feng G, Li X, Wang W, Deng L, Zeng K. Effects of Peptide Thanatin on the Growth and Transcriptome of Penicillium digitatum. Front Microbiol 2020; 11:606482. [PMID: 33381100 PMCID: PMC7767931 DOI: 10.3389/fmicb.2020.606482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022] Open
Abstract
Penicillium digitatum is the most damaging pathogen provoking green mold in citrus fruit during storage, and there is an urgent need for novel antifungal agents with high efficiency. The aim of this study was to investigate the antifungal effects of peptide thanatin against P. digitatum and the molecular mechanisms. Results showed that peptide thanatin had a prominent inhibitory effect on P. digitatum by in vitro and in vivo test. A total of 938 genes, including 556 downregulated and 382 upregulated genes, were differentially expressed, as revealed by RNA-seq of whole P. digitatum genomes analysis with or without thanatin treatment. The downregulated genes mainly encoded RNA polymerase, ribosome biogenesis, amino acid metabolism, and major facilitator superfamily. The genes associated with heat shock proteins and antioxidative systems were widely expressed in thanatin-treated group. DNA, RNA, and the protein content of P. digitatum were significantly decreased after thanatin treatment. In conclusion, thanatin could inhibit the growth of P. digitatum, and the underlying mechanism might be the genetic information processing and stress response were affected. The research will provide more precise and directional clues to explore the inhibitory mechanism of thanatin on growth of P. digitatum.
Collapse
Affiliation(s)
- Guirong Feng
- College of Food Science, Southwest University, Chongqing, China
| | - Xindan Li
- College of Food Science, Southwest University, Chongqing, China
| | - Wenjun Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Lili Deng
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage and Logistics, Southwest University, Chongqing, China
| | - Kaifang Zeng
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage and Logistics, Southwest University, Chongqing, China
| |
Collapse
|
6
|
do Carmo Silva L, de Oliveira AA, de Souza DR, Barbosa KLB, Freitas e Silva KS, Carvalho Júnior MAB, Rocha OB, Lima RM, Santos TG, Soares CMDA, Pereira M. Overview of Antifungal Drugs against Paracoccidioidomycosis: How Do We Start, Where Are We, and Where Are We Going? J Fungi (Basel) 2020; 6:jof6040300. [PMID: 33228010 PMCID: PMC7712482 DOI: 10.3390/jof6040300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Paracoccidioidomycosis is a neglected disease that causes economic and social impacts, mainly affecting people of certain social segments, such as rural workers. The limitations of antifungals, such as toxicity, drug interactions, restricted routes of administration, and the reduced bioavailability in target tissues, have become evident in clinical settings. These factors, added to the fact that Paracoccidioidomycosis (PCM) therapy is a long process, lasting from months to years, emphasize the need for the research and development of new molecules. Researchers have concentrated efforts on the identification of new compounds using numerous tools and targeting important proteins from Paracoccidioides, with the emphasis on enzymatic pathways absent in humans. This review aims to discuss the aspects related to the identification of compounds, methodologies, and perspectives when proposing new antifungal agents against PCM.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| | - Amanda Alves de Oliveira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Dienny Rodrigues de Souza
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Katheryne Lohany Barros Barbosa
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Kleber Santiago Freitas e Silva
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Marcos Antonio Batista Carvalho Júnior
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Olívia Basso Rocha
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Raisa Melo Lima
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Thaynara Gonzaga Santos
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74605-050, GO, Brazil
| | - Célia Maria de Almeida Soares
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
| | - Maristela Pereira
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.A.d.O.); (D.R.d.S.); (K.L.B.B.); (K.S.F.eS.); (M.A.B.C.J.); (O.B.R.); (R.M.L.); (T.G.S.); (C.M.d.A.S.)
- Correspondence: (L.d.C.S.); (M.P.); Tel./Fax: +55-62-3521-1110 (M.P.)
| |
Collapse
|
7
|
Qi Y, Zhang Q, Zhu H. Huang-Lian Jie-Du decoction: a review on phytochemical, pharmacological and pharmacokinetic investigations. Chin Med 2019; 14:57. [PMID: 31867052 PMCID: PMC6918586 DOI: 10.1186/s13020-019-0277-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Huang-Lian Jie-Du decoction (HLJDD), a famous traditional Chinese prescription constituted by Rhizoma Coptidis, Radix Scutellariae, Cortex Phellodendri and Fructus Gradeniae, has notable characteristics of dissipating heat and detoxification, interfering with tumors, hepatic diseases, metabolic disorders, inflammatory or allergic processes, cerebral diseases and microbial infections. Based on the wide clinical applications, accumulating investigations about HLJDD focused on several aspects: (1) chemical analysis to explore the underlying substrates responsible for the therapeutic effects; (2) further determination of pharmacological actions and the possible mechanisms of the whole prescription and of those representative ingredients to provide scientific evidence for traditional clinical applications and to demonstrate the intriguing molecular targets for specific pathological processes; (3) pharmacokinetic feature studies of single or all components of HLJDD to reveal the chemical basis and synergistic actions contributing to the pharmacological and clinically therapeutic effects. In this review, we summarized the main achievements of phytochemical, pharmacological and pharmacokinetic profiles of HLJDD and its herbal or pharmacologically active chemicals, as well as our understanding which further reveals the significance of HLJDD clinically.
Collapse
Affiliation(s)
- Yiyu Qi
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qichun Zhang
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China.,4Department of Pharmacology, Pharmacy College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huaxu Zhu
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Wu C, Wu HT, Wang Q, Wang GH, Yi X, Chen YP, Zhou GX. Anticandidal Potential of Stem Bark Extract from Schima superba and the Identification of Its Major Anticandidal Compound. Molecules 2019; 24:E1587. [PMID: 31013655 PMCID: PMC6515076 DOI: 10.3390/molecules24081587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 11/17/2022] Open
Abstract
Plant-derived extracts are a promising source of new drugs. Schima superba is traditionally used in China for heat clearing, detoxification, and treatment of furuncles. In this study, the anticandidal properties and mechanism of action of S. superba (SSE) were explored using a stem bark extract. SSE possessed high polyphenol and saponin contents of 256.6 ± 5.1 and 357.8 ± 31.5 µg/mg, respectively. A clear inhibition zone was observed for C. albicans growth through the disc diffusion method and the 50% inhibition of C. albicans by SSE was 415.2 µg/mL. Transcriptomic analysis in C. albicans treated with different doses of SSE was conducted through RNA-seq. Average values of 6068 genes and 20,842,500 clean reads were identified from each sample. Among these samples, 1680 and 1956 genes were differentially expressed genes (DEGs) from the SSE treatments of 0.2 and 0.4 mg/mL, respectively. C. albicans growth was inhibited by the changes in gene expression associated with the cell wall and membrane composition including the regulation of chitin degradation and ergosterol biosynthesis. This result could be reflected in the irregularly wrinkled morphology of the ruptured cell as revealed through SEM analysis. ESI-MS and NMR analyses revealed that the major compound purified from SSE was sasanquasaponin III and the 50% inhibition of C. albicans was 93.1 µg/mL. In summary, the traditional Chinese medicine S. superba can be applied as an anticandidal agent in complementary and alternative medicine.
Collapse
Affiliation(s)
- Chun Wu
- Xiamen Key Laboratory of Traditional Chinese Medicine Bio-engineering, Xiamen Medical College, Xiamen 361023, China.
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, China.
| | - Hong-Tan Wu
- Department of Medical Technology, Xiamen Medical College, Xiamen 361023, China.
- Application Technique Engineering Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen Medical College, Xiamen 361023, China.
| | - Qing Wang
- Xiamen Key Laboratory of Traditional Chinese Medicine Bio-engineering, Xiamen Medical College, Xiamen 361023, China.
| | - Guey-Horng Wang
- Department of Medical Technology, Xiamen Medical College, Xiamen 361023, China.
- Application Technique Engineering Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen Medical College, Xiamen 361023, China.
| | - Xue Yi
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, China.
| | - Yu-Pei Chen
- Department of Medical Technology, Xiamen Medical College, Xiamen 361023, China.
- Application Technique Engineering Center of Natural Cosmeceuticals, College of Fujian Province, Xiamen Medical College, Xiamen 361023, China.
| | - Guang-Xiong Zhou
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
9
|
Jeon SG, Song EJ, Lee D, Park J, Nam Y, Kim JI, Moon M. Traditional Oriental Medicines and Alzheimer's Disease. Aging Dis 2019; 10:307-328. [PMID: 31435482 PMCID: PMC6667206 DOI: 10.14336/ad.2018.0328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/28/2018] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD), which is the most major cause of dementia, is a progressive neurodegenerative disease that affects cognitive functions. Even though the prevalence of AD is continuously increasing, few drugs including cholinesterase inhibitors and N-methyl D-aspartate-receptor antagonists were approved to treat AD. Because the clinical trials of AD drugs with single targets, such as β-amyloid and tau, have failed, the development of multi-target drugs that ameliorate many of the symptoms of AD is needed. Thus, recent studies have investigated the effects and underlying mechanisms of herbal formulae consisting of various herb combinations used to treat AD. This review discusses the results of clinical and nonclinical studies of the therapeutic efficacy in AD and underlying mechanisms of the herbal formulae of traditional Oriental medicines and bioactive compounds of medicinal plants.
Collapse
Affiliation(s)
- Seong Gak Jeon
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Eun Ji Song
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Dongje Lee
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Junyong Park
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| | - Yunkwon Nam
- 2Center for Organic Devices and Advanced Materials, Kyungsung University, Busan 48434, Republic of Korea
| | - Jin-Il Kim
- 3Department of Nursing, College of Nursing, Jeju National University, Jeju-si 63243, Republic of Korea
| | - Minho Moon
- 1Department of Biochemistry, College of Medicine, Konyang University, Daejeon 35365, Republic of Korea
| |
Collapse
|
10
|
Hovhannisyan H, Gabaldón T. Transcriptome Sequencing Approaches to Elucidate Host-Microbe Interactions in Opportunistic Human Fungal Pathogens. Curr Top Microbiol Immunol 2019; 422:193-235. [PMID: 30128828 DOI: 10.1007/82_2018_122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infections caused by opportunistic human fungal pathogens are a source of increasing medical concern, due to their growing incidence, the emergence of novel pathogenic species, and the lack of effective diagnostics tools. Fungal pathogens are phylogenetically diverse, and their virulence mechanisms can differ widely across species. Despite extensive efforts, the molecular bases of virulence in pathogenic fungi and their interactions with the human host remain poorly understood for most species. In this context, next-generation sequencing approaches hold the promise of helping to close this knowledge gap. In particular, high-throughput transcriptome sequencing (RNA-Seq) enables monitoring the transcriptional profile of both host and microbes to elucidate their interactions and discover molecular mechanisms of virulence and host defense. Here, we provide an overview of transcriptome sequencing techniques and approaches, and survey their application in studying the interplay between humans and fungal pathogens. Finally, we discuss novel RNA-Seq approaches in studying host-pathogen interactions and their potential role in advancing the clinical diagnostics of fungal infections.
Collapse
Affiliation(s)
- Hrant Hovhannisyan
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| |
Collapse
|
11
|
Cai FF, Zhou WJ, Wu R, Su SB. Systems biology approaches in the study of Chinese herbal formulae. Chin Med 2018; 13:65. [PMID: 30619503 PMCID: PMC6311004 DOI: 10.1186/s13020-018-0221-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
Systems biology is an academic field that attempts to integrate different levels of information to understand how biological systems function. It is the study of the composition of all components of a biological system and their interactions under specific conditions. The core of systems biology is holistic and systematic research, which is different from the manner of thinking and research of all other branches of biology to date. Chinese herbal formulae (CHF) are the main form of Chinese medicine and are composed of single Chinese herbal medicines (CHMs) with pharmacological and pharmacodynamic compatibility. When single CHMs are combined into CHF, the result is different from the original effect of a single drug and can be better adapted to more diseases with complex symptoms. CHF represent a complex system with multiple components, targets and effects. Therefore, the use of systems biology is conducive to revealing the complex characteristics of CHF. With the rapid development of omics technologies, systems biology has been widely and increasingly applied to the study of the basis of the pharmacological substances, action targets and mechanisms of CHF. To meet the challenges of multiomics synthesis-intensive studies and system dynamics research in CHF, this paper reviews the common techniques of genomics, transcriptomics, proteomics, metabolomics, and metagenomics and their applications in research on CHF.
Collapse
Affiliation(s)
- Fei-Fei Cai
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Wen-Jun Zhou
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Rong Wu
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Shi-Bing Su
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
12
|
Wang X, Jiao X, Liu Z, Li Y. Crocetin Potentiates Neurite Growth in Hippocampal Neurons and Facilitates Functional Recovery in Rats with Spinal Cord Injury. Neurosci Bull 2017; 33:695-702. [PMID: 28770439 DOI: 10.1007/s12264-017-0157-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 05/04/2017] [Indexed: 11/26/2022] Open
Abstract
Crocetin is an ingredient of traditional Chinese medicine and has therapeutic potential in various diseases due to its pharmacological properties, such as neuroprotection, anti-oxidative stress, and anti-inflammation. These properties might benefit the treatment of spinal cord injury. In the present study, we tested the effect of crocetin on neurite growth and sensorimotor dysfunction in a rat model of spinal cord injury. We evaluated the viability of cultured hippocampal neurons with tetrazolium dye and lactate dehydrogenase assays, visualized neurites and axons with antibody staining, and monitored motor and sensorimotor functions in rats with spinal cord injury using the Basso, Beattie, and Bresnahan assay and the contact plantar placement test, respectively, and measured cytokine expression using enzyme-linked immuno-absorbent assays. We found that crocetin (1) did not alter the viability of cultured hippocampal neurons; (2) accelerated neurite growth with preference for the longest process in individual hippocampal neurons; (3) reversed the inhibition of neurite growth by chondroitin sulfate proteoglycan and NogoA; (4) facilitated the recovery of motor and sensorimotor functions after spinal cord injury; and (5) did not inhibit pro-inflammatory responses, but restored the innervation of the descending 5-HT system in injured spinal cord. Crocetin promotes neurite growth and facilitates the recovery of motor and sensorimotor functions after spinal cord injury, likely through repairing neuronal connections.
Collapse
Affiliation(s)
- Xiqian Wang
- Orthopaedics Department, The Second Hospital of Shandong University, Jinan, 250012, China
| | - Xiejia Jiao
- Orthopaedics Department, The Second Hospital of Shandong University, Jinan, 250012, China
| | - Zhonghao Liu
- Orthopaedics Department, The Second Hospital of Shandong University, Jinan, 250012, China
| | - Yixin Li
- Imaging Department, The Second Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
13
|
In Vitro Antibiofilm Activity of Eucarobustol E against Candida albicans. Antimicrob Agents Chemother 2017; 61:AAC.02707-16. [PMID: 28584159 DOI: 10.1128/aac.02707-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/20/2017] [Indexed: 12/23/2022] Open
Abstract
Formyl-phloroglucinol meroterpenoids (FPMs) are important types of natural products with various bioactivities. Our antifungal susceptibility assay showed that one of the Eucalyptus robusta-derived FPMs, eucarobustol E (EE), exerted a strong inhibitory effect against Candida albicans biofilms at a concentration of 16 μg/ml. EE was found to block the yeast-to-hypha transition and reduce the cellular surface hydrophobicity of the biofilm cells. RNA sequencing and real-time reverse transcription-PCR analysis showed that exposure to 16 μg/ml of EE resulted in marked reductions in the levels of expressions of genes involved in hyphal growth (EFG1, CPH1, TEC1, EED1, UME6, and HGC1) and cell surface protein genes (ALS3, HWP1, and SAP5). Interestingly, in response to EE, genes involved in ergosterol biosynthesis were downregulated, while the farnesol-encoding gene (DPP3) was upregulated, and these findings were in agreement with those from the quantification of ergosterol and farnesol. Combined with the obvious elevation of negative regulator genes (TUP1, NRG1), we speculated that EE's inhibition of carbon flow to ergosterol triggered the mechanisms of the negative regulation of hyphal growth and eventually led to biofilm inhibition.
Collapse
|