1
|
Liu Y, Wenren M, Cheng W, Zhou X, Xu D, Chi C, Lü Z, Liu H. Identification, functional characterization and immune response profiles of interleukin-10 in Nibea albiflora. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109654. [PMID: 38810711 DOI: 10.1016/j.fsi.2024.109654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Interleukin-10 (IL-10) is an immunosuppressive cytokine, which plays a vital role in regulating inflammation for inhibiting the generation and function of pro-inflammatory cytokines in vivo or in vitro. In the present study, the full length cDNA of IL-10 was characterized from Nibea albiflora (named as NaIL-10) of 1238 base pairs (bp), containing a 5'-UTR (untranslated region) of 350 bp, a 3'-UTR of 333 bp and an open reading frame (ORF) of 555 bp (Fig. 1A) to encode 184 amino acid residues with a signal peptide at the N-terminus. The sequence analysis showed that NaIL-10 possessed the typical IL-10 family symbolic motif and conversed cysteine residues, similar to its teleost orthologues. Real-time PCR indicated that NaIL-10 had wide distribution in different healthy tissues, with a relatively high expression in immune-related tissues (head kidney, spleen, kidney, liver and gill). Significantly, up-regulations of NaIL-10 after infection against Vibrio parahaemolyticus, Vibrio alginolyticus and Poly I:C were also observed. Subcellular localization manifested that NaIL-10 mainly distributed in the cytoplasm unevenly and aggregately, and there was also a small amount on the cell membrane, indicating that NaIL-10 was secreted to the extracellular space as the known IL-10 homologous molecules. It could co-locate with IL-10 Rα on the membrane of HEK293T cells for their potential interaction, and GST pull-down and Co-IP studies certified the specific and direct interaction between NaIL-10 and NaIL-10 Rα, confirming that an IL-10 ligand-receptor system existed in N.albiflora. The expression of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1β, were dramatically inhibited in LPS-stimulated RAW264.7 macrophages pre-incubated with recombinant NaIL-10 protein, demonstrating its anti-inflammatory roles. Taken together, the results demonstrated the existence of IL-10 ligand-receptor system in N.albiflora for the first time, and indicated the suppressive function of NaIL-10 on pro-inflammatory cytokine expression in inflammatory response, which would be conducive to better comprehending the role of IL-10 in the immunomodulatory mechanisms of teleost.
Collapse
Affiliation(s)
- Yue Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Mingming Wenren
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Wei Cheng
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Xu Zhou
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Dongdong Xu
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang province, Zhoushan, 316100, China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Zhenming Lü
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
2
|
Hu F, Li W, Wang H, Peng H, He J, Ding J, Zhang W. Environmentally relevant concentrations of tris (2-chloroethyl) phosphate (TCEP) induce hepatotoxicity in zebrafish (Danio rerio): a whole life-cycle assessment. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1421-1433. [PMID: 37950834 DOI: 10.1007/s10695-023-01265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
Tris (2-chloroethyl) phosphate (TCEP), a typical organophosphate flame retardant, is of increasingly great concern considering their ubiquitous presence in aquatic environments and potential ecotoxicity. The present work was aimed to investigate the potential growth inhibition and hepatic stress induced by whole life-cycle exposure to TCEP (0.8, 4, 20 and 100 μg/L) in zebrafish. The results revealed that the body length, body mass and hepatic-somatic index (HSI) of zebrafish were significantly declined after exposure to TCEP for 120 days. GPx activity and GSH content were increased in the liver of zebrafish treated with low concentrations (0.8 and 4 μg/L) of TCEP, while exposure to high concentrations (20 and 100 μg/L) of TCEP reduced antioxidative capacity and elevated lipid peroxidation (LPO) levels. Gene transcription analysis demonstrated that the mRNA levels of nrf2 were altered in a similar manner to the transcription of the downstream genes nqo1 and hmox1, suggesting that Nrf2-Keap1 pathway mediated TCEP-induced oxidative stress in zebrafish liver. In addition, TCEP exposure might alleviate inflammatory response through down-regulating transcription of inflammatory cytokines (il-1β, il-6 and inos), and induce apoptosis via activating the p53-Bax pathway. Moreover, whole life-cycle exposure to TCEP caused a series of histopathological anomalies in zebrafish liver. Overall, our results revealed that lifetime exposure to environmentally relevant concentrations of TCEP could result in growth retardation and induce significant hepatotoxicity in zebrafish.
Collapse
Affiliation(s)
- Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wen Li
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongkai Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangke Peng
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiabo He
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jieyu Ding
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
3
|
Ouyang P, Tao Y, Wei W, Li Q, Liu S, Ren Y, Huang X, Chen D, Geng Y. Spring Viremia of Carp Virus Infection Induces Carp IL-10 Expression, Both In Vitro and In Vivo. Microorganisms 2023; 11:2812. [PMID: 38004823 PMCID: PMC10673272 DOI: 10.3390/microorganisms11112812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine with both immune enhancement and immunosuppression activities, but the main role is immunosuppression and anti-inflammatory ability. In order to use the immunosuppressive function of IL-10, many viruses, such as SARS-CoV-2, hepatitis B virus and EB virus, can evade the host's immune surveillance and clearance by increasing the expression of host IL-10. However, it has not been reported whether the aquatic animal infection virus can upregulate the expression of host IL-10 and the mechanisms are still unknown. Spring viremia of carp (SVC) is a fatal viral disease for many fish species and is caused by spring viremia of carp virus (SVCV). This disease has caused significant economic losses in the aquaculture industry worldwide. In this study, the expression of carp IL-10 with or without infection of SVCV in epithelioma papulosum cyprinid (EPC) cells, carp head kidney (cHK) primary cells and common carp tissues were analyzed using RT-PCR and ELISA. The results show that SVCV infection induced carp IL-10 mRNA and protein expression, both in vitro and in vivo. However, the upregulation of carp IL-10 by SVCV was hindered by specific inhibitors of the JAK inhibitor (CP-690550), STAT3 inhibitor (STA-21), NF-κB inhibitor (BAY11-7082) and p38 MAPK (mitogen-activated protein kinase) inhibitor (SB202190), but not JNK inhibitor (SP600125). Furthermore, the results demonstrated that JAK1, JAK2, JAK3, TYK2 and STAT5 played important roles in carp IL-10 production induced by SVCV infection. Taken together, SVCV infection significantly induced carp IL-10 expression and the upregulation trigged in JAK-STAT, NF-κB and p38MAPK pathways. To our knowledge, this is the first time that a fish infection virus upregulated the host IL-10 expression through the JAK-STAT, NF-κB and p38MAPK pathways. Altogether, fish viruses may have a similar mechanism as human or other mammalian viruses to escape host immune surveillance and clearance.
Collapse
Affiliation(s)
- Ping Ouyang
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Q.L.); (S.L.); (Y.R.); (Y.G.)
| | - Yu Tao
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Q.L.); (S.L.); (Y.R.); (Y.G.)
| | - Wenyan Wei
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China;
| | - Qiunan Li
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Q.L.); (S.L.); (Y.R.); (Y.G.)
| | - Shuya Liu
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Q.L.); (S.L.); (Y.R.); (Y.G.)
| | - Yongqiang Ren
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Q.L.); (S.L.); (Y.R.); (Y.G.)
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.C.)
| | - Defang Chen
- Department of Aquaculture, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.H.); (D.C.)
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Q.L.); (S.L.); (Y.R.); (Y.G.)
| |
Collapse
|
4
|
Li K, Li J, Wei X, Wang J, Geng M, Ai K, Liang W, Zhang J, Li K, Gao H, Yang J. IL-10 Negatively Controls the Primary T Cell Response of Tilapia by Triggering the JAK1/STAT3/SOCS3 Axis That Suppresses NF-κB and MAPK/ERK Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:229-244. [PMID: 36548476 DOI: 10.4049/jimmunol.2200335] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
The braking mechanisms to protect the host from tissue damage and inflammatory disease caused by an overexuberant immune response are common in many T cell subsets. However, the negative regulation of T cell responses and detailed mechanisms are not well understood in early vertebrates. In the current study, using a Nile tilapia (Oreochromis niloticus) model, we investigated the suppression of T cell immunity by IL-10. Tilapia encodes an evolutionarily conserved IL-10, whose expression in lymphocytes is markedly induced during the primary adaptive immune response against Aeromonas hydrophila infection. Activated T cells of tilapia produce IL-10, which in turn inhibits proinflammatory cytokine expression and suppresses PHA-induced T cell activation. Moreover, administration of IL-10 impairs the proliferation of tilapia T cells, reduces their potential to differentiate into Th subsets, and cripples the cytotoxic function, rendering the animals more vulnerable to pathogen attack. After binding to its receptor IL-10Ra, IL-10 activates the JAK1/STAT3 axis by phosphorylation and enhances the expression of the suppressor of cytokine signaling 3 (SOCS3), which in turn attenuates the activation of the NF-κB and MAPK/ERK signaling pathways, thus suppressing the T cell response of tilapia. Our findings elucidate a negative regulatory mechanism of T cell immunity in a fish species and support the notion that the braking mechanism of T cells executed through IL-10 existed prior to the divergence of the tetrapod lineage from teleosts. Therefore, this study, to our knowledge, provides a novel perspective on the evolution of the adaptive immune system.
Collapse
Affiliation(s)
- Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiaqi Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; and
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Liang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiansong Zhang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kunming Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Li XP, Zhang J. Tongue sole (Cynoglossus semilaevis) interleukin 10 receptors are involved in the immune response against bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103885. [PMID: 33045275 DOI: 10.1016/j.dci.2020.103885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Interleukin (IL)-10, an immune-regulatory cytokine, exerts various biological functions through interaction with IL-10 receptors. In teleost, very limited functional studies on IL-10 receptors have been documented. In this study, we reported the expression patterns of IL-10 receptor 1 (CsIL-10R1) and receptor 2 (CsIL-10R2) of tongue sole (Cynoglossus semilaevis) and examined their biological properties. The expression of CsIL-10R1 and CsIL-10R2 occurred in multiple tissues and were regulated by bacterial challenge. In vitro binding studies showed that recombinant extracellular region of CsIL-10R1 (rCsIL-10R1ex) rather than rCsIL-10R2ex could bind with rCsIL-10. Cellular study showed that both CsIL-10R1 and CsIL-10R2 were expressed on peripheral blood leukocytes (PBLs), and blockade of CsIL-10R1 or CsIL-10R2 by antibody could reduce inhibitory effect of CsIL-10 on ROS production of PBLs. When injected in vivo, anti-rCsIL-10R1 or anti-rCsIL-10R2 antibody dramatically promoted the expression of proinflammatory cytokines and suppressed bacterial dissemination in tongue sole tissues. Consistently, the overexpression of CsIL-10R1 or CsIL-10R2 significantly enhanced bacterial dissemination, and the overexpression of CsIL-10R1M bearing STAT3 site mutation reduced bacterial dissemination. Overall, these results demonstrate for the first time teleost IL-10 receptors play a negative role in antibacterial immunity and add insight into the function of CsIL-10 receptors.
Collapse
Affiliation(s)
- Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; School of Ocean, Yantai University, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; School of Ocean, Yantai University, Yantai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
6
|
Karan S, Choudhury D, Dixit A. Immunogenic characterization and protective efficacy of recombinant CsgA, major subunit of curli fibers, against Vibrio parahaemolyticus. Appl Microbiol Biotechnol 2021; 105:599-616. [PMID: 33404830 DOI: 10.1007/s00253-020-11038-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/22/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
Vibrio parahaemolyticus is one of the major pathogens responsible for vibriosis and zoonotic infections in teleosts, marine invertebrates, and also humans through consumption of contaminated or unprocessed seafood. Emergence of resistance against current accessible antibiotics and spread to the food chain and environment necessitate the development of safe and effective subunit vaccine against this bacterium. Many bacteria including V. parahaemolyticus produce extracellular curli fibrils, heteropolymeric filaments of major and minor subunit, which have been implicated in adhesion, biofilm formation, and virulence. Adhesins are the primary contact points with the host which help in establishing infection and colonization. CsgA, an adhesin, is the major structural component of the curli fiber that forms homopolymers of several hundred units. Due to their exposure on the cell surface, the curli fibers are recognized by the host's immune system, would generate high immune response, and therefore can serve as effective vaccine candidate. In the present study, we describe characterization of the csgA gene, and preparation of recombinant soluble CsgA of V. parahaemolyticus (rVpCsgA), and evaluation of its vaccine potential. Immunization of BALB/c mice with the rVpCsgA mounted a strong immune response. Cellular immune assays such as antibody isotyping, in vitro splenocyte proliferation analysis, and cytokine profiling revealed mixed T-helper cell immune response. The anti-rVpCsgA antiserum was agglutination positive and specifically cross-reacted with the curli CsgA present on the outer membrane of V. parahaemolyticus cells, thus demonstrating its neutralization potential. One hundred percent survival of the immunized mice upon challenge with the lethal dosage of the bacterium established that the rVpCsgA could serve as an effective vaccine against the bacterium. KEY POINTS: • Recombinant histidine-tagged CsgA of V. parahaemolyticus, rVpCsgA, was purified. • The rVpCsgA immunization produced mixed immune response and agglutinating antibodies. • Immunization with the rVpCsgA protected mice against V. parahaemolyticus challenge.
Collapse
Affiliation(s)
- Sweta Karan
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru Universitys, New Delhi, 110067, India
| | - Devapriya Choudhury
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru Universitys, New Delhi, 110067, India.
| | - Aparna Dixit
- Gene Regulation Laboratory, School of Biotechnology, Jawaharlal Nehru Universitys, New Delhi, 110067, India.
| |
Collapse
|
7
|
Karan S, Choudhury D, Dixit A. Enhanced expression of recombinant proteins in Escherichia coli by co-expression with Vibrio parahaemolyticus CsgG, a pore-forming protein of the curli biogenesis pathway. J Appl Microbiol 2020; 130:1611-1629. [PMID: 33025668 DOI: 10.1111/jam.14886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/11/2020] [Accepted: 09/30/2020] [Indexed: 11/28/2022]
Abstract
AIM To test whether engineered nanopores on the outer membrane (OM) of Escherichia coli can increase expression of heterologous proteins by making additional nutrients available to the host. METHODS AND RESULTS Outer membrane nanopores were generated by expressing recombinant Vibrio parahaemolyticus CsgG (rVpCsgG), which spontaneously assembles into a pore-forming channel on the OM, allowing spontaneous diffusion of small chemical entities from the exterior. Protein expression was probed using a reporter protein, sfGFP, expressed on a second compatible plasmid. OM pore formation was shown by acquired erythromycin sensitivity in cells transformed with rVpCsgG, influx of propidium iodide as well as by surface localization of recombinant CsgG by immunogold-labeled transmission electron microscopy. Expression of recombinant CsgG showed increased growth and also enhanced expression of sfGFP in minimal medium and is due to both enhanced transcription as well as translation. Similar enhancement of expression was also observed for a number of different proteins of different origin, sizes and nature. CONCLUSIONS Our findings clearly demonstrate that engineered nanopores on the OM of E. coli enhance expression of different heterologous proteins in minimal medium. SIGNIFICANCE AND IMPACT OF THE STUDY Vibrio parahaemolyticus CsgG β-nanopore mediated co-expression strategy to improve recombinant protein expression is fully compatible with other methods of protein expression enhancement, and therefore can be a useful tool in biotechnology particularly for whole-cell bio-transformations for production of secondary metabolite.
Collapse
Affiliation(s)
- S Karan
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - D Choudhury
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - A Dixit
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
8
|
Faheem M, Adeel M, Khaliq S, Lone KP, El-Din-H-Sayed A. Bisphenol-A induced antioxidants imbalance and cytokines alteration leading to immune suppression during larval development of Labeo rohita. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26800-26809. [PMID: 32382907 DOI: 10.1007/s11356-020-08959-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Recently, the oxidative stress and immunotoxicity biomarkers have been extensively used in embryotoxicity using fish embryos as promising models especially after exposure to chemical-like environmental estrogens. Bisphenol-A (BPA) is an estrogenic endocrine disruptor and is ubiquitous in the aquatic environment. Larvae of Labeo rohita were exposed to low concentrations of BPA (10, 100, 1000 μg/l) for 21 days. Innate immune system, antioxidants parameters, and developmental alterations were used as biomarkers. Exposure to BPA caused developmental abnormalities including un-inflated swim bladder, delayed yolk sac absorption, spinal curvature, and edema of pericardium. Lipid peroxidation increased and activity of catalase (p < 0.05), superoxide dismutase (p < 0.05), and glutathione peroxidase (p < 0.01) decreased after exposure to BPA. Level of reduced glutathione also decreased (p < 0.05) in BPA-exposed group. Lower expression of tumor necrosis factor-α (p < 0.05) and interferon-γ (p < 0.001) was observed in BPA-exposed groups while expression of interleukin-10 increased (p < 0.05) in larvae exposed to 10 μg/l BPA. Moreover, exposure of BPA caused a concentration-dependent increase in expression of heat shock protein 70 (p < 0.05). The present study showed that the exposure to BPA in early life stages of Labeo rohita caused oxidative stress and suppress NF-κB signaling pathway leading to immunosuppression. The results presented here demonstrate the cross talk between heat shock protein 70 and cytokines expression.
Collapse
Affiliation(s)
| | | | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Khalid P Lone
- Department of Zoology, GC University, Lahore, Pakistan
| | | |
Collapse
|
9
|
Wen C, Gan N, Zeng T, Lv M, Zhang N, Zhou H, Zhang A, Wang X. Regulation of Il-10 gene expression by Il-6 via Stat3 in grass carp head kidney leucocytes. Gene 2020; 741:144579. [PMID: 32171822 DOI: 10.1016/j.gene.2020.144579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/27/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
Abstract
Interleukin (IL)-10 is a critical anti-inflammatory and late cytokine being produced after the proinflammatory mediators while IL-6 is a promptly synthesized cytokine in response to inflammation in mammals. This chronological expression of interleukin (Il)-6 and Il-10 was also found in grass carp head kidney leucocytes (HKLs) treated by heat-killed Aeromonas hydrophila, supporting the possible interplay between grass carp (gc)Il-6 and gcIl-10 in HKLs. Our further findings were in agreement with this hypothesis that recombinant gcIl-6 (rgcIl-6) promptly and transiently increased gcil10 mRNA levels in grass carp HKLs. Moreover, rgcIl-6 enhanced its own mRNA level and this self-enhancement of gcil6 mRNA level could be partially blocked by rgcIl-10. These results collectively suggest that gcIl-10 production stimulated by gcIl-6 may provide a negative feedback to gcIl-6 production. Interestingly, rgcIl-6 significantly decreased gcil10 mRNA levels in grass carp HKLs after the treatment for 12 and 24 h in contrast to its enhancement of gcil10 levels after the treatment for 3 h. Involvement of Stat3 but not MEK, p38 MAPK or JNK pathway in the increase of gcil10 mRNA levels by rgcIl-6 was revealed by using the signaling pathway inhibitors. This was supported by the fact that rgcIl-6 stimulated Stat3 phosphorylation in grass carp HKLs. Furthermore, rgcIl-6 had no effect on the stability of gcil10 mRNA after the treatment for 3 to 36 h while it increased gcil10 promoter activity after the treatment for 24 h. Taken these data together, gcIl-6 can stimulate Il-10 production at early stage but subsequently inhibit il10 mRNA expression in grass carp HKLs, shedding light on the dynamic regulation of il10 mRNA expression by Il-6 in fish immune cells.
Collapse
Affiliation(s)
- Chao Wen
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Ning Gan
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Tingting Zeng
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Mengyuan Lv
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Na Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Anying Zhang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
10
|
Li XP, Jiang S, Sun B, Zhang J. Tongue sole (Cynoglossus semilaevis) interleukin 10 plays a negative role in the immune response against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2019; 95:93-104. [PMID: 31618681 DOI: 10.1016/j.fsi.2019.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Interleukin-10 (IL-10) is a pleiotropic cytokine and plays a crucial role in immunity. In the current study, we examined the expression patterns and biological functions of tongue sole Cynoglossus semilaevis IL-10 (CsIL-10). CsIL-10 is composed of 186 amino acid residues and shares 46.3%-71.7% identities with other teleost IL-10. Csil-10 expression occurred in multiple tissues and was regulated by bacterial infection. Recombinant CsIL-10 (rCsIL-10) in the form of a dimer bound to a wide range of bacterial species but did not affect bacterial growth. rCsIL-10 could interact with peripheral blood leukocytes (PBL) and significantly reduce the phagocytic activity, ROS production, and apoptosis of PBL. When injected in vivo, rCsIL-10 significantly suppressed the expression of proinflammatory cytokines and promoted bacterial dissemination in tongue sole tissues. Consistently, knockdown of Csil-10 significantly inhibited bacterial infection in tongue sole. Taken together, these results indicate that CsIL-10 plays a negative regulatory role in the immune response against bacterial infection.
Collapse
Affiliation(s)
- Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Shuai Jiang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bin Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Jian Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
11
|
Yamaguchi T, Takizawa F, Furihata M, Soto-Lampe V, Dijkstra JM, Fischer U. Teleost cytotoxic T cells. FISH & SHELLFISH IMMUNOLOGY 2019; 95:422-439. [PMID: 31669897 DOI: 10.1016/j.fsi.2019.10.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Cell-mediated cytotoxicity is one of the major mechanisms by which vertebrates control intracellular pathogens. Two cell types are the main players in this immune response, natural killer (NK) cells and cytotoxic T lymphocytes (CTL). While NK cells recognize altered target cells in a relatively unspecific manner CTLs use their T cell receptor to identify pathogen-specific peptides that are presented by major histocompatibility (MHC) class I molecules on the surface of infected cells. However, several other signals are needed to regulate cell-mediated cytotoxicity involving a complex network of cytokine- and ligand-receptor interactions. Since the first description of MHC class I molecules in teleosts during the early 90s of the last century a remarkable amount of information on teleost immune responses has been published. The corresponding studies describe teleost cells and molecules that are involved in CTL responses of higher vertebrates. These studies are backed by functional investigations on the killing activity of CTLs in a few teleost species. The present knowledge on teleost CTLs still leaves considerable room for further investigations on the mechanisms by which CTLs act. Nevertheless the information on teleost CTLs and their regulation might already be useful for the control of fish diseases by designing efficient vaccines against such diseases where CTL responses are known to be decisive for the elimination of the corresponding pathogen. This review summarizes the present knowledge on CTL regulation and functions in teleosts. In a special chapter, the role of CTLs in vaccination is discussed.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Fumio Takizawa
- Laboratory of Marine Biotechnology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, 2871 Akashina-nakagawate, Azumino-shi, Nagano-ken, 399-7102, Japan
| | - Veronica Soto-Lampe
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Uwe Fischer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
12
|
Karan S, Mohapatra A, Sahoo PK, Garg LC, Dixit A. Structural-functional characterization of recombinant Apolipoprotein A-I fromLabeo rohitademonstrates heat-resistant antimicrobial activity. Appl Microbiol Biotechnol 2019; 104:145-159. [DOI: 10.1007/s00253-019-10204-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/09/2019] [Accepted: 10/19/2019] [Indexed: 12/20/2022]
|
13
|
Rebl A, Goldammer T. Under control: The innate immunity of fish from the inhibitors' perspective. FISH & SHELLFISH IMMUNOLOGY 2018; 77:328-349. [PMID: 29631025 DOI: 10.1016/j.fsi.2018.04.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
The innate immune response involves a concerted network of induced gene products, preformed immune effectors, biochemical signalling cascades and specialised cells. However, the multifaceted activation of these defensive measures can derail or overshoot and, if left unchecked, overwhelm the host. A plenty of regulatory devices therefore mediate the fragile equilibrium between pathogen defence and pathophysiological manifestations. Over the past decade in particular, an almost complete set of teleostean sequences orthologous to mammalian immunoregulatory factors has been identified in various fish species, which prove the remarkable conservation of innate immune-control concepts among vertebrates. This review will present the current knowledge on more than 50 teleostean regulatory factors (plus additional fish-specific paralogs) that are of paramount importance for controlling the clotting cascade, the complement system, pattern-recognition pathways and cytokine-signalling networks. A special focus lies on those immunoregulatory features that have emerged as potential biomarker genes in transcriptome-wide research studies. Moreover, we report on the latest progress in elucidating control elements that act directly with immune-gene-encoding nucleic acids, such as transcription factors, hormone receptors and micro- and long noncoding RNAs. Investigations into the function of teleostean inhibitory factors are still mainly based on gene-expression profiling or overexpression studies. However, in support of structural and in-vitro analyses, evidence from in-vivo trials is also available and revealed many biochemical details on piscine immune regulation. The presence of multiple gene copies in fish adds a degree of complexity, as it is so far hardly understood if they might play distinct roles during inflammation. The present review addresses this and other open questions that should be tackled by fish immunologists in future.
Collapse
Affiliation(s)
- Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany.
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Dummerstorf, Germany
| |
Collapse
|
14
|
Guo SN, Zheng JL, Yuan SS, Zhu QL. Effects of heat and cadmium exposure on stress-related responses in the liver of female zebrafish: Heat increases cadmium toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 618:1363-1370. [PMID: 29042086 DOI: 10.1016/j.scitotenv.2017.09.264] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/15/2017] [Accepted: 09/24/2017] [Indexed: 06/07/2023]
Abstract
In this study, female zebrafish (Danio rerio) were exposed to 26°C or 34°C, 0 or 197μg/L cadmium (Cd), singly or in combination for 7days. Multiple stress-related indicators were evaluated in the liver. Mortality, lipid peroxidation (LPO) and ultrastructural damage increased significantly by Cd exposure alone, and were not affected by heat alone. Interestingly, the combined exposure increased LPO, ultrastructural damage, and mortality compared with Cd exposure alone. The results indicated that elevated temperature increased Cd toxicity, which could be explained by several reasons. Firstly, Cd-exposed fish failed to activate the antioxidant defense system under heat stress. Secondly, expression levels of heat shock protein 70 (HSP70) were not significantly up-regulated by heat in Cd-exposed fish but increased by 117 times in Cd-free fish. Besides, hypermethylation of heat shock factor (HSF) binding motif in HSP70 promoter was observed during the combined exposure, indicating that simultaneous exposure may have partially suppressed the cytoprotective up-regulation of HSP70. Thirdly, heat induced an immunosuppressive effect in Cd-exposed fish, as reflected by the reduced mRNA and activity levels of nitric oxide synthase (iNOS) and interleukin-1β (IL-1β) expression levels. Finally, heat down-regulated Zir-, Irt-like protein 8 (ZIP8) and copper transporter 1 (CTR1) and up-regulated metallothioneins (MTs) in Cd-exposed fish, possibly suggesting Cu and Zn depletion and Cd accumulation. Hence, our data provide evidences that warmer temperatures can potentiate Cd toxicity, involved in the regulation of gene transcription, enzymatic activity, and DNA methylation. We found that heat indicators showed varied sensitivity between normal and Cd-exposed fish, emphasizing that the field metal pollution should be carefully considered when evaluating effects of climate change.
Collapse
Affiliation(s)
- Sai-Nan Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Ling Zhu
- Postgraduate Work Department, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
15
|
Zhao SJ, Guo SN, Zhu QL, Yuan SS, Zheng JL. Heat-induced oxidative stress and inflammation involve in cadmium pollution history in the spleen of zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 72:1-8. [PMID: 29074130 DOI: 10.1016/j.fsi.2017.09.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Zebrafish were exposed to 0, 2.5 and 5 μg/L cadmium (Cd) for 10 weeks, and then each group was exposed to 26 °C(control) and 32 °C (high temperature) for 7 days. 22 indicators were compared between 26 °C and 32 °C in the spleen, including body weight, LPO and NO levels, activity levels of Cu/Zn-SOD, CAT and iNOS, MTs protein levels, and mRNA levels of Nrf2, Cu/Zn-SOD, CAT, HSF1, HSF2, HSP70, MTF-1, MTs, IL-6, IL-10, IL-1β, TNF-α, iNOS and NF-κB. Most indicators were not significantly affected by heat in fish from no Cd pollution. However, almost all of indicators were responsive to heat in fish pre-exposed to Cd. Several indicators were sensitive to heat in fish pre-exposed to 2.5 μg/L Cd such as iNOS activities, and mRNA levels of iNOS and IL-10. Most other indicators were sensitive to heat in fish pre-exposed to 5 μg/L. The mRNA levels of HSP70 and MTF-1 were up-regulated by heat in fish pre-exposed to 0, 2.5 and 5 μg/L Cd. However, the magnitude of increase was the greatest in fish pre-exposed to 5 μg/L Cd. These differences between control and high temperature would serve as biomarkers to distinguish healthy from Cd-polluted group. The findings imply that metal pollution history should be carefully considered when screening heat biomarkers in fish.
Collapse
Affiliation(s)
- Shu-Jiang Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Sai-Nan Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Ling Zhu
- Postgraduate Work Department, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
16
|
Zheng JL, Guo SN, Yuan SS, Xia H, Zhu QL, Lv ZM. Preheating mitigates cadmium toxicity in zebrafish livers: Evidence from promoter demethylation, gene transcription to biochemical levels. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 190:104-111. [PMID: 28704659 DOI: 10.1016/j.aquatox.2017.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
The working hypothesis for this study was that moderate heat stress would alleviate the deleterious effects of subsequent cadmium (Cd) exposure on fish. Thus, zebrafish (Danio rerio) were subjected to water maintained at 26°C and 34°C for 4days, and then exposed to 0 or 200μg/L Cd for 1 week at 26°C. Multiple indicators were measured from livers of zebrafish at different levels, including DNA, RNA, protein and enzymatic activity associated with oxidative stress, inflammation and metal transport. The ameliorative effect of preheatinging on Cd toxicity was demonstrated. In the Cd-exposed groups, preheating decreased mortality and lipid peroxidation, increased activity levels of catalase (CAT) and copper/zinc-superoxide dismutase (Cu/Zn-SOD), and up-regulated mRNA levels of heat shock protein 70 (HSP70) and heat shock factor 2 (HSF2). Preheating also mitigated Cd-induced increases in protein and mRNA levels of metallothioneins (MTs), and mRNA levels of several inflammation-related genes. Furthermore, preheating alone dramatically up-regulated mRNA levels of genes related to antioxidant and immune defenses, zinc and copper transporters, protein folding, and reduced methylation levels in the HSF binding motif of the HSP70 promoter. Overall, preheating-induced accumulation of transcripts via demethylation might support the rapid defense responses at post-transcriptional levels caused by subsequent Cd exposure, indicating an adaptive mechanism for organisms exposed to one mild stressor followed by another.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Sai-Nan Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hu Xia
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Key Laboratory of Health Aquaculture and Product Processing in Dongting Lake Area of Hunan Province, Zoology Key Laboratory of Hunan Higher Education, Hunan University of Arts and Science, Hunan Changde 415000, PR China
| | - Qing-Ling Zhu
- Postgraduate Work Department, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhen-Ming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|
17
|
Gao FX, Wang Y, Zhang QY, Mou CY, Li Z, Deng YS, Zhou L, Gui JF. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes. BMC Genomics 2017; 18:561. [PMID: 28738780 PMCID: PMC5525251 DOI: 10.1186/s12864-017-3945-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/13/2017] [Indexed: 01/25/2023] Open
Abstract
Background Gibel carp is an important aquaculture species in China, and a herpesvirus, called as Carassius auratus herpesvirus (CaHV), has hampered the aquaculture development. Diverse gynogenetic clones of gibel carp have been identified or created, and some of them have been used as aquaculture varieties, but their resistances to herpesvirus and the underlying mechanism remain unknown. Results To reveal their susceptibility differences, we firstly performed herpesvirus challenge experiments in three gynogenetic clones of gibel carp, including the leading variety clone A+, candidate variety clone F and wild clone H. Three clones showed distinct resistances to CaHV. Moreover, 8772, 8679 and 10,982 differentially expressed unigenes (DEUs) were identified from comparative transcriptomes between diseased individuals and control individuals of clone A+, F and H, respectively. Comprehensive analysis of the shared DEUs in all three clones displayed common defense pathways to the herpesvirus infection, activating IFN system and suppressing complements. KEGG pathway analysis of specifically changed DEUs in respective clones revealed distinct immune responses to the herpesvirus infection. The DEU numbers identified from clone H in KEGG immune-related pathways, such as “chemokine signaling pathway”, “Toll-like receptor signaling pathway” and others, were remarkably much more than those from clone A+ and F. Several IFN-related genes, including Mx1, viperin, PKR and others, showed higher increases in the resistant clone H than that in the others. IFNphi3, IFI44-like and Gig2 displayed the highest expression in clone F and IRF1 uniquely increased in susceptible clone A+. In contrast to strong immune defense in resistant clone H, susceptible clone A+ showed remarkable up-regulation of genes related to apoptosis or death, indicating that clone A+ failed to resist virus offensive and evidently induced apoptosis or death. Conclusions Our study is the first attempt to screen distinct resistances and immune responses of three gynogenetic gibel carp clones to herpesvirus infection by comprehensive transcriptomes. These differential DEUs, immune-related pathways and IFN system genes identified from susceptible and resistant clones will be beneficial to marker-assisted selection (MAS) breeding or molecular module-based resistance breeding in gibel carp. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3945-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan-Xiang Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuan-Sheng Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
18
|
Guo SN, Zheng JL, Yuan SS, Zhu QL, Wu CW. Immunosuppressive effects and associated compensatory responses in zebrafish after full life-cycle exposure to environmentally relevant concentrations of cadmium. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:64-71. [PMID: 28458151 DOI: 10.1016/j.aquatox.2017.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
In natural environments, fish survive in polluted water by cadmium (Cd) throughout their whole life cycle. However, little information is available on Cd toxicity considering a life cycle assessment. The present study investigated effects of environmental levels of cadmium (0, 2.5, and 5μg/L) on immune responses in liver and spleen of zebrafish for 15 weeks, from embryos to sexually maturity. Nitric oxide (NO) levels and iNOS activity declined in liver and spleen of zebrafish exposed to 5μg/L Cd, suggesting an immunosuppressive effect. The result was further supported by the decreased transcriptional levels of proinflammatory cytokines by Cd, such as interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-1β (IL-1β), and tumour necrosis factor-α (TNF-α) in liver. However, a sharp increase in the mRNA levels of these cytokines was observed in spleen of zebrafish exposed to Cd. The increased mRNA expression of these proinflammatory cytokines may be the secondary effect following immunosuppression and just reflect a compensatory mechanism for coping with the decreased immunity, which may explain an increase in mRNA levels and a decrease in iNOS activity in spleen of zebrafish exposed to Cd. In liver, the down-regulated mRNA levels of iNOS paralleled with the decreased iNOS activity, suggesting a synchronous response from a molecular level to a biochemical level. Positive correlations between mRNA expression levels of nuclear transcription factor κB (NF-κB) and proinflammatory cytokines were also observed, suggesting that NF-κB might be required for the protracted induction of inflammatory genes. The corresponding changes in the mRNA levels of the inhibitor of κBα (IκBαa and IκBαb) may form a feedback loop to restore transcriptional activity of NF-κB. Furthermore, splenic ROS levels were increased by 5μg/L Cd, possibly activating NF-κB pathway. Taken together, immunosuppressive effects and tissue-dependent compensatory responses were demonstrated in zebrafish after full life-cycle exposure to environmental levels of Cd, indicating a compromise between survival and immunity.
Collapse
Affiliation(s)
- Sai-Nan Guo
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Qing-Ling Zhu
- Postgraduate Work Department, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|