1
|
Guo S, Yi L, Luo M, Dong Z, Du Y. Parishin A ameliorates cognitive decline by promoting PS1 autophagy in Alzheimer's disease. Front Aging Neurosci 2025; 17:1516190. [PMID: 40182757 PMCID: PMC11965357 DOI: 10.3389/fnagi.2025.1516190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Alzheimer's disease (AD) is a common neurodegenerative disease in the elderly. Its pathological features include: A lot of misfolding and abnormal aggregation of amyloid protein (Aβ); Autophagy disorder, oxidative stress, neuroinflammation, abnormal phosphorylated tau protein and synaptic dysfunction. Modern pharmacological studies have found that Paisinhin A (PA) has beneficial effects on the prevention and treatment of central nervous system diseases. This study aims to explore the role and mechanism of PA in AD through autophagy pathway, and lay a scientific foundation for the development of clinical prevention and treatment strategies for AD. Methods N2AAPP cells were treated with different concentrations of PA. Cell viability was detected by CCK-8 method. Western blotting detected the expression levels of proteins related to amyloid production, autophagy pathway, and phosphorylated Tau expression levels. Autophagy flow was detected by transfecting Lc3 double fluorescent plasmid. After Aβ was injected into the hippocampus of WT mice and PA was injected intraperitoneally, the learning and memory ability of WT mice were tested by new object recognition, y maze and water maze. The oxidative stress level was detected by the kit. The levels of inflammatory factors were detected by RT-qpcr. Results The viability of N2AAPP cells was not affected at different concentrations of PA, but PS1 was significantly decreased at 40μM. PA can obviously improve the accumulation of autophagy in AD, and to some extent save the autophagy inhibition of CQ. Behavioral studies have shown that PA can also improve learning and memory impairments caused by Aβ injections. In addition, in vivo experiments, PA can also improve oxidative stress levels, inflammation levels and salvage dysfunctions of synapses. PA also reduces the levels of total and phosphorylated Tau in N2ATau. Discussion Our study provides the first evidence that PA improves learning and memory in Aβ-induced AD mice. This effect appears to be mediated by PA by promoting autophagy and reducing oxidative stress. It was also found that PA may have a role in regulating inflammation, improving abnormally phosphorylated tau, and salvaging damaged synaptic function, providing valuable insights into potential applications in the treatment and prevention of AD.
Collapse
Affiliation(s)
| | | | | | | | - Yehong Du
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Li MX, Wang B, Li Y, Nie XR, Mao J, Guo Q, Xu N, Fu R, Guo ZJ, Zhao XL, Bian ZH, Lu TL, Ji D. Exploration of the impact of different drying methods on the quality of Gastrodia elata: A study based on drying kinetics and multidimensional quality evaluation. Food Chem 2025; 464:141628. [PMID: 39437678 DOI: 10.1016/j.foodchem.2024.141628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
In this study, the drying kinetics and multidimensional quality of Gastrodia elata (GE) obtained through five different drying methods were analyzed. The Page model provided the best fit. Though widely used, hot-air drying (HA-D) showed mediocre performance. Due to strong heat penetration, microwave drying (MV-D) and infrared drying (IR-D) effectively reduced drying time and energy consumption. However, they experienced Maillard and caramelization reactions, resulting in notable cell structure shrinkage, severe browning, pronounced caramel taste, and poor retention of active ingredients. Conversely, freeze-drying (F-D) and vacuum drying (V-D), due to the involvement of low-temperature or vacuum environments, demonstrated optimal performance in preserving microstructure, antioxidant activity, active ingredients, and flavor. However, F-D was time-consuming (1320 min) and had an energy consumption of 2.69 times that of HA-D, limiting its large-scale application. V-D struck the best balance between energy consumption and product quality, making it a highly promising drying method for GE.
Collapse
Affiliation(s)
- Ming-Xuan Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Li
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xin-Ru Nie
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Mao
- College of the First Clinical Medical, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiang Guo
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nuo Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rao Fu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Jun Guo
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd., Shenzhen 518110, China
| | - Xiao-Li Zhao
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhen-Hua Bian
- Department of Pharmacy, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214071, China.
| | - Tu-Lin Lu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - De Ji
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
3
|
Zhao X, Zhou S, Sheng Z, Sun L, Zhang Q, Lu Y. Parishin Alleviates Pulmonary Fibrosis by Reducing CD38 Levels in Naturally Aging Mice. Rejuvenation Res 2025; 28:25-32. [PMID: 39446743 PMCID: PMC11844222 DOI: 10.1089/rej.2024.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Parishin, a natural compound, has demonstrated significant potential in mitigating age-related phenotypes and improving outcomes in age-associated diseases. Given that aging is a major risk factor for numerous chronic conditions, including pulmonary fibrosis, we investigated parishin's effects on cellular senescence and lung health. In our study, we treated mouse lung epithelial cells with parishin and observed a reduction in cellular senescence markers alongside an upregulation of sirtuin 1 (SIRT1). Building on these in vitro findings, we administered parishin to naturally aged mice. The treatment resulted in decreased pulmonary fibrosis and reduced DNA damage in lung tissue. Notably, we found that parishin treatment led to a reduction in Cluster of differentiation 38 (CD38) levels, concomitant with an increase in SIRT1 expression. These findings indicate that parishin may enhance lung function in aged mice, suggesting its potential as a therapeutic agent for treating age-related pulmonary disorders.
Collapse
Affiliation(s)
- Xinxiu Zhao
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shixian Zhou
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoying Sheng
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linlin Sun
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qin Zhang
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanqiang Lu
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Alugoju P, Palanisamy CP, Anthikapalli NVA, Jayaraman S, Prasanskulab A, Chuchawankul S, Dyavaiah M, Tencomnao T. Exploring the anti-aging potential of natural products and plant extracts in budding yeast Saccharomyces cerevisiae: A review. F1000Res 2024; 12:1265. [PMID: 39822944 PMCID: PMC11736113 DOI: 10.12688/f1000research.141669.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/19/2025] Open
Abstract
Historically, plant derived natural products and their crude extracts have been used to treat a wide range of ailments across the world. Biogerontology research aims to explore the molecular basis of aging and discover new anti-aging therapeutic compounds or formulations to combat the detrimental effects of aging and promote a healthy life span. The budding yeast Saccharomyces cerevisiae has been, and continues to be, an indispensable model organism in the field of biomedical research for discovering the molecular basis of aging S. cerevisiae has preserved nutritional signaling pathways (such as the target of rapamycin (TOR)-Sch9 and the Ras-AC-PKA (cAMP-dependent protein kinase) pathways, and shows two distinct aging paradigms chronological life span (CLS) and replicative life span (RLS). This review explores the anti-aging properties of natural products, predominantly derived from plants, and phytoextracts using S. cerevisiae as a model organism.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, Tamilnadu, 600077, India
| | - Anchalee Prasanskulab
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, 605 014, India
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
5
|
Alugoju P, Palanisamy CP, Anthikapalli NVA, Jayaraman S, Prasanskulab A, Chuchawankul S, Dyavaiah M, Tencomnao T. Exploring the anti-aging potential of natural products and plant extracts in budding yeast Saccharomyces cerevisiae: A review. F1000Res 2024; 12:1265. [PMID: 39822944 PMCID: PMC11736113 DOI: 10.12688/f1000research.141669.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 05/11/2025] Open
Abstract
Historically, plant derived natural products and their crude extracts have been used to treat a wide range of ailments across the world. Biogerontology research aims to explore the molecular basis of aging and discover new anti-aging therapeutic compounds or formulations to combat the detrimental effects of aging and promote a healthy life span. The budding yeast Saccharomyces cerevisiae has been, and continues to be, an indispensable model organism in the field of biomedical research for discovering the molecular basis of aging S. cerevisiae has preserved nutritional signaling pathways (such as the target of rapamycin (TOR)-Sch9 and the Ras-AC-PKA (cAMP-dependent protein kinase) pathways, and shows two distinct aging paradigms chronological life span (CLS) and replicative life span (RLS). This review explores the anti-aging properties of natural products, predominantly derived from plants, and phytoextracts using S. cerevisiae as a model organism.
Collapse
Affiliation(s)
- Phaniendra Alugoju
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, Tamilnadu, 600077, India
| | - Anchalee Prasanskulab
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, Pondicherry University (A Central University), Puducherry, 605 014, India
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
6
|
Bian Z, Hu S, Tian Y, Li C, Chen Y, Wang X. Glucopyranosyloxybenzyl succinates and their biological activities. Fitoterapia 2024; 179:106231. [PMID: 39326793 DOI: 10.1016/j.fitote.2024.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Over the past decades, great efforts have been made to explore the glucopyranosyloxybenzyl succinates from Orchidaceae. At the same time, some of those compounds with new structures have led to new findings of their biological functions. The structures, classifications, distributions and bioactivities of glucopyranosyloxybenzyl succinates have been summarized in this review.
Collapse
Affiliation(s)
- Zhiwei Bian
- School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Shian Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Yintai Tian
- School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Cheng Li
- Sinopharm Lanzhou Biopharmaceuticals Co.,Ltd., Lanzhou 730000, Gansu, PR China
| | - Ying Chen
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Xiaojuan Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| |
Collapse
|
7
|
Jiang M, Yan Y, Dong H, Wang X. Genome-wide identification of glycoside hydrolase family 1 members reveals GeBGL1 and GeBGL9 for degrading gastrodin in Gastrodia elata. PLANT CELL REPORTS 2024; 43:214. [PMID: 39133328 DOI: 10.1007/s00299-024-03299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
KEY MESSAGE We revealed the intrinsic transformation molecular mechanism of gastrodin by two β-d-glucosidases (GeBGL1 and GeBGL9) during the processing of Gastrodia elata. Gastrodia elata is a plant resource with medicinal and edible functions, and its active ingredient is gastrodin. However, the intrinsic transformation molecular mechanism of gastrodin in G. elata has not been verified. We speculated that β-d-glucosidase (BGL) may be the key enzymes hydrolyzing gastrodin. Here, we identified 11 GeBGL genes in the G. elata genome. These genes were unevenly distributed on seven chromosomes. These GeBGL proteins possessed motifs necessary for catalysis, namely, TF(I/M/L)N(T)E(Q)P and I(V/L)T(H/S)ENG(S). These GeBGLs were divided into five subgroups together with homologous genes from Arabidopsis thaliana, rice, and maize. Quantitative real-time PCR analysis showed GeBGL genes expression was tissue-specific. Gene cloning results showed two mutation sites in the GeBGL1 gene compared with the reference genome. And, the GeBGL4 gene has two indel fragments, which resulted in premature termination of translation and seemed to turn into a pseudogene. Furthermore, protein expression and enzyme activity results proved that GeBGL1 and GeBGL9 have the activity of hydrolyzing gastrodin into 4-hydroxybenzyl alcohol. This study revealed the function of β-d-glucosidase in degrading active compounds during the G. elata processing for medicinal purposes. These results offer a theoretical foundation for elevating the standard and enhancing the quality of G. elata production.
Collapse
Affiliation(s)
- Mei Jiang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yaxing Yan
- College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, China
| | - Hongjing Dong
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiao Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
8
|
Ma R, Cheng H, Li X, Zhang G, Zheng J. Evaluating How Different Drying Techniques Change the Structure and Physicochemical and Flavor Properties of Gastrodia elata. Foods 2024; 13:1210. [PMID: 38672883 PMCID: PMC11049588 DOI: 10.3390/foods13081210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
We evaluated the drying characteristics and structure, as well as the physicochemical and flavor properties, of G. elata treated by hot-air drying (HAD), vacuum drying (VD), freeze drying (FD), microwave drying (MD), and microwave vacuum drying (MVD). We found that MD and MVD showed the shortest drying times, while FD and MVD were able to better retain the active ingredients and color of the samples. However, the different drying methods did not change the internal structure of G. elata, and its main components did not fundamentally change. In addition, E-nose and HS-SPME-GC-MS effectively differentiated the volatile components, and 36 compounds were detected by HS-SPME-GC-MS. Of these samples, alcohols and aldehydes were the main substances identified. In particular, MVD samples possessed the most species of organic volatiles, but the FD method effectively eliminated pungent odors from the G. elata. Overall, MVD shows the most obvious advantages, improving drying rate while maintaining the original shape, color, and active components in G. elata. Ultimately, MVD is the preferred method to obtain high-quality dried G. elata, and our drying-method characterizations can be used to investigate similar structural and chemical changes to similar herbs in the future.
Collapse
Affiliation(s)
| | | | | | | | - Jianmei Zheng
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, China; (R.M.); (H.C.); (X.L.); (G.Z.)
| |
Collapse
|
9
|
Awuni E, Abdallah Musah R. Proposing lead compounds for the development of SARS-CoV-2 receptor-binding inhibitors. J Biomol Struct Dyn 2024; 42:2282-2297. [PMID: 37116068 DOI: 10.1080/07391102.2023.2204505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/11/2023] [Indexed: 04/30/2023]
Abstract
The COVID-19 pandemic has had deleterious effects on the world and demands urgent measures to find therapeutic agents to combat the current and related future outbreaks. The entry of SARS-CoV-2 into the host's cell is facilitated by the interaction between the viral spike receptor-binding domain (sRBD) and the human angiotensin-converting enzyme 2 (hACE2). Although the interface of sRBD involved in the sRBD-hACE2 interaction has been projected as a primary vaccine and drug target, currently no small-molecule drugs have been approved for covid-19 treatment targeting sRBD. Herein structure-based virtual screening and molecular dynamics (MD) simulation strategies were applied to identify novel potential small-molecule binders of the SARS-CoV-2 sRBD from an sRBD-targeted compound library as leads for the development of anti-COVID-19 drugs. The library was initially screened against sRBD by using the GOLD docking program whereby 19 compounds were shortlisted based on docking scores after using a control compound to set the selection cutoff. The stability of each compound in MD simulations was used as a further standard to select four hits namely T4S1820, T4589, E634-1449, and K784-7078. Analyses of simulations data showed that the four compounds remained stably bound to sRBD for ≥ 80 ns with reasonable affinities and interacted with pharmacologically important amino acid residues. The compounds exhibited fair solubility, lipophilicity, and toxicity-propensity characteristics that could be improved through lead optimization regimes. The overall results suggest that the scaffolds of T4S1820, E634-1449, and K784-7078 could serve as seeds for developing potent small-molecule inhibitors of SARS-CoV-2 receptor binding and cell entry.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elvis Awuni
- Department of Biochemistry, School of Biological Sciences, CANS, University of Cape Coast, Cape Coast, Ghana
| | - Radiatu Abdallah Musah
- Department of Biochemistry, School of Biological Sciences, CANS, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
10
|
Zhou S, Zhao X, Wu L, Yan R, Sun L, Zhang Q, Gong C, Liu Y, Xiang L, Li S, Wang P, Yang Y, Ren W, Jiang J, Yang Y. Parishin treatment alleviates cardiac aging in naturally aged mice. Heliyon 2023; 9:e22970. [PMID: 38144278 PMCID: PMC10746429 DOI: 10.1016/j.heliyon.2023.e22970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Background Cardiac aging progressively decreases physiological function and drives chronic/degenerative aging-related heart diseases. Therefore, it is crucial to postpone the aging process of heart and create products that combat aging. Aims & methods The objective of this study is to examine the effects of parishin, a phenolic glucoside isolated from traditional Chinese medicine Gastrodia elata, on anti-aging and its underlying mechanism. To assess the senescent biomarkers, cardiac function, cardiac weight/body weight ratio, cardiac transcriptomic changes, and cardiac histopathological features, heart tissue samples were obtained from young mice (12 weeks), aged mice (19 months) treated with parishin, and aged mice that were not treated. Results Parishin treatment improved cardiac function, ameliorated aging-induced cardiac injury, hypertrophy, and fibrosis, decreased cardiac senescence biomarkers p16Ink4a, p21Cip1, and IL-6, and increased the "longevity factor" SIRT1 expression in heart tissue. Furthermore, the transcriptomic analysis demonstrated that parishin treatment alleviated the cardiac aging-related Gja1 downregulation and Cyp2e1, Ccna2, Cdca3, and Fgf12 upregulation in the heart tissues. The correlation analysis suggested a strong connection between the anti-aging effect of parishin and its regulation of gut microbiota and metabolism in the aged intestine. Conclusion The present study demonstrates the protective role and underlying mechanism of parishin against cardiac aging in naturally aged mice.
Collapse
Affiliation(s)
- Shixian Zhou
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Xinxiu Zhao
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Li Wu
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Ren Yan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Linlin Sun
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Caixia Gong
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Yang Liu
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310012, Zhejiang province, China
| | - Shumin Li
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Peixia Wang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Yichen Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Wen Ren
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
| | - JingJin Jiang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang Province, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang province, China
| |
Collapse
|
11
|
Gong CX, Ma C, Irge DD, Li SM, Chen SM, Zhou SX, Zhao XX, Li HY, Li JY, Yang YM, Xiang L, Zhang Q. Gastrodia elata and parishin ameliorate aging induced 'leaky gut' in mice: Correlation with gut microbiota. Biomed J 2023; 46:100547. [PMID: 35811058 PMCID: PMC10345228 DOI: 10.1016/j.bj.2022.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/31/2021] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The aging-induced decrease in intestinal barrier function contributes to many age-related diseases. Studies on preventive measures for "leaky gut" may help improve the quality of life of geriatric patients. The potent anti-aging effect of Gastrodia elata and parishin, which is one of its active ingredients, has been reported previously. However, their effects on the gut remain elusive, and the effect of parishin on mammals has not been studied. METHODS We used quantitative RT-PCR, western blotting, immunohistochemical analysis, and 16S rRNA sequencing to investigate the effect of G. elata and parishin on the intestinal barrier function of D-Gal-induced aging mice. RESULTS G. elata and parishin prevented the decrease in tight junction protein (TJP) expression and morphological changes, modulated the composition of fecal microbiota to a healthier state, and reversed the translocation of microbial toxins and systemic inflammation. The correlation analyses showed that TJP expression and systemic inflammation were significantly positively or negatively correlated with the composition of fecal microbiota after G. elata and parishin administration. Additionally, TJP expression was also correlated with systemic inflammation. Moreover, G. elata and parishin administration reversed the decreased or increased expression of aging-related biomarkers, such as FOXO3a, SIRT1, CASPASE3 and P21, in the gut. CONCLUSIONS These results suggested that G. elata and parishin could prevent gut aging and ameliorate the "leaky gut" of aged mice and that the underlying mechanism is related to the mutual correlations among barrier function, fecal microbiota composition, and inflammation.
Collapse
Affiliation(s)
- Cai-Xia Gong
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cheng Ma
- Protein Facility, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dejene Disasa Irge
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shu-Min Li
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Si-Min Chen
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shi-Xian Zhou
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Xiu Zhao
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Han-Yu Li
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-You Li
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yun-Mei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Zhao X, Zhou S, Liu Y, Gong C, Xiang L, Li S, Wang P, Wang Y, Sun L, Zhang Q, Yang Y. Parishin alleviates vascular ageing in mice by upregulation of Klotho. J Cell Mol Med 2023; 27:1398-1409. [PMID: 37032511 PMCID: PMC10183705 DOI: 10.1111/jcmm.17740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
Senescence of vascular endothelial cells is the major risk of vascular dysfunction and disease among elderly people. Parishin, which is a phenolic glucoside derived from Gastrodia elata, significantly prolonged yeast lifespan. However, the action of parishin in vascular ageing remains poorly understood. Here, we treated human coronary artery endothelial cells (HCAEC) and naturally aged mice by parishin. Parishin alleviated HCAEC senescence and general age-related features in vascular tissue in naturally aged mice. Network pharmacology approach was applied to determine the compound-target networks of parishin. Our analysis indicated that parishin had a strong binding affinity for Klotho. Expression of Klotho, a protein of age-related declines, was upregulated by parishin in serum and vascular tissue in naturally aged mice. Furthermore, FoxO1, on Klotho/FoxO1 signalling pathway, was increased in the parishin-intervened group, accompanied by the downregulated phosphorylated FoxO1. Taken together, parishin can increase Klotho expression to alleviate vascular endothelial cell senescence and vascular ageing.
Collapse
Affiliation(s)
- Xinxiu Zhao
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Shixian Zhou
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Yang Liu
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Caixia Gong
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Lan Xiang
- College of Pharmaceutical SciencesZhejiang University866 Yu Hang Tang RoadHangzhouChina
| | - Shumin Li
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Peixia Wang
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Yuejun Wang
- Zhejiang Aged Care HospitalHangzhou Normal UniversityHangzhouZhejiangChina
| | - Linlin Sun
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
- Key Laboratory of Diagnosis and Treatment of Aging and Physic‐chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
13
|
Zhou J, Feng M, Zhang W, Kuang R, Zou Q, Su J, Yuan G. Oral administration of hepcidin and chitosan benefits growth, immunity, and gut microbiota in grass carp ( Ctenopharyngodon idella). Front Immunol 2022; 13:1075128. [PMID: 36591242 PMCID: PMC9798086 DOI: 10.3389/fimmu.2022.1075128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Intensive high-density culture patterns are causing an increasing number of bacterial diseases in fish. Hepcidin links iron metabolism with innate immunity in the process of resisting bacterial infection. In this study, the antibacterial effect of the combination of hepcidin (Cihep) and chitosan (CS) against Flavobacterium columnare was investigated. The dosing regimen was also optimized by adopting a feeding schedule of every three days and every seven days. After 56 days of feeding experiment, grass carp growth, immunity, and gut microbiota were tested. In vitro experiments, Cihep and CS can regulate iron metabolism and antibacterial activity, and that the combination of Cihep and CS had the best protective effect. In vivo experiments, Cihep and CS can improve the growth index of grass carp. After challenge with Flavobacterium columnare, the highest survival rate was observed in the Cihep+CS-3d group. By serum biochemical indicators assay and Prussian blue staining, Cihep and CS can increase iron accumulation and decrease serum iron levels. The contents of lysozyme and superoxide dismutase in Cihep+CS-3d group increased significantly. Meanwhile, Cihep and CS can significantly reduce the pathological damage of gill tissue. The 16S rRNA sequencing results showed that Cihep and CS can significantly increase the abundance and diversity of grass carp gut microbiota. These results indicated that the protective effect of consecutive 3-day feeding followed by a 3-day interval was better than that of consecutive 7-day feeding followed by a 7-day interval, and that the protective effect of Cihep in combination with chitosan was better than that of Cihep alone. Our findings optimize the feeding pattern for better oral administration of Cihep in aquaculture.
Collapse
Affiliation(s)
- Jiancheng Zhou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China,Wuhan DaBeiNong (DBN) Aquaculture Technology Co. LTD, Wuhan, Hubei, China
| | - Mengzhen Feng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weixiang Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Rui Kuang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi Zou
- Wuhan DaBeiNong (DBN) Aquaculture Technology Co. LTD, Wuhan, Hubei, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China,*Correspondence: Gailing Yuan,
| |
Collapse
|
14
|
Xie S, Min K, Li H, Wang Y, Liu M, Ma M, Zhou D, Tu H, Chen B. pH as a Key Factor for the Quality Assurance of the Preparation of Gastrodiae Rhizoma Formula Granules. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228091. [PMID: 36432193 PMCID: PMC9699468 DOI: 10.3390/molecules27228091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Gastrodiae rhizoma (GR) formula granules and preparations have been used as a popular traditional Chinese medicine for clinical treatment since they have good pharmacological activity to treat nervous system diseases. Gastrodin and parishins have been the main active components in aqueous extracts for GR formula granules, but their pharmacological activities and metabolism are different. For quality control of the extracts, the extraction conditions should be investigated to accurately control the contents of two kinds of components. In this paper, the transfer rate of six index components (including gastrodin, p-hydroxybenzyl alcohol, parishin A, parishin B, parishin C, and parishin E) obtained by HPLC were used as indicators to investigate the effect of pH on the GR extraction process. The results demonstrated that pH is a key factor for preventing transforming parishins into gastrodin and maintaining high content of parishins in the extracts. It can be concluded that the weak acid environment could improve the transfer rate of parishins, thus ensuring the gastrodin and parishins consistency between GR raw materials and its aqueous extracts. Therefore, pH is an essential condition for accurate quality control of the extracts.
Collapse
Affiliation(s)
- Shuting Xie
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ke Min
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hai Li
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ying Wang
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Mincong Liu
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ming Ma
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Desheng Zhou
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
- Correspondence: (D.Z.); (H.T.); (B.C.); Tel./Fax: +86-731-88872531 (B.C.)
| | - Haijun Tu
- College of Biology, Hunan University, Changsha 410082, China
- Correspondence: (D.Z.); (H.T.); (B.C.); Tel./Fax: +86-731-88872531 (B.C.)
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Correspondence: (D.Z.); (H.T.); (B.C.); Tel./Fax: +86-731-88872531 (B.C.)
| |
Collapse
|
15
|
Zhao X, Zhou S, Yan R, Gong C, Gui Q, Zhang Q, Xiang L, Chen L, Wang P, Li S, Yang Y. Parishin From Gastrodia Elata Ameliorates Aging Phenotype in Mice in a Gut Microbiota-Related Manner. Front Microbiol 2022; 13:877099. [PMID: 35547139 PMCID: PMC9083111 DOI: 10.3389/fmicb.2022.877099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
The physiological and pathological processes that accompany aging can seriously affect the quality of life of the elderly population. Therefore, delaying aging and developing antiaging products have become popular areas of inquiry. Gut microbiota plays an important role in age-related phenotypes. The present study aimed to investigate the antiaging effects and underlying mechanism of parishin, a phenolic glucoside isolated from traditional Chinese medicine Gastrodia elata. Samples from adult (12 weeks), low-dose (10 mg/kg/d) or high-dose (20 mg/kg/d) parishin-treated and untreated aged (19 months) mice were collected to determine blood indicators, gut microbiota and metabolome, and cardiopulmonary histopathological features. The results showed that parishin treatment ameliorates aging-induced cardiopulmonary fibrosis and increase in serum p16Ink4a, GDF15, and IL-6 levels. Furthermore, parishin treatment alleviated dysbiosis in gut microbiota, including altered microbial diversity and the aberrant abundance of opportunistic pathogenic bacteria such as Turicibacter and Erysipelatoclostridium. Gene function prediction and gut metabolome analysis results indicated that the parishin treatment-altered gut microbiota played important roles in sugar, lipid, amino acid and nucleic acid metabolism, and improved gut metabolic disorders in aged mice. In conclusion, the present study provides an experimental basis of potential applications of parishin against aging.
Collapse
Affiliation(s)
- Xinxiu Zhao
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shixian Zhou
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ren Yan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Caixia Gong
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qifeng Gui
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lufang Chen
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peixia Wang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shumin Li
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Ehretiquinone from Onosma bracteatum Wall Exhibits Antiaging Effect on Yeasts and Mammals through Antioxidative Stress and Autophagy Induction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5469849. [PMID: 33510837 PMCID: PMC7822689 DOI: 10.1155/2021/5469849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/19/2020] [Accepted: 12/29/2020] [Indexed: 01/07/2023]
Abstract
The antiaging benzoquinone-type molecule ehretiquinone was isolated in a previous study as a leading compound from the herbal medicine Onosma bracteatum wall. This paper reports the antiaging effect and mechanism of ehretiquinone by using yeasts, mammal cells, and mice. Ehretiquinone extends not only the replicative lifespan but also the chronological lifespan of yeast and the yeast-like chronological lifespan of mammal cells. Moreover, ehretiquinone increases glutathione peroxidase, catalase, and superoxide dismutase activity and reduces reactive oxygen species and malondialdehyde (MDA) levels, contributing to the lifespan extension of the yeasts. Furthermore, ehretiquinone does not extend the replicative lifespan of Δsod1, Δsod2, Δuth1, Δskn7, Δgpx, Δcat, Δatg2, and Δatg32 mutants of yeast. Crucially, ehretiquinone induces autophagy in yeasts and mice, thereby providing significant evidence on the antiaging effects of the molecule in the mammalian level. Concomitantly, the silent information regulator 2 gene, which is known for its contributions in prolonging replicative lifespan, was confirmed to be involved in the chronological lifespan of yeasts and participates in the antiaging activity of ehretiquinone. These findings suggest that ehretiquinone shows an antiaging effect through antioxidative stress, autophagy, and histone deacetylase Sir2 regulation. Therefore, ehretiquinone is a promising molecule that could be developed as an antiaging drug or healthcare product.
Collapse
|
17
|
Wang T, Chen H, Xia S, Chen X, Sun H, Xu Z. Ameliorative Effect of Parishin C Against Cerebral Ischemia-Induced Brain Tissue Injury by Reducing Oxidative Stress and Inflammatory Responses in Rat Model. Neuropsychiatr Dis Treat 2021; 17:1811-1823. [PMID: 34113111 PMCID: PMC8187103 DOI: 10.2147/ndt.s309065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/11/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Gastrodia elata Blume (Orchidaceae) is a widely used traditional Chinese herbal medicine in the clinical practice of China, to treat nervous headache, convulsions, dizziness, neurasthenia, and so on. Parishin C (Par C), one of the major bioactive components of Gastrodia elata Blume, is known to exert many different biological activities, including antipsychotic and neuroprotective effects. However, there is little research about its neuroprotective effect in an ischemic stroke model. The objective of the present study is thus to investigate the neuroprotective effects of Par C against cerebral ischemia damage. METHODS Rats were pretreated with Par C (25, 50, or 100 mg/kg/day, i.p.) for 21 days, then subjected to 2 h of middle cerebral artery occlusion (MCAO) and 22 h of reperfusion. Neurological deficient scores, brain water content, histopathology, TCC staining were performed to assess the neuroprotective effects of Par C. Meanwhile, the oxidative stress, inflammation and apoptosis-related markers of brain tissue were evaluated by corresponding assay kits. Besides, the antioxidant and pro-inflammatory expression was measured by real-time quantification PCR (RT-qPCR). RESULTS Our findings indicated that the pre-treatment with Par C improved nerve function, suppressed oxidative stress, and pro-inflammatory factors release in rats with cerebral ischemia damage. Besides, Par C significantly increased antioxidant expression and declined pro-inflammatory cytokines expression. CONCLUSION Par C is shown to exert neuroprotective effects partly via inhibiting oxidative stress and inflammation in a rat model of MCAO.
Collapse
Affiliation(s)
- Tao Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Haibo Chen
- Department of Blood Transfusion, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Shuyun Xia
- Department of Respiratory Medicine, Pingdu People's Hospital, Pingdu, Shandong, 266700, People's Republic of China
| | - Xiaofang Chen
- Department of Anesthesiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Hu Sun
- Department of Anesthesiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| | - Zhixin Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570311, People's Republic of China
| |
Collapse
|
18
|
Sudharshan SJ, Dyavaiah M. Astaxanthin protects oxidative stress mediated DNA damage and enhances longevity in Saccharomyces cerevisiae. Biogerontology 2020; 22:81-100. [PMID: 33108581 DOI: 10.1007/s10522-020-09904-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
Reactive oxygen species (ROS) have long been found to play an important role in oxidative mediated DNA damage. Fortunately, cells possess an antioxidant system that can neutralize ROS. However, oxidative stress occurs when antioxidants are overwhelmed by ROS or impaired antioxidant pathways. This study was carried out to find the protective effect of astaxanthin on the yeast DNA repair-deficient mutant cells under hydrogen peroxide stress. The results showed that astaxanthin enhances the percent cell growth of rad1∆, rad51∆, apn1∆, apn2∆ and ogg1∆ cells. Further, the spot test and colony-forming unit count results confirmed that astaxanthin protects DNA repair mutant cells from oxidative stress. The DNA binding property of astaxanthin studied by in silico and in vitro methods indicated that astaxanthin binds to the DNA in the major and minor groove, and that might protect DNA against oxidative stress induced by Fenton's reagent. The intracellular ROS, 8-OHdG level and the DNA fragmentation as measured by comet tail was reduced by astaxanthin under oxidative stress. Similarly, reduced nuclear fragmentation and chromatin condensation results suggest that astaxanthin might reduce apoptosis. Finally, we show that astaxanthin decreases the accumulation of mutation rate and enhances the longevity of DNA repair-deficient mutants' cells during a chronological lifespan.
Collapse
Affiliation(s)
- S J Sudharshan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India.
| |
Collapse
|
19
|
Gentiopicroside, a Secoiridoid Glycoside from Gentiana rigescens Franch, Extends the Lifespan of Yeast via Inducing Mitophagy and Antioxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9125752. [PMID: 32832008 PMCID: PMC7421792 DOI: 10.1155/2020/9125752] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
Abstract
Gentiopicroside (GPS), an antiaging secoiridoid glycoside, was isolated from Gentiana rigescens Franch, a traditional Chinese medicine. It prolonged the replicative and chronological lifespans of yeast. Autophagy, especially mitophagy, and antioxidative stress were examined to clarify the mechanism of action of this compound. The free green fluorescent protein (GFP) signal from the cleavage of GFP-Atg8 and the colocation signal of MitoTracker Red CMXRos and GFP were increased upon the treatment of GPS. The free GFP in the cytoplasm and free GFP and ubiquitin of mitochondria were significantly increased at the protein levels in the GPS-treated group. GPS increased the expression of an essential autophagy gene, ATG32 gene, but failed to extend the replicative and chronological lifespans of ATG32 yeast mutants. GPS increased the survival rate of yeast under oxidative stress condition; enhanced the activities of catalase, superoxide dismutase, and glutathione peroxidase; and decreased the levels of reactive oxygen species and malondialdehyde. The replicative lifespans of Δsod1, Δsod2, Δuth1, and Δskn7 were not affected by GPS. These results indicated that autophagy, especially mitophagy, and antioxidative stress are involved in the antiaging effect of GPS.
Collapse
|
20
|
Amarogentin from Gentiana rigescens Franch Exhibits Antiaging and Neuroprotective Effects through Antioxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3184019. [PMID: 32831994 PMCID: PMC7421772 DOI: 10.1155/2020/3184019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/26/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022]
Abstract
In the present study, the replicative lifespan assay of yeast was used to guide the isolation of antiaging substance from Gentiana rigescens Franch, a traditional Chinese medicine. A compound with antiaging effect was isolated, and the chemical structure of this molecule as amarogentin was identified by spectral analysis and compared with the reported data. It significantly extended the replicative lifespan of K6001 yeast at doses of 1, 3, and 10 μM. Furthermore, amarogentin improved the survival rate of yeast under oxidative stress by increasing the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx), and these enzymes' gene expression. In addition, this compound did not extend the replicative lifespan of sod1, sod2, uth1, and skn7 mutants with K6001 background. These results suggested that amarogentin exhibited antiaging effect on yeast via increase of SOD2, CAT, GPx gene expression, enzyme activity, and antioxidative stress. Moreover, we evaluated antioxidant activity of this natural products using PC12 cell system, a useful model for studying the nervous system at the cellular level. Amarogentin significantly improved the survival rate of PC12 cells under H2O2-induced oxidative stress and increased the activities of SOD and SOD2, and gene expression of SOD2, CAT, GPx, Nrf2, and Bcl-x1. Meanwhile, the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) of PC12 cells were significantly reduced after treatment of the amarogentin. These results indicated that antioxidative stress play an important role for antiaging and neuroprotection of amarogentin. Interestingly, amarogentin exhibited neuritogenic activity in PC12 cells. Therefore, the natural products, amarogentin from G. rigescens with antioxidant activity could be a good candidate molecule to develop drug for treating neurodegenerative diseases.
Collapse
|
21
|
Sharma N, Kumar P, Giri R. Polysaccharides like pentagalloylglucose, parishin a and stevioside inhibits the viral entry by binding the Zika virus envelope protein. J Biomol Struct Dyn 2020; 39:6008-6020. [PMID: 32705969 DOI: 10.1080/07391102.2020.1797538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ZIKV belongs to a flavivirus family in which class II fusion proteins involve a low pH-dependent membrane fusion leading to infection of host cells. Envelope (E) protein is primarily responsible for the viral host membrane fusion and is the major target for inhibiting viral entry. Our findings reveal that compounds like PGG, Parishin A, and Stevioside have shown a high affinity for E protein and found to be active against various other viral infections. The binding of these molecules to E protein was found to decrease the RMSD and RMSF values of the ligand protein complex and restricted the Radius of Gyration in molecular dynamics simulation analysis. Further, the binding free energy calculations suggested the stability of complexes throughout simulations trajectory that could reduce the flexibility of the linker so as to block the folding back event of membrane fusion. A recent study has shown that PGG inhibits the early stages of viral entry in HCV and ZIKV. Therefore, we propose that PGG inhibits the entry of virion via binding the E protein and restricting the conformational rearrangement during membrane fusion.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nitin Sharma
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, India
| | - Prateek Kumar
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, India
| | - Rajanish Giri
- Indian Institute of Technology Mandi, VPO Kamand, Himachal Pradesh, India
| |
Collapse
|
22
|
Antiaging, Stress Resistance, and Neuroprotective Efficacies of Cleistocalyx nervosum var. paniala Fruit Extracts Using Caenorhabditis elegans Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7024785. [PMID: 31871554 PMCID: PMC6906846 DOI: 10.1155/2019/7024785] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Abstract
Plant parts and their bioactive compounds are widely used by mankind for their health benefits. Cleistocalyx nervosum var. paniala is one berry fruit, native to Thailand, known to exhibit various health benefits in vitro. The present study was focused on analyzing the antiaging, stress resistance, and neuroprotective effects of C. nervosum in model system Caenorhabditis elegans using physiological assays, fluorescent imaging, and qPCR analysis. The results suggest that the fruit extract was able to significantly extend the median and maximum lifespan of the nematode. It could also extend the healthspan by reducing the accumulation of the “age pigment” lipofuscin, inside the nematode along with regulating the expression of col-19, egl-8, egl-30, dgk-1, and goa-1 genes. Further, the extracts upregulated the expression of daf-16 while downregulating the expression of daf-2 and age-1 in wild-type nematodes. Interestingly, it could extend the lifespan in DAF-16 mutants suggesting that the extension of lifespan and healthspan was dependent and independent of DAF-16-mediated pathway. The fruit extract was also observed to reduce the level of Reactive Oxygen Species (ROS) inside the nematode during oxidative stress. The qPCR analysis suggests the involvement of skn-1 and sir-2.1 in initiating stress resistance by activating the antioxidant mechanism. Additionally, the fruit could also elicit neuroprotection as it could extend the median and maximum lifespan of transgenic strain integrated with Aβ. SKN-1 could play a pivotal role in establishing the antiaging, stress resistance, and neuroprotective effect of C. nervosum. Overall, C. nervosum can be used as a nutraceutical in the food industry which could offer potential health benefits.
Collapse
|
23
|
Yu B, Li Z, Wu J, Ying J, Tang Y, Wu B, Tang C, Xu J. Quality Control of Gastrodia elata by High-Performance Liquid Chromatography with Fluorescence Detection (HPLC–FLD) and Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA). ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1674867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bocheng Yu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Zhen Li
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Jinyi Wu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Jiamin Ying
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Yuqing Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Bingchu Wu
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Chunlan Tang
- Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, Medical School of Ningbo University, Ningbo, China
| | - Jinyan Xu
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
24
|
Transformation Mechanisms of Chemical Ingredients in Steaming Process of Gastrodia elata Blume. Molecules 2019; 24:molecules24173159. [PMID: 31480235 PMCID: PMC6749462 DOI: 10.3390/molecules24173159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 12/28/2022] Open
Abstract
To explore the transformation mechanisms of free gastrodin and combined gastrodin before and after steaming of Gastrodia elata (G. elata), a fresh G. elata sample was processed by the traditional steaming method prescribed by Chinese Pharmacopoeia (2015 version), and HPLC-ESI-TOF/MS method was used to identify the chemical composition in steamed and fresh G. elata. Finally, 25 components were identified in G. elata based on the characteristic fragments of the compounds and the changes of the 25 components of fresh and steamed G. elata were compared by the relative content. Hydrolysis experiments and enzymatic hydrolysis experiments of 10 monomer compounds simulating the G. elata steaming process were carried out for the first time. As a result, hydrolysis experiments proved that free gastrodin or p-hydroxybenzyl alcohol could be obtained by breaking ester bond or ether bond during the steaming process of G. elata. Enzymatic experiments showed that steaming played an important role in the protection of gastrodin, confirming the hypothesis that steaming can promote the conversion of chemical constituents of G. elata—inhibiting enzymatic degradation. This experiment clarified the scientific mechanism of the traditional steaming method of G. elata and provided reference for how to apply G. elata decoction to some extent.
Collapse
|
25
|
Kessi-Pérez EI, Salinas F, González A, Su Y, Guillamón JM, Hall MN, Larrondo LF, Martínez C. KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae. Front Microbiol 2019; 10:1686. [PMID: 31417508 PMCID: PMC6685402 DOI: 10.3389/fmicb.2019.01686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
The eukaryotic domain-conserved TORC1 signalling pathway connects growth with nutrient sufficiency, promoting anabolic processes such as ribosomal biogenesis and protein synthesis. In Saccharomyces cerevisiae, TORC1 is activated mainly by the nitrogen sources. Recently, this pathway has gotten renewed attention but now in the context of the alcoholic fermentation, due to its key role in nitrogen metabolism regulation. Although the distal and proximal effectors downstream TORC1 are well characterised in yeast, the mechanism by which TORC1 is activated by nitrogen sources is not fully understood. In this work, we took advantage of a previously developed microculture-based methodology, which indirectly evaluates TORC1 activation in a nitrogen upshift experiment, to identify genetic variants affecting the activation of this pathway. We used this method to phenotype a recombinant population derived from two strains (SA and WE) with different geographic origins, which show opposite phenotypes for TORC1 activation by glutamine. Using this phenotypic information, we performed a QTL mapping that allowed us to identify several QTLs for TORC1 activation. Using a reciprocal hemizygous analysis, we validated GUS1, KAE1, PIB2, and UTH1 as genes responsible for the natural variation in the TORC1 activation. We observed that reciprocal hemizygous strains for KAE1 (ATPase required for t6A tRNA modification) gene showed the greatest phenotypic differences for TORC1 activation, with the hemizygous strain carrying the SA allele (KAE1SA) showing the higher TORC1 activation. In addition, we evaluated the fermentative capacities of the hemizygous strains under low nitrogen conditions, observing an antagonistic effect for KAE1SA allele, where the hemizygous strain containing this allele presented the lower fermentation rate. Altogether, these results highlight the importance of the tRNA processing in TORC1 activation and connects this pathway with the yeasts fermentation kinetics under nitrogen-limited conditions.
Collapse
Affiliation(s)
- Eduardo I Kessi-Pérez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile (UACH), Valdivia, Chile
| | | | - Ying Su
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - José M Guillamón
- Departamento de Biotecnología de los Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | | | - Luis F Larrondo
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile.,Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
26
|
Cucurbitacin B Exerts Antiaging Effects in Yeast by Regulating Autophagy and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4517091. [PMID: 31281576 PMCID: PMC6589324 DOI: 10.1155/2019/4517091] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 04/23/2019] [Indexed: 12/28/2022]
Abstract
The budding yeast Saccharomyces cerevisiae has been used as a model organism for the basic mechanism of aging, which provides useful assay systems for measuring both replicative and chronological lifespans. In the course of our screening program for substances that extend replicative lifespan, cucurbitacin B (CuB) was found as a hit compound from a compound library, which contains cerebrosides, phenols, sesquiterpenoid, triterpenoids, and sterols isolated from natural products by our research group. Importantly, it prolonged not only the replicative lifespan but also the chronological lifespan in yeast. CuB increased ATG32 gene expression, suggesting that CuB induces autophagy. Indeed, the GFP signal generated from the cleavage of GFP-Atg8, which is a signature of autophagy, was increased upon CuB treatment. On the other hand, CuB failed to increase the chronological lifespans when either ATG2 or ATG32, essential autophagy genes, was deleted, indicating that the lifespan extension by CuB depends on autophagy induction. Furthermore, CuB significantly increased superoxide dismutase (Sod) activity and the survival rate of yeast under oxidative stress, while it decreased the amount of reactive oxygen species (ROS) and malondialdehyde (MDA) production, indicating that CuB has activity to antagonize oxidative stress. Additionally, CuB did not affect replicative lifespans of sod1, sod2, uth1, and skn7 mutants with the K6001 background, indicating that aging-related genes including SOD1, SOD2, UTH1, and SKN7 participate in the antiaging effect of CuB. These results suggest that CuB exerts antiaging activity by regulating autophagy, ROS, antioxidative ability, and aging-related genes. Finally, we discuss the possible intracellular targets of CuB based on the phenotypic comparison between the CuB and global gene deletion databases.
Collapse
|
27
|
Structure Characterization and Action Mechanism of an Antiaging New Compound from Gastrodia elata Blume. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5459862. [PMID: 31198492 PMCID: PMC6526511 DOI: 10.1155/2019/5459862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/23/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023]
Abstract
A new compound, bis(4-hydroxybenzyl)ether mono-β-L-galactopyranoside (1), was isolated from the rhizome of Gastrodia elata Blume. Its structure was elucidated using extensive spectroscopic analysis, including 1D and 2D NMR, HR-ESI-TOF-MS, and chemical derivatization. Compound 1 extended the replicative lifespan of K6001 and the chronological lifespan of YOM36 yeast strains. To understand the mechanism of action, oxidative stress assessment, reactive oxygen species (ROS) and malondialdehyde (MDA) levels, catalase (CAT) and total glutathione peroxidase (GPx) activity assays, and replicative lifespan assay of sod1, sod2, uth1, and skn7 yeast mutant strains were performed. Results indicated the significant increase in the survival rate of yeast under oxidative stress after treatment with 1. ROS and MDA levels were reduced significantly. Meanwhile, the activity of CAT and GPx was significantly increased. The lifespan of sod1, sod2, uth1, and skn7 mutants of K6001 was not affected by 1. Furthermore, we investigated the gene expression related to longevity after administrating 1. The significant increase of Sir2 and reduction of Uth1 gene expression in the 1-treated group were observed. These results indicated that antioxidative stress played an important role in the antiaging effect of 1; Sir2 and Uth1 genes were involved in antiaging effects of 1.
Collapse
|
28
|
Optimal Extraction Study of Gastrodin-Type Components from Gastrodia Elata Tubers by Response Surface Design with Integrated Phytochemical and Bioactivity Evaluation. Molecules 2019; 24:molecules24030547. [PMID: 30717352 PMCID: PMC6384970 DOI: 10.3390/molecules24030547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/11/2022] Open
Abstract
Gastrodia elata tuber (GET) is a popular traditional Chinese medicines (TCMs). In this study, response surface methodology (RSM) with a Box–Behnken design (BBD) was performed to optimize the extraction parameters of gastrodin-type components (gastrodin, gastrodigenin, parishin A, parishin B, parishin C and parishin E). Different from the conventional studies that merely focused on the contents of phytochemical, we gave consideration to both quantitative analysis of the above six components by HPLC and representative bioactivities of GET, including antioxidation and protection of human umbilical vein endothelial cells (HUVEC). Four independent variables (ethanol concentration, liquid-material ratio, soaking time and extraction time) were investigated with the integrated evaluation index of phytochemical contents. With the validation experiments, the optimal extraction parameters were as follows: ethanol concentration of 41%, liquid–solid ratio of 28.58 mL/g, soaking time of 23.91 h and extraction time of 46.60 min. Under the optimum conditions, the actual standardized comprehensive score was 1.8134 ± 0.0110, which was in accordance with the predicted score of 1.8100. This firstly established method was proved to be feasible and reliable to optimize the extraction parameters of the bioactive components from GET. Furthermore, it provides some reference for the quality control and extraction optimization of TCMs.
Collapse
|
29
|
Yalcin G, Lee CK. Recent studies on anti-aging compounds with Saccharomyces cerevisiae as a model organism. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
30
|
Antiaging of Cucurbitane Glycosides from Fruits of Momordica charantia L. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1538632. [PMID: 29765490 PMCID: PMC5889887 DOI: 10.1155/2018/1538632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/03/2022]
Abstract
Methanol extracts of Momordica charantia L. fruits are extensively studied for their antiaging activities. A new cucurbitane-type triterpenoid (1) and nine other known compounds (2–10) were isolated, and their structures were determined according to their spectroscopic characteristics and chemical derivatization. Biological evaluation was performed on a K6001 yeast bioassay system. The results indicated that all the compounds extended the replicative lifespan of K6001 yeast significantly. Compound 9 was used to investigate the mechanism involved in the increasing of the lifespan. The results indicated that this compound significantly increases the survival rate of yeast under oxidative stress and decreases ROS level. Further study on gene expression analysis showed that compound 9 could reduce the levels of UTH1 and SKN7 and increase SOD1 and SOD2 gene expression. In addition, it could not extend the lifespan of the yeast mutants of Uth1, Skn7, Sod1, and Sod2. These results demonstrate that compound 9 exerts antiaging effects via antioxidative stress and regulation of UTH1, SKN7, SOD1, and SOD2 yeast gene expression.
Collapse
|
31
|
Wang Y, Lin Y, Xiang L, Osada H, Qi J. Sesquiterpene glucosides from Shenzhou honey peach fruit showed the anti-aging activity in the evaluation system using yeasts. Biosci Biotechnol Biochem 2017; 81:1586-1590. [PMID: 28585468 DOI: 10.1080/09168451.2017.1332978] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
One new (1, SZMT01) and one known (2) anti-aging substances were isolated from Shenzhou honey peach fruit. Their structures were elucidated by spectroscopic methods and chemical derivatization, and the result reveals that these two compounds are sesquiterpene glucosides. SZMT01 possesses a new glycosylation with an ester linkage at one terminal in an acyclic sesquiterpenoid which is the end of a double bond at another terminal. Both compounds extend the replicative lifespan of K6001 yeast strain at doses of 7.5 and 25 μM. Then, to understand the action mechanism involved, we performed an anti-oxidative experiment on SZMT01. The result revealed that treatment with SZMT01 increased the survival rate of yeast under oxidative stress. Moreover, the lifespans of sod1 and sod2 mutant yeast strains with a K6001 background were not affected by SZMT01. These results demonstrate that anti-oxidative stress performs important roles in anti-aging effects of SZMT01.
Collapse
Affiliation(s)
- Yanhui Wang
- a College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , People's Republic of China
| | - Yanfei Lin
- a College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , People's Republic of China
| | - Lan Xiang
- a College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , People's Republic of China
| | - Hiroyuki Osada
- b Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science , Wako-shi , Japan
| | - Jianhua Qi
- a College of Pharmaceutical Sciences, Zhejiang University , Hangzhou , People's Republic of China
| |
Collapse
|