1
|
Parthasarathy S, Moreno de Lara L, Carrillo-Salinas FJ, Werner A, Borchers A, Iyer V, Vogell A, Fortier JM, Wira CR, Rodriguez-Garcia M. Human genital dendritic cell heterogeneity confers differential rapid response to HIV-1 exposure. Front Immunol 2024; 15:1472656. [PMID: 39524443 PMCID: PMC11543421 DOI: 10.3389/fimmu.2024.1472656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Dendritic cells (DCs) play critical roles in HIV pathogenesis and require further investigation in the female genital tract, a main portal of entry for HIV infection. Here we characterized genital DC populations at the single cell level and how DC subsets respond to HIV immediately following exposure. We found that the genital CD11c+HLA-DR+ myeloid population contains three DC subsets (CD1c+ DC2s, CD14+ monocyte-derived DCs and CD14+CD1c+ DC3s) and two monocyte/macrophage populations with distinct functional and phenotypic properties during homeostasis. Following HIV exposure, the antiviral response was dominated by DCs' rapid secretory response, activation of non-classical inflammatory pathways and host restriction factors. Further, we uncovered subset-specific differences in anti-HIV responses. CD14+ DCs were the main population activated by HIV and mediated the secretory antimicrobial response, while CD1c+ DC2s activated inflammasome pathways and IFN responses. Identification of subset-specific responses to HIV immediately after exposure could aid targeted strategies to prevent HIV infection.
Collapse
Affiliation(s)
- Siddharth Parthasarathy
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Laura Moreno de Lara
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | | | - Alexandra Werner
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Anna Borchers
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
| | - Vidya Iyer
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, United States
- Mass General Research Institute (MGRI), Division of Clinical Research, Massachusetts General Hospital, Boston, MA, United States
| | - Alison Vogell
- Department of Gynecology and Obstetrics, Tufts Medical Center, Boston, MA, United States
| | - Jared M. Fortier
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Charles R. Wira
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- C.S Mott Center for Human Growth and Development, Department of Obstetrics & Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
2
|
Calvillo-Rodríguez KM, Lorenzo-Anota HY, Rodríguez-Padilla C, Martínez-Torres AC, Scott-Algara D. Immunotherapies inducing immunogenic cell death in cancer: insight of the innate immune system. Front Immunol 2023; 14:1294434. [PMID: 38077402 PMCID: PMC10701401 DOI: 10.3389/fimmu.2023.1294434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer immunotherapies include monoclonal antibodies, cytokines, oncolytic viruses, cellular therapies, and other biological and synthetic immunomodulators. These are traditionally studied for their effect on the immune system's role in eliminating cancer cells. However, some of these therapies have the unique ability to directly induce cytotoxicity in cancer cells by inducing immunogenic cell death (ICD). Unlike general immune stimulation, ICD triggers specific therapy-induced cell death pathways, based on the release of damage-associated molecular patterns (DAMPs) from dying tumour cells. These activate innate pattern recognition receptors (PRRs) and subsequent adaptive immune responses, offering the promise of sustained anticancer drug efficacy and durable antitumour immune memory. Exploring how onco-immunotherapies can trigger ICD, enhances our understanding of their mechanisms and potential for combination strategies. This review explores the complexities of these immunotherapeutic approaches that induce ICD, highlighting their implications for the innate immune system, addressing challenges in cancer treatment, and emphasising the pivotal role of ICD in contemporary cancer research.
Collapse
Affiliation(s)
- Kenny Misael Calvillo-Rodríguez
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Helen Yarimet Lorenzo-Anota
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
- The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey, NL, Mexico
| | - Cristina Rodríguez-Padilla
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Ana Carolina Martínez-Torres
- Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
| | - Daniel Scott-Algara
- Département d'Immunologie, Unité de Biologie Cellulaire des Lymphocytes, Pasteur Institute, Paris, France
| |
Collapse
|
3
|
Changes in the Natural Killer cell repertoire and function induced by the cancer immune adjuvant candidate IMMUNEPOTENT-CRP. Cell Immunol 2022; 374:104511. [DOI: 10.1016/j.cellimm.2022.104511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022]
|
4
|
Assessment of the Hematopoietic Differentiation Potential of Human Pluripotent Stem Cells in 2D and 3D Culture Systems. Cells 2021; 10:cells10112858. [PMID: 34831080 PMCID: PMC8616232 DOI: 10.3390/cells10112858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In vitro methods for hematopoietic differentiation of human pluripotent stem cells (hPSC) are a matter of priority for the in-depth research into the mechanisms of early embryogenesis. So-far, published results regarding the generation of hematopoietic cells come from studies using either 2D or 3D culture formats, hence, it is difficult to discern their particular contribution to the development of the concept of a unique in vitro model in close resemblance to in vivo hematopoiesis. AIM OF THE STUDY To assess using the same culture conditions and the same time course, the potential of each of these two formats to support differentiation of human pluripotent stem cells to primitive hematopoiesis without exogenous activation of Wnt signaling. METHODS We used in parallel 2D and 3D formats, the same culture environment and assay methods (flow cytometry, IF, qPCR) to investigate stages of commitment and specification of mesodermal, and hemogenic endothelial cells to CD34 hematopoietic cells and evaluated their clonogenic capacity in a CFU system. RESULTS We show an adequate formation of mesoderm, an efficient commitment to hemogenic endothelium, a higher number of CD34 hematopoietic cells, and colony-forming capacity potential only in the 3D format-supported differentiation. CONCLUSIONS This study shows that the 3D but not the 2D format ensures the induction and realization by endogenous mechanisms of human pluripotent stem cells' intrinsic differentiation program to primitive hematopoietic cells. We propose that the 3D format provides an adequate level of upregulation of the endogenous Wnt/β-catenin signaling.
Collapse
|
5
|
Barros MDS, de Araújo ND, Magalhães-Gama F, Pereira Ribeiro TL, Alves Hanna FS, Tarragô AM, Malheiro A, Costa AG. γδ T Cells for Leukemia Immunotherapy: New and Expanding Trends. Front Immunol 2021; 12:729085. [PMID: 34630403 PMCID: PMC8493128 DOI: 10.3389/fimmu.2021.729085] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recently, many discoveries have elucidated the cellular and molecular diversity in the leukemic microenvironment and improved our knowledge regarding their complex nature. This has allowed the development of new therapeutic strategies against leukemia. Advances in biotechnology and the current understanding of T cell-engineering have led to new approaches in this fight, thus improving cell-mediated immune response against cancer. However, most of the investigations focus only on conventional cytotoxic cells, while ignoring the potential of unconventional T cells that until now have been little studied. γδ T cells are a unique lymphocyte subpopulation that has an extensive repertoire of tumor sensing and may have new immunotherapeutic applications in a wide range of tumors. The ability to respond regardless of human leukocyte antigen (HLA) expression, the secretion of antitumor mediators and high functional plasticity are hallmarks of γδ T cells, and are ones that make them a promising alternative in the field of cell therapy. Despite this situation, in particular cases, the leukemic microenvironment can adopt strategies to circumvent the antitumor response of these lymphocytes, causing their exhaustion or polarization to a tumor-promoting phenotype. Intervening in this crosstalk can improve their capabilities and clinical applications and can make them key components in new therapeutic antileukemic approaches. In this review, we highlight several characteristics of γδ T cells and their interactions in leukemia. Furthermore, we explore strategies for maximizing their antitumor functions, aiming to illustrate the findings destined for a better mobilization of γδ T cells against the tumor. Finally, we outline our perspectives on their therapeutic applicability and indicate outstanding issues for future basic and clinical leukemia research, in the hope of contributing to the advancement of studies on γδ T cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Mateus de Souza Barros
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Nilberto Dias de Araújo
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fabíola Silva Alves Hanna
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Andréa Monteiro Tarragô
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Adriana Malheiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Allyson Guimarães Costa
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
- Programa de Pós-Graduação em Medicina Tropical, UEA, Manaus, Brazil
- Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil
| |
Collapse
|
6
|
Surcel M, Munteanu A, Isvoranu G, Ibram A, Caruntu C, Constantin C, Neagu M. Unconventional Therapy with IgY in a Psoriatic Mouse Model Targeting Gut Microbiome. J Pers Med 2021; 11:jpm11090841. [PMID: 34575618 PMCID: PMC8466815 DOI: 10.3390/jpm11090841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
Psoriasis has a multifactorial pathogenesis and recently it was shown that alterations in the skin and intestinal microbiome are involved in the pathogenesis of psoriasis. Therefore, microbiome restoration becomes a promising preventive/therapy strategy in psoriasis. In our pre-clinical study design using a mice model of induced psoriatic dermatitis (Ps) we have tested the proof-of-concept that IgY raised against pathological human bacteria resistant to antibiotics can alleviate psoriatic lesions and restore deregulated immune cell parameters. Besides clinical evaluation of the mice and histology of the developed psoriatic lesions, cellular immune parameters were monitored. Immune cells populations/subpopulations from peripheral blood and spleen cell suspensions that follow the clinical improvement were assessed using flow cytometry. We have quantified T lymphocytes (CD3ε+) with T-helper (CD4+CD8-) and T-suppressor/cytotoxic (CD8a+CD4-) subsets, B lymphocytes (CD3ε-CD19+) and NK cells (CD3ε-NK1.1+). Improved clinical evolution of the induced Ps along with the restoration of immune cells parameters were obtained when orally IgY was administered. We pin-point that IgY specific compound can be used as a possible pre-biotic-like alternative adjuvant in psoriasis.
Collapse
Affiliation(s)
- Mihaela Surcel
- Immunology Department, “Victor Babes” National Institute of Pathology, 99-101 Spl. Independentei, 050096 Bucharest, Romania; (M.S.); (A.M.); (C.C.)
| | - Adriana Munteanu
- Immunology Department, “Victor Babes” National Institute of Pathology, 99-101 Spl. Independentei, 050096 Bucharest, Romania; (M.S.); (A.M.); (C.C.)
- Faculty of Biology, Doctoral School of Biology, University of Bucharest, 91-95 Spl. Independentei, 030018 Bucharest, Romania
| | - Gheorghita Isvoranu
- Animal Husbandry, “Victor Babes” National Institute of Pathology, 99-101 Spl. Independentei, 050096 Bucharest, Romania;
| | - Alef Ibram
- Research Laboratory, Romvac Company SA, 077190 Voluntari, Romania;
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Pharmacy and Medicine, 37 Dionisie Lupu Street, 020021 Bucharest, Romania;
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 99-101 Spl. Independentei, 050096 Bucharest, Romania; (M.S.); (A.M.); (C.C.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, “Victor Babes” National Institute of Pathology, 99-101 Spl. Independentei, 050096 Bucharest, Romania; (M.S.); (A.M.); (C.C.)
- Faculty of Biology, Doctoral School of Biology, University of Bucharest, 91-95 Spl. Independentei, 030018 Bucharest, Romania
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Correspondence:
| |
Collapse
|
7
|
Larenas-Linnemann D, Rodríguez-Pérez N, Arias-Cruz A, Blandón-Vijil MV, Del Río-Navarro BE, Estrada-Cardona A, Gereda JE, Luna-Pech JA, Navarrete-Rodríguez EM, Onuma-Takane E, Pozo-Beltrán CF, Rojo-Gutiérrez MI. Enhancing innate immunity against virus in times of COVID-19: Trying to untangle facts from fictions. World Allergy Organ J 2020; 13:100476. [PMID: 33072240 PMCID: PMC7546230 DOI: 10.1016/j.waojou.2020.100476] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/24/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction In light of the current COVID-19 pandemic, during which the world is confronted with a new, highly contagious virus that suppresses innate immunity as one of its initial virulence mechanisms, thus escaping from first-line human defense mechanisms, enhancing innate immunity seems a good preventive strategy. Methods Without the intention to write an official systematic review, but more to give an overview of possible strategies, in this review article we discuss several interventions that might stimulate innate immunity and thus our defense against (viral) respiratory tract infections. Some of these interventions can also stimulate the adaptive T- and B-cell responses, but our main focus is on the innate part of immunity. We divide the reviewed interventions into: 1) lifestyle related (exercise, >7 h sleep, forest walking, meditation/mindfulness, vitamin supplementation); 2) Non-specific immune stimulants (letting fever advance, bacterial vaccines, probiotics, dialyzable leukocyte extract, pidotimod), and 3) specific vaccines with heterologous effect (BCG vaccine, mumps-measles-rubeola vaccine, etc). Results For each of these interventions we briefly comment on their definition, possible mechanisms and evidence of clinical efficacy or lack of it, especially focusing on respiratory tract infections, viral infections, and eventually a reduced mortality in severe respiratory infections in the intensive care unit. At the end, a summary table demonstrates the best trials supporting (or not) clinical evidence. Conclusion Several interventions have some degree of evidence for enhancing the innate immune response and thus conveying possible benefit, but specific trials in COVID-19 should be conducted to support solid recommendations.
Collapse
Key Words
- ACE2, Angiotensin converting enzime-2
- APC, Antigen-presenting cell
- BCG, Bacillus Calmette-Guérin
- BV, Bacterial vaccine
- Bacillus calmette-guérin
- Bacterial vaccine
- CCL-5, Chemokine (C–C motif) ligand 5
- CI, Confidence interval
- CNS, Central nervous system
- COVID-19
- COVID-19, Coronavirus disease-2019
- CXCR3A, CXC chemokine receptor 3A
- DAMPs, Damage-associated molecular patterns
- DC, Dendritic cell
- DLE, Dialyzable leukocyte extract
- Exercise
- Gαs: G protein coupled receptor alfa-subunits, HSP
- Heat shock proteins, HLA-DR
- Immune response
- Immunoglobulin, IGFBP6
- Innate
- Insulin-like growth-factor-binding-protein 6, IL
- Intercellular adhesion molecule type 1, IFN
- Interferon, IG
- Interleukin, MBSR
- MCP-1, Monocyte chemoattractant protein-1
- MMR
- MODS, Multi-organ dysfunction syndrome
- Major histocompatibility complex class II cell surface receptor, ICAM-1
- Mindfulness
- Mindfulness-based stress reduction, mCa++: Intramitochondrial calcium
- MyD88, Myeloid differentiation primary response 88
- NF-κB, Nuclear factor kappaB
- NK, Natural killer
- NK-Cell
- NOD2, Nucleotide-binding oligomerization domain-containing protein 2
- OR, Odds ratio
- OxPhos: Oxidative phosphorylation, PAMPs
- PKC, Protein kinase C
- PPD, Purified protein derivative (tuberculin)
- PUFA, Polyunsaturated fatty acid
- Pathogen-associated molecular patterns, PBMC
- Peripheral blood mononuclear cell, PI3K/Akt: Phosphatidylinositol 3-kinase pathway
- R0: Basic reproduction number, REM
- Rapid eye movement, RIPK2
- Reactive nitrogen species, ROS
- Reactive oxygen species, SARS-CoV-2
- Receptor iteracting serine/threonine kinase 2, RNA
- Ribonucleic acid, RNS
- Severe acute respiratory syndrome coronavirus 2, SIRS
- Sleep
- Systemic inflammatory response syndrome, TCR:T-cell receptor
- TLR, Toll-like receptor
- TNF-α, Tumor necrosis factor alpha
- TRPV, Thermolabile calcium channels
- Th, T helper-cell
- Trained immunity
- URTI, Upper-respiratory tract infection
Collapse
Affiliation(s)
- Désirée Larenas-Linnemann
- Médica Sur, Clinical Foundation and Hospital, Mexico City, Mexico
- Corresponding author. Médica Sur, Fundación clínica y hospital, Puente de piedra 150, T2Toriello Guerra, Tlalpan, Ciudad de México, México, 14050, Mexico. E-mails:
| | | | - Alfredo Arias-Cruz
- State University of Nuevo León, School of Medicine and University Hospital Dr. José Eleuterio González, Monterrey, Nuevo Leon, Mexico
| | | | | | | | | | - Jorge A. Luna-Pech
- Departamento de Disciplinas Filosóficas, Metodológicas e Instrumentales (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | - Ernesto Onuma-Takane
- Fundación Clínica y Hospital Médica Sur, Ciudad de México, México, Mexico City, Mexico
| | | | | |
Collapse
|
8
|
Vallejo-Castillo L, Favari L, Vázquez-Leyva S, Mellado-Sánchez G, Macías-Palacios Z, López-Juárez LE, Valencia-Flores L, Medina-Rivero E, Chacón-Salinas R, Pavón L, Pérez-Tapia SM. Sequencing Analysis and Identification of the Primary Peptide Component of the Dialyzable Leukocyte Extract "Transferon Oral": The Starting Point to Understand Its Mechanism of Action. Front Pharmacol 2020; 11:569039. [PMID: 33117165 PMCID: PMC7577238 DOI: 10.3389/fphar.2020.569039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/16/2020] [Indexed: 02/02/2023] Open
Abstract
"Transferon Oral" is a peptide-derived product with immunomodulatory properties obtained from the lysis and dialysis of human buffy coat. Its active pharmaceutical ingredient, generically known as Dialyzable Leucocyte Extract, is a mixture of peptide populations with reproducible proportions among batches. "Transferon Oral" modulates IFN-γ, TNF-α, and IL-6 and increases the survival rate in a herpes infection murine model when oropharyngeally (ORO) administered, which correlate with clinical observations where "Transferon Oral" is used as a therapeutic auxiliary in inflammatory diseases. Notwithstanding, how a peptide-derived product elicits systemic modulation of cytokines when ORO administered remains unclear. To shed light on the pharmacology of "Transferon Oral" its peptide components must be known. Ten "Transferon Oral" batches were sequenced by mass spectrometry and the intact peptides were identified. The most abundant peptides were the monomeric human Ubiquitin (Ub), a globular low-molecular mass protein, and an Ub variant which lacks the two-terminal Gly (Ub-GG). Recombinant Ub prevented murine death when ORO administered in a herpes infection murine model. Besides, the percentage of survival increased in groups treated with Transferon Oral+Ub and decreased in groups treated with Ub-depleted "Transferon Oral" respect to the group treated with "Transferon Oral" only. Our findings indicate that the biological properties of "Transferon Oral" are partially associated to the Ub content. They suggest that Ub may activate its extracellular receptor (CXCR-4) in the stomach eliciting systemic immunomodulatory effects via vagus nerve. This is the first report that identifies an active component of "Transferon Oral" with the potential for the development of oral peptide immunomodulators.
Collapse
Affiliation(s)
- Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Liliana Favari
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, Mexico
| | - Said Vázquez-Leyva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Zaira Macías-Palacios
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Leonardo E. López-Juárez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Luis Valencia-Flores
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente., Mexico City, Mexico
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I + D + i) para Farmoquímicos y Biotecnológicos (LANSEIDI-FarBiotec-CONACyT), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
9
|
Cahill LA, Guo F, Nguyen J, Zhang F, Seshadri A, Keegan J, Hauser CJ, Otterbein LE, Robson S, Shaefi S, Yaffe MB, Lederer JA. Circulating Factors in Trauma Plasma Activate Specific Human Immune Cell Subsets. Injury 2020; 51:819-829. [PMID: 32171537 PMCID: PMC7441590 DOI: 10.1016/j.injury.2020.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Trauma causes tissue injury that results in the release of damage associated molecular patterns (DAMPs) and other mediators at the site of injury and systemically. Such mediators disrupt immune system homeostasis and may activate multicellular immune responses with downstream complications such as the development of infections and sepsis. To characterize these alterations, we used time-of-flight mass cytometry to determine how trauma plasma affects normal peripheral blood mononuclear cell (PBMC) activation to gain insights into the kinetics and nature of trauma-induced circulating factors on human immune cell populations. A better understanding of the components that activate cells in trauma may aid in the discovery of therapeutic targets. METHODS PBMCs from healthy volunteers were cultured with 5% plasma (healthy, trauma-1day, or trauma-3day) or known DAMPs for 24 h. Samples were stained with a broad immunophenotyping CyTOF antibody panel. Multiplex (Luminex) cytokine assays were used to measure differences in multiple cytokine levels in healthy and trauma plasma samples. RESULTS Plasma from day 1, but not day 3 trauma patients induced the acute expansion of CD11c+ NK cells and CD73+/CCR7+ CD8 T cell subpopulations. Additionally, trauma plasma did not induce CD4+ T cell expansion but did cause a phenotypic shift towards CD38+/CCR7+ expressing CD4+ T cells. Multiplex analysis of cytokines by Luminex showed increased levels of IL-1RA, IL-6 and IL-15 in trauma-1day plasma. Similar to trauma day 1 plasma, PBMC stimulation with known DAMPs showed activation and expansion of CD11c+ NK cells. CONCLUSIONS We hypothesized that circulating factors in trauma plasma would induce phenotypic activation of normal human immune cell subsets. Using an unbiased approach, we identified specific changes in immune cell subsets that respond to trauma plasma. Additionally, CD11c+ NK cells expanded in response to DAMPs and LPS, suggesting they may also be responding to similar components in trauma plasma. Collectively, our data demonstrate that the normal PBMC response to trauma plasma involves marked changes in specific subsets of NK and CD8+ T cell populations. Future studies will target the function of these trauma plasma reactive immune cell subsets. These findings have important implications for the field of acute traumatic injuries.
Collapse
Affiliation(s)
- Laura A Cahill
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Fei Guo
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Jennifer Nguyen
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Fan Zhang
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Anupamaa Seshadri
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Joshua Keegan
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| | - Carl J Hauser
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Leo E Otterbein
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Simon Robson
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Shahzad Shaefi
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - Michael B Yaffe
- Beth Israel Deaconess Medical Centre, Boston, MA, United States.
| | - James A Lederer
- Brigham and Women's Hospital, 75 Francis St., Boston, MA, 02115, United States.
| |
Collapse
|
10
|
Carballo-Uicab G, Linares-Trejo JE, Mellado-Sánchez G, López-Morales CA, Velasco-Velázquez M, Pavón L, Estrada-Parra S, Pérez-Tapia SM, Medina-Rivero E. Validation of a Cell Proliferation Assay to Assess the Potency of a Dialyzable Leukocyte Extract Intended for Batch Release. Molecules 2019; 24:3426. [PMID: 31547184 PMCID: PMC6804008 DOI: 10.3390/molecules24193426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 11/16/2022] Open
Abstract
Transferon® is a blood product with immunomodulatory properties constituted by a complex mixture of peptides obtained from a human dialyzable leukocyte extract (DLE). Due to its complex nature, it is necessary to demonstrate batch consistency in its biological activity. Potency is the quantitative measure of biological activity and is also a quality attribute of drugs. Here we developed and validated a proliferation assay using Jurkat cells exposed to azathioprine, which is intended to determine the potency of Transferon® according to international guidelines for pharmaceuticals. The assay showed a linear response (2.5 to 40 µg/mL), coefficients of variation from 0.7 to 13.6% demonstrated that the method is precise, while r2 = 0.97 between the nominal and measured values obtained from dilutional linearity showed that the method is accurate. We also demonstrated that the cell proliferation response was specific for Transferon® and was not induced by its vehicle nor by other peptide complex mixtures (glatiramer acetate or hydrolyzed collagen). The bioassay validated here was used to assess the relative potency of eight released batches of Transferon® with respect to a reference standard, showing consistent results. The collective information from the validation and the assessment of several batches indicate that the bioassay is suitable for the release of Transferon®.
Collapse
Affiliation(s)
- Gregorio Carballo-Uicab
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
| | - José E Linares-Trejo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
| | - Carlos A López-Morales
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
| | - Marco Velasco-Velázquez
- Departamento de Farmacología y Unidad Periférica de Investigación en Biomedicina Traslacional (CMN 20 de noviembre, ISSSTE), Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de Mexico 04510, Mexico.
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente, Cuida de Mexico 14370, Mexico.
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmacoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Ciudad de Mexico 11340, Mexico.
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico.
| |
Collapse
|
11
|
Ramírez-Ramírez D, Padilla-Castañeda S, Galán-Enríquez CS, Vadillo E, Prieto-Chávez JL, Jiménez-Hernández E, Vilchis-Ordóñez A, Sandoval A, Balandrán JC, Pérez-Tapia SM, Ortiz-Navarrete V, Pelayo R. CRTAM + NK cells endowed with suppressor properties arise in leukemic bone marrow. J Leukoc Biol 2019; 105:999-1013. [PMID: 30791148 DOI: 10.1002/jlb.ma0618-231r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
Due to their increasing rates of morbidity and mortality, childhood malignancies are considered a global health priority, with acute lymphoblastic leukemias (ALLs) showing the highest incidence worldwide. Control of malignant clone emergence and the subsequent normal-leukemic hematopoietic cell out-competition require antitumor monitoring mechanisms. Investigation of cancer surveillance innate cells may be critical to understand the mechanisms contributing in either disease progression or relapse, and to promote displacement of leukemic hematopoiesis by the normal counterpart. We report here that NK cell production is less and low hematopoietic progenitor numbers contribute to this defect. By investigating the expression of the activation molecule class I restricted T-cell associated molecule (CRTAM) along the hematopoietic lineage differentiation pathway, we have identified lymphoid precursor populations coexpressing CD34, CD56/CD3/CD19, and CRTAM as the earliest developmental stage where activation may take place in specialized niches that display the ligand nectin-like-2. Of note, bone marrow (BM) from patients with ALL revealed high contents of preactivated CD56high NK cells expressing CRTAM and endowed with an exhaustion-like phenotype and the functional capability of producing IL-10 and TGF-β in vitro. Our findings suggest, for the first time, that the tumor microenvironment in ALL directly contribute to exhaustion of NK cell functions by the CRTAM/Necl-2 interaction, and that the potential regulatory role of exhausted-like NK cells may favor malignant progression at the expense of anti-tumor responses. Phenotypic and functional identity of this unique suppressor-like NK cell population within the leukemic BM would be of special interest for the pathobiology of ALL and development of targeting strategies.
Collapse
Affiliation(s)
- Dalia Ramírez-Ramírez
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico.,National School of Biological Sciences ENCB, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Sandra Padilla-Castañeda
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico.,Departament of Molecular Biomedicine, CINVESTAV, IPN. Av. Instituto Politecnico Nacional 2508, Mexico City, Mexico
| | - Carlos Samuel Galán-Enríquez
- Departament of Molecular Biomedicine, CINVESTAV, IPN. Av. Instituto Politecnico Nacional 2508, Mexico City, Mexico
| | - Eduardo Vadillo
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departament of Molecular Biomedicine, CINVESTAV, IPN. Av. Instituto Politecnico Nacional 2508, Mexico City, Mexico
| | - Jessica Lakshmi Prieto-Chávez
- Unidad de Investigación Médica en Inmunoquímica, UMAE Hospital de Especialidades, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Hospital Pediátrico Moctezuma, Secretaria de Salud, Calle Oriente 158-189, Mexico City, Mexico
| | | | - Antonio Sandoval
- Hospital para el Niño, Instituto Materno Infantil del Estado de México, Toluca, State of Mexico, Mexico
| | - Juan Carlos Balandrán
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Sonia Mayra Pérez-Tapia
- National School of Biological Sciences ENCB, Instituto Politécnico Nacional (IPN), Mexico City, Mexico.,Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI) and Unidad de Investigación, Desarrollo e Innovación Médica y Biotecnológica (UDIMEB), National School of Biological Sciences (ENCB), National Polytechnic Institute (IPN), Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Departament of Molecular Biomedicine, CINVESTAV, IPN. Av. Instituto Politecnico Nacional 2508, Mexico City, Mexico
| | - Rosana Pelayo
- Unidad de Investigación Médica en Enfermedades Oncológicas, UMAE Hospital Oncología, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| |
Collapse
|
12
|
Hernández-Esquivel MA, Pérez-Torres A, Romero-Romero L, Reyes-Matute A, Loaiza B, Mellado-Sánchez G, Pavón L, Medina-Rivero E, Pestell RG, Pérez-Tapia SM, Velasco-Velázquez MA. The dialyzable leukocyte extract Transferon TM inhibits tumor growth and brain metastasis in a murine model of prostate cancer. Biomed Pharmacother 2018; 101:938-944. [PMID: 29635903 DOI: 10.1016/j.biopha.2018.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed cancer in men worldwide. Dialyzed Leukocyte Extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that improve clinical responses in various diseases. Here, we analyzed the effects of TransferonTM, a commercial DLE with characterized active pharmaceutical ingredient and proven batch-to-batch reproducibility, in preclinical models of PCa. We employed v-Src-transformed murine prostate epithelial (PEC-Src) cells, which recapitulate the transcriptional profiles in human PCa, can be grown in immunocompetent mice, and consistently form bone and brain metastases. In vitro, TransferonTM did not induce cytotoxicity nor alterations in migration /invasion of PEC-Src cells. In vivo, TransferonTM reduced metastatic dissemination after intracardiac injection of PEC-Src and inhibited tumor growth of subcutaneous isotransplants. The antineoplastic effect of TransferonTM correlated with changes in tumor infiltration, increased serum concentrations of IL-12 and CXCL1, and reduced levels of VEGF. Our results suggest that the antineoplastic effect produced by TransferonTM is due to its immunomodulatory activity and not by a direct effect on cancer cells, and indicate that TransferonTM could be beneficial as adjuvant therapy in PCa patients.
Collapse
Affiliation(s)
- Miguel A Hernández-Esquivel
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Armando Pérez-Torres
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Laura Romero-Romero
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de México, Mexico
| | - Alonso Reyes-Matute
- Departamento de Patología, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de México, Mexico; UNIPREC, Facultad de Química, UNAM, Ciudad de México, Mexico
| | - Brenda Loaiza
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico; Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Lenin Pavón
- Instituto Nacional de Psiquiatría Ramon de la Fuente, Ciudad de México, Mexico
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Richard G Pestell
- Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center of Bucks County, Doylestown, PA, USA; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Sonia M Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - Marco A Velasco-Velázquez
- Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico; Unidad Periférica de Investigación en Biomedicina Translacional, Facultad de Medicina, UNAM, Ciudad de México, Mexico.
| |
Collapse
|
13
|
Non-identical twins: Different faces of CR3 and CR4 in myeloid and lymphoid cells of mice and men. Semin Cell Dev Biol 2017; 85:110-121. [PMID: 29174917 DOI: 10.1016/j.semcdb.2017.11.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023]
Abstract
Integrins are cell membrane receptors that are involved in essential physiological and serious pathological processes. Their main role is to ensure a closely regulated link between the extracellular matrix and the intracellular cytoskeletal network enabling cells to react to environmental stimuli. Complement receptor type 3 (CR3, αMβ2, CD11b/CD18) and type 4 (CR4, αXβ2, CD11c/CD18) are members of the β2-integrin family expressed on most white blood cells. Both receptors bind multiple ligands like iC3b, ICAM, fibrinogen or LPS. β2-integrins are accepted to play important roles in cellular adhesion, migration, phagocytosis, ECM rearrangement and inflammation. Several pathological conditions are linked to the impaired functions of these receptors. CR3 and CR4 are generally thought to mediate overlapping functions in monocytes, macrophages and dendritic cells, therefore the potential distinctive role of these receptors has not been investigated so far in satisfactory details. Lately it has become clear that a functional segregation has evolved between the two receptors regarding phagocytosis, cellular adhesion and podosome formation. In addition to their tasks on myeloid cells, the expression and function of CR3 and CR4 on lymphocytes have also gained interest recently. The picture is further complicated by the fact that while these β2-integrins are expressed by immune cells both in mice and humans, there are significant differences in their expression level, functions and the pathological consequences of genetic defects. Here we aim to summarize our current knowledge on CR3 and CR4 and highlight the functional differences between these receptors, involving their expression in myeloid and lymphoid cells of both men and mice.
Collapse
|