1
|
Maulana H, Yueniwati Y, Permatasari N, Suyono H. Pulsed electromagnetic field prevents tooth relapse after orthodontic tooth movement in rat models. J Taibah Univ Med Sci 2025; 20:1-12. [PMID: 39831281 PMCID: PMC11741038 DOI: 10.1016/j.jtumed.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Objective Relapse after orthodontic treatment remains a crucial problem. Pulsed electromagnetic fields (PEMFs) accelerate osteoblastogenesis and inhibit osteoclastogenesis. However, their effect on tooth movement during the retention phase of orthodontic treatment has not been studied. This study investigated the role of PEMF stimulation in preventing tooth relapse after orthodontic tooth movement (OTM) in rat models. Methods Thirty-six male Wistar rats were divided into control, PEMF 7, and PEMF 14 groups. The maxillary first molar was moved mesially with a 50 g force of a Nickel Titanium closed coil spring for 21 days. Therefore, PEMF stimulations, including a frequency of 15 Hz and intensity of 2.0 mT, were applied to a retention phase for 2 h daily for 7 and 14 days. The tooth relapse distance was evaluated on days 1, 3, 7, and 14; the number of osteoblasts, osteoclasts, and fibroblasts was assessed by hematoxylin and eosin staining; and the expression of fibroblast growth factor 2 (FGF-2) and type I collagen (Col-I) was evaluated by immunohistochemistry. The data were analyzed using one-way analysis of variance and post hoc test with p < 0.05 considered statistically significant. Results Tooth relapse distance was significantly decreased in the PEMF 7 and PEMF 14 groups compared to the control group. A significant increase was detected in osteoblasts, fibroblasts, FGF-2, and Col-I in both PEMF groups, while osteoclasts decreased (p < 0.05). Conclusion The reduction of tooth relapse could be attributed to PEMF stimulation for 7 and 14 days by accelerating alveolar bone formation and periodontal ligament remodeling.
Collapse
Affiliation(s)
- Hafiedz Maulana
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
- Department of Dentistry-Biomedical Sciences, Oral and Maxillofacial Pathology, Faculty of Dentistry, Universitas Jember, Jember, East Java, Indonesia
| | - Yuyun Yueniwati
- Department of Radiology, Saiful Anwar General Hospital, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Nur Permatasari
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, East Java, Indonesia
| | - Hadi Suyono
- Department of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya, Malang, East Java, Indonesia
| |
Collapse
|
2
|
Maulana H, Yueniwati Y, Permatasari N, Suyono H. Role of Pulsed Electromagnetic Field on Alveolar Bone Remodeling during Orthodontic Retention Phase in Rat Models. Dent J (Basel) 2024; 12:287. [PMID: 39329853 PMCID: PMC11431648 DOI: 10.3390/dj12090287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Alveolar bone remodeling during the retention phase is essential for successful orthodontic treatment. Pulsed electromagnetic field (PEMF) therapy is an adjunctive therapy for bone-related diseases that induces osteogenesis and prevents bone loss. This study aimed to examine the role of PEMF exposure during the retention phase of orthodontic treatment in alveolar bone remodeling. A total of 36 male Wistar rats were divided into control, PEMF 7, and PEMF 14 groups; a 50 g force nickel-titanium closed-coil spring was inserted to create mesial movement in the first molar for 21 d. Furthermore, the spring was removed, and the interdental space was filled with glass ionomer cement. Concurrently, rats were exposed to a PEMF at 15 Hz with a maximum intensity of 2.0 mT 2 h daily, for 7 and 14 days. Afterwards, the cements were removed and the rats were euthanized on days 1, 3, 7, and 14 to evaluate the expression of Wnt5a mRNA and the levels of RANKL, OPG, ALP, and Runx2 on the tension side. The data were analyzed with ANOVA and post hoc tests, with p < 0.05 declared statistically significant. PEMF exposure significantly upregulated Wnt5a mRNA expression, OPG and ALP levels, and Runx2 expression, and decreased RANKL levels in the PEMF 7 and 14 groups compared to the control group (p < 0.05). This study showed that PEMF exposure promotes alveolar bone remodeling during the orthodontic retention phase on the tension side by increasing alveolar bone formation and inhibiting resorption.
Collapse
Affiliation(s)
- Hafiedz Maulana
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia
- Department of Dentistry-Biomedical Sciences, Oral and Maxillofacial Pathology, Faculty of Dentistry, Universitas Jember, Jember 68121, Indonesia
| | - Yuyun Yueniwati
- Department of Radiology, Saiful Anwar General Hospital, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia;
| | - Nur Permatasari
- Department of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia;
| | - Hadi Suyono
- Department of Electrical Engineering, Faculty of Engineering, Universitas Brawijaya, Malang 65145, Indonesia;
| |
Collapse
|
3
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Liu J, Zhou J, Huang X, Yin L, Zhou L, Liao Y, Sun G, Zhong P, Peng X, Sun Z. Protective effects of pulsed electromagnetic field therapy attenuates autophagy and apoptosis in osteoporotic osteoarthritis model rats by activating PPARγ. Electromagn Biol Med 2024; 43:61-70. [PMID: 38347683 DOI: 10.1080/15368378.2024.2314108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/25/2023] [Indexed: 05/01/2024]
Abstract
Osteoporotic osteoarthritis (OPOA) is a specific phenotype of OA with high incidence and severe cartilage damage. This study aimed to explore the protective efficacy of PEMF on the progression of OPOA and observed the effects of PEMF on PPARγ, autophagy- and apoptosis-related proteins in OPOA rats. Rats were randomly divided into three groups: control group, OPOA group, and PEMF group (n = 6). One week after surgery, the rats in PEMF group were subjected to PEMF (3.82 mT, 8 Hz, 40 min/day and 5 day/week) for 12 weeks. Results showed that PEMF retarded cartilage degeneration and bone loss, as evidenced by pathological staining image, decreased MMP-13 expression and increased bone mineral density. PEMF inhibited the serum levels of inflammatory cytokines, and the expressions of caspase-3 and caspase-8, while upregulated the expression of PPARγ. Moreover, PEMF significantly improved the autophagy disorders, represented by decrease expressions of Beclin-1, P62, and LC3B. The research demonstrates that PEMF can effectively prevent cartilage and subchondral bone destruction in OPOA rats. The potential mechanism may be related to upregulation of PPARγ, inhibition of chondrocyte apoptosis and inflammation, and improvement of autophagy disorder. PEMF therapy thus shows promising application prospects in the treatment of postmenopausal OA.
Collapse
Affiliation(s)
- Jing Liu
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun Zhou
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiarong Huang
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Linwei Yin
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Long Zhou
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yang Liao
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Guanghua Sun
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peirui Zhong
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xinke Peng
- The First Affiliated Hospital, Rehabilitation Medicine Center, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Rehabilitation, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Rehabilitation Laboratory, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhilu Sun
- The First Affiliated Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
5
|
Zhang T, Zhao Z, Wang T. Pulsed electromagnetic fields as a promising therapy for glucocorticoid-induced osteoporosis. Front Bioeng Biotechnol 2023; 11:1103515. [PMID: 36937753 PMCID: PMC10020513 DOI: 10.3389/fbioe.2023.1103515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is considered the third type of osteoporosis and is accompanied by high morbidity and mortality. Long-term usage of glucocorticoids (GCs) causes worsened bone quality and low bone mass via their effects on bone cells. Currently, there are various clinical pharmacological treatments to regulate bone mass and skeletal health. Pulsed electromagnetic fields (PEMFs) are applied to treat patients suffering from delayed fracture healing and non-unions. PEMFs may be considered a potential and side-effect-free therapy for GIOP. PEMFs inhibit osteoclastogenesis, stimulate osteoblastogenesis, and affect the activity of bone marrow mesenchymal stem cells (BMSCs), osteocytes and blood vessels, ultimately leading to the retention of bone mass and strength. However, the underlying signaling pathways via which PEMFs influence GIOP remain unclear. This review attempts to summarize the underlying cellular mechanisms of GIOP. Furthermore, recent advances showing that PEMFs affect bone cells are discussed. Finally, we discuss the possibility of using PEMFs as therapy for GIOP.
Collapse
Affiliation(s)
- Tianxiao Zhang
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiliang Zhao
- Innovation Center for Wound Repair, West China Hospital, Sichuan University, Chengdu, China
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Tiantian Wang,
| |
Collapse
|
6
|
Pulsed Electro-Magnetic Field (PEMF) Effect on Bone Healing in Animal Models: A Review of Its Efficacy Related to Different Type of Damage. BIOLOGY 2022; 11:biology11030402. [PMID: 35336776 PMCID: PMC8945722 DOI: 10.3390/biology11030402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary Pulsed electromagnetic fields (PEMFs) are a type of biophysical stimulation that has been shown to be effective in improving bone regeneration and preventing bone loss. Their use dates back to the 1970s, but a gold standard treatment protocol has not yet been defined. PEMF efficacy relies on the generation of biopotentials, which activate several molecular pathways. There is currently no clear understanding of the effects on bone healing and, in addition, there are several animal models relevant to this issue. Therefore, drawing guidelines and conclusions from the analysis of the studies is difficult. In vivo investigations on PEMF stimulation are reviewed in this paper, focusing on molecular and morphological improvements in bone. Currently, there is little knowledge about the biological mechanism of PEMF and its effect on bone healing. This is due to the variability of crucial characteristics of electro-magnetic fields, such as amplitude and exposure frequency, which may influence the type of biological response. Furthermore, a different responsiveness of cells involved in the bone healing process is documented. Heterogeneous setting parameters and different outcome measures are considered in various animal models. Therefore, achieving comparable results is difficult. Abstract Biophysical energies are a versatile tool to stimulate tissues by generating biopotentials. In particular, pulsed electromagnetic field (PEMF) stimulation has intrigued researchers since the 1970s. To date, many investigations have been carried out in vivo, but a gold standard treatment protocol has not yet been defined. The main obstacles are represented by the complex setting of PEMF characteristics, the variety of animal models (including direct and indirect bone damage) and the lack of a complete understanding of the molecular pathways involved. In the present review the main studies about PEMF stimulation in animal models with bone impairment were reviewed. PEMF signal characteristics were investigated, as well as their effect on molecular pathways and osseous morphological features. We believe that this review might be a useful starting point for a prospective study in a clinical setting. Consistent evidence from the literature suggests a potential beneficial role of PEMF in clinical practice. Nevertheless, the wide variability of selected parameters (frequency, duration, and amplitude) and the heterogeneity of applied protocols make it difficult to draw certain conclusions about PEMF effectiveness in clinical implementation to promote bone healing. Deepening the knowledge regarding the most consistent results reported in literature to date, we believe that this review may be a useful starting point to propose standardized experimental guidelines. This might provide a solid base for further controlled trials, to investigate PEMF efficacy in bone damage conditions during routine clinical practice.
Collapse
|
7
|
Xavier A, Toumi H, Lespessailles E. Animal Model for Glucocorticoid Induced Osteoporosis: A Systematic Review from 2011 to 2021. Int J Mol Sci 2021; 23:377. [PMID: 35008803 PMCID: PMC8745049 DOI: 10.3390/ijms23010377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
Clinical and experimental data have shown that prolonged exposure to GCs leads to bone loss and increases fracture risk. Special attention has been given to existing emerging drugs that can prevent and treat glucocorticoid-induced osteoporosis GIOP. However, there is no consensus about the most relevant animal model treatments on GIOP. In this systematic review, we aimed to examine animal models of GIOP centering on study design, drug dose, timing and size of the experimental groups, allocation concealment, and outcome measures. The present review was written according to the PRISMA 2020 statement. Literature searches were performed in the PubMed electronic database via Mesh with the publication date set between April, 2011, and February 2021. A total of 284 full-text articles were screened and 53 were analyzed. The most common animal species used to model GIOP were rats (66%) and mice (32%). In mice studies, males (58%) were preferred and genetically modified animals accounted for 28%. Our work calls for a standardization of the establishment of the GIOP animal model with better precision for model selection. A described reporting design, conduction, and selection of outcome measures are recommended.
Collapse
Affiliation(s)
- Andy Xavier
- EA 4708 I3MTO Laboratory, Orleans University, 45067 Orleans, France; (A.X.); (H.T.)
- Translational Medicine Research Platform, PRIMMO, Regional Hospital of Orleans, 45007 Orleans, France
| | - Hechmi Toumi
- EA 4708 I3MTO Laboratory, Orleans University, 45067 Orleans, France; (A.X.); (H.T.)
- Translational Medicine Research Platform, PRIMMO, Regional Hospital of Orleans, 45007 Orleans, France
- Department Rheumatology, Regional Hospital of Orleans, 14 Avenue de L’Hopital, 45007 Orleans, France
| | - Eric Lespessailles
- EA 4708 I3MTO Laboratory, Orleans University, 45067 Orleans, France; (A.X.); (H.T.)
- Translational Medicine Research Platform, PRIMMO, Regional Hospital of Orleans, 45007 Orleans, France
- Department Rheumatology, Regional Hospital of Orleans, 14 Avenue de L’Hopital, 45007 Orleans, France
| |
Collapse
|
8
|
Ebid A, El-Boshy M, El-Shamy S, Thabet A, Abedalla M, Ali T. Long-term effect of full-body pulsed electromagnetic field and exercise protocol in the treatment of men with osteopenia or osteoporosis: A randomized placebo-controlled trial. F1000Res 2021; 10:649. [PMID: 34900231 PMCID: PMC8637238 DOI: 10.12688/f1000research.54519.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/26/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Osteoporosis is the most prevalent metabolic disease affecting bones.
Objective: To investigate the long-term effect of pulsed electromagnetic field (PEMF) combined with exercise protocol on bone mineral density (BMD) and bone markers in men with osteopenia or osteoporosis.
Methods: Ninety-five males with osteopenia or osteoporosis (mean age, 51.26 ± 2.41 years; mean height, 176 ± 2.02 cm; mean weight, 83.08 ± 2.60 kg; mean body–mass index (BMI), 26.08 ± 1.09 kg/m
2) participated in the study, and they were randomly assigned to one of three groups: Group 1 received a full-body PEMF and exercise protocol (PEMF +EX), Group 2 received a placebo full-body PEMF and exercise protocol (PPEMF +EX), and Group 3 received a full-body PEMF alone (PEMF). PEMF was applied for the whole body using a full-body mat three times per week for 12 weeks, with an exercise protocol that includes flexibility, aerobic exercise, strengthening, weight-bearing, and balance exercises followed by whole-body vibration (WBV) training. Outcome measures include BMD of total hip and lumbar spine and bone markers [serum osteocalcin (s-OC), Serum amino-terminal cross-linking telopeptide of type I collagen (s-NTX), Serum carboxy-terminal cross-linking telopeptide of type I collagen (s-CTX), Parathyroid hormones (PTH), Bone-specific Alkaline Phosphatase (BSAP), and 25-hydroxy vitamin D (Vit D)].
Results: The
BMD of total hip and lumbar spine was significantly increased post-treatment in all groups, and more so in Group 1 and Group 2 than Group 3. There was a significant difference in bone markers in all groups, more so in Group 1 and Group 2 than in Group 3.
Conclusion: PEMF combined with exercise protocol exerts a potent role for treating OP, is more effective than exercise and PEMF alone for increasing BMD and enhancing bone formation, and suppresses bone-resorption markers after 12-weeks of treatment with the impact lasting up to 6 months.
Collapse
Affiliation(s)
- Anwar Ebid
- Physical Therapy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed El-Boshy
- Laboratory Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Ali Thabet
- Physical Therapy, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Tariq Ali
- Umm Al-Qura University Medical Center, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
9
|
Brent MB, Brüel A, Thomsen JS. Sparse dose-dependent difference in skeletal effects of short-term glucocorticoid excess in outbred Swiss mice. ENDOCRINE AND METABOLIC SCIENCE 2021. [DOI: 10.1016/j.endmts.2021.100114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
10
|
Pulsed Electromagnetic Field Affects the Development of Postmenopausal Osteoporotic Women with Vertebral Fractures. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4650057. [PMID: 34327227 PMCID: PMC8302368 DOI: 10.1155/2021/4650057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Background Postoperative pain, dysfunction, and significant bone loss may occur after vertebral fractures, which will lead to the occurrence of refractures and shorten the survival time, so postoperative rehabilitation is very important. Pulsed electromagnetic field therapy is noninvasive, pain-relieving, and beneficial to reduce bone loss and is an important treatment for patients to recover after surgery. Therefore, this study analyzed the effect of postmenopausal women's vertebral fracture rehabilitation after pulsed electromagnetic field treatment. Method This study uses a randomized controlled study, respectively, in the pulsed electromagnetic field treatment group (40 cases) and the control group (42 cases), respectively. We studied the results of health-related quality of life scores (HRQOL), back pain, body function, hip bone density, bone microstructure of tibia, and radius after 1 month and 3 months after surgery. Results Compared with the control group, the pulsed electromagnetic field treatment group (PEMF) can improve significantly the psychological score, 6-minute walk test, and Chair Sit-and-Reach one month after the operation. And at 3 months after surgery, the pulsed electromagnetic field treatment group can improve significantly in health-related quality of life scores (HRQOL), back pain, and body function. Regarding the effect of changes in bone mass, compared with the control group, pulsed electromagnetic field treatment had no significant effect on changes in hip bone density. As a result of changes in bone microstructure, pulsed electromagnetic field treatment can significantly improve the bone microstructure of the radius and tibia three months after vertebral fractures. Conclusion Pulsed electromagnetic field therapy has positive significance for improving pain, body functional changes, and bone loss after vertebral fracture surgery.
Collapse
|
11
|
Wang L, Xie S, Zhu S, Gao C, He C. Efficacy of Pulsed Electromagnetic Fields on Experimental Osteopenia in Rodents: A Systematic Review. Bioelectromagnetics 2021; 42:415-431. [PMID: 34004034 DOI: 10.1002/bem.22348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 02/05/2023]
Abstract
Osteoporosis leads to increased bone fragility and risk of fractures. Different strategies have been employed to reduce bone loss, including the use of a pulsed electromagnetic field (PEMF). Although many experimental studies have demonstrated the effect of PEMF on reduction of bone loss, the outcomes studied are varied and insufficient, and the quality of evidence is unknown. Therefore, the aim of this review was to assess the preclinical evidence on the effect of PEMF on bone loss. The existing challenges were also evaluated, and suggestions were provided to strengthen the quality of evidence in future studies. All original articles concerning the effect of PEMF on osteoporosis in animal models were included. Twenty-four studies met the inclusion criteria, 23 of which suggested that PEMF was effective in reducing bone loss, while one study failed to demonstrate any benefit. Risk of bias analysis suggested that information on key measures to reduce bias was frequently not reported. Animal models for osteoporosis, PEMF intervention regimens, outcomes, and specific bone detection sites seemed to influence the efficacy of PEMF in osteoporosis. Our results indicate the potential benefits of PEMF selection in animal models of osteoporosis. However, due to the heterogeneity of the parameters and the quality of the included literature, comprehensive studies using standardized protocols are warranted to confirm the results. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Liqiong Wang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China.,Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, P.R. China
| | - Suhang Xie
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Siyi Zhu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Chengfei Gao
- The Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Chengqi He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, P.R. China.,Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, P.R. China.,Institute for Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, P.R. China
| |
Collapse
|
12
|
Lin CC, Chang YT, Lin RW, Chang CW, Wang GJ, Lai KA. Single pulsed electromagnetic field restores bone mass and microarchitecture in denervation/disuse osteopenic mice. Med Eng Phys 2020; 80:52-59. [DOI: 10.1016/j.medengphy.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 07/09/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
|
13
|
Galli C, Colangelo M, Pedrazzi G, Guizzardi S. The Response of Osteoblasts and Bone to Sinusoidal Electromagnetic Fields: Insights from the Literature. Calcif Tissue Int 2019; 105:127-147. [PMID: 30997574 DOI: 10.1007/s00223-019-00554-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/11/2019] [Indexed: 12/23/2022]
Abstract
Electromagnetic fields (EMFs) have been proposed as a tool to ameliorate bone formation and healing. Despite their promising results, however, they have failed to enter routine clinical protocols to treat bone conditions where higher bone mass has to be achieved. This is no doubt also due to a fundamental lack of knowledge and understanding on their effects and the optimal settings for attaining the desired therapeutic effects. This review analysed the available in vitro and in vivo studies that assessed the effects of sinusoidal EMFs (SEMFs) on bone and bone cells, comparing the results and investigating possible mechanisms of action by which SEMFs interact with tissues and cells. The effects of SEMFs on bone have not been as thoroughly investigated as pulsed EMFs; however, abundant evidence shows that SEMFs affect the proliferation and differentiation of osteoblastic cells, acting on multiple cellular mechanisms. SEMFs have also proven to increase bone mass in rodents under normal conditions and in osteoporotic animals.
Collapse
Affiliation(s)
- C Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
| | - M Colangelo
- Department of Medicine and Surgery, Histology and Embryology Lab, University of Parma, Parma, Italy
| | - G Pedrazzi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Via Volturno 39, 43126, Parma, Italy
| | - S Guizzardi
- Department of Medicine and Surgery, Histology and Embryology Lab, University of Parma, Parma, Italy
| |
Collapse
|
14
|
Galli C, Pedrazzi G, Guizzardi S. The cellular effects of Pulsed Electromagnetic Fields on osteoblasts: A review. Bioelectromagnetics 2019; 40:211-233. [PMID: 30908726 DOI: 10.1002/bem.22187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022]
Abstract
Electromagnetic fields (EMFs) have long been known to interact with living organisms and their cells and to bear the potential for therapeutic use. Among the most extensively investigated applications, the use of Pulsed EMFs (PEMFs) has proven effective to ameliorate bone healing in several studies, although the evidence is still inconclusive. This is due in part to our still-poor understanding of the mechanisms by which PEMFs act on cells and affect their functions and to an ongoing lack of consensus on the most effective parameters for specific clinical applications. The present review has compared in vitro studies on PEMFs on different osteoblast models, which elucidate potential mechanisms of action for PEMFs, up to the most recent insights into the role of primary cilia, and highlight the critical issues underlying at least some of the inconsistent results in the available literature. Bioelectromagnetics. 2019;9999:XX-XX. © 2019 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Carlo Galli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Stefano Guizzardi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
15
|
Wang T, Yang L, Jiang J, Liu Y, Fan Z, Zhong C, He C. Pulsed electromagnetic fields: promising treatment for osteoporosis. Osteoporos Int 2019; 30:267-276. [PMID: 30603841 DOI: 10.1007/s00198-018-04822-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/18/2018] [Indexed: 02/05/2023]
Abstract
Osteoporosis (OP) is considered to be a well-defined disease which results in high morbidity and mortality. In patients diagnosed with OP, low bone mass and fragile bone strength have been demonstrated to significantly increase risk of fragility fractures. To date, various anabolic and antiresorptive therapies have been applied to maintain healthy bone mass and strength. Pulsed electromagnetic fields (PEMFs) are employed to treat patients suffering from delayed fracture healing and nonunions. Although PEMFs stimulate osteoblastogenesis, suppress osteoclastogenesis, and influence the activity of bone marrow mesenchymal stem cells (BMSCs) and osteocytes, ultimately leading to retention of bone mass and strength. However, whether PEMFs could be taken into clinical use to treat OP is still unknown. Furthermore, the deeper signaling pathways underlying the way in which PEMFs influence OP remain unclear.
Collapse
Affiliation(s)
- T Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - L Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - J Jiang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Y Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Z Fan
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - C Zhong
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - C He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, 610041, Sichuan, People's Republic of China.
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
16
|
Wang P, Tang C, Wu J, Yang Y, Yan Z, Liu X, Shao X, Zhai M, Gao J, Liang S, Luo E, Jing D. Pulsed electromagnetic fields regulate osteocyte apoptosis, RANKL/OPG expression, and its control of osteoclastogenesis depending on the presence of primary cilia. J Cell Physiol 2018; 234:10588-10601. [DOI: 10.1002/jcp.27734] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/18/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Pan Wang
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Chi Tang
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Junjie Wu
- State Key Laboratory of Military Stomatology, Department of Orthodontics School of Stomatology, Fourth Military Medical University Xi’an China
| | - Yuefan Yang
- Department of Neurosurgery 251 Hospital of Chinese People’s Liberation Army Zhangjiakou China
| | - Zedong Yan
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Xiyu Liu
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Xi Shao
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Mingming Zhai
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Jie Gao
- State Key Laboratory of Military Stomatology, Department of Orthodontics School of Stomatology, Fourth Military Medical University Xi’an China
| | - Shengru Liang
- Department of Endocrinology Xijing Hospital, Fourth Military Medical Univerisity Xi’an China
| | - Erping Luo
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| | - Da Jing
- Department of Biomedical Engineering Fourth Military Medical University Xi’an China
| |
Collapse
|
17
|
The Use of Pulsed Electromagnetic Fields to Promote Bone Responses to Biomaterials In Vitro and In Vivo. Int J Biomater 2018; 2018:8935750. [PMID: 30254677 PMCID: PMC6140132 DOI: 10.1155/2018/8935750] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Implantable biomaterials are extensively used to promote bone regeneration or support endosseous prosthesis in orthopedics and dentistry. Their use, however, would benefit from additional strategies to improve bone responses. Pulsed Electromagnetic Fields (PEMFs) have long been known to act on osteoblasts and bone, affecting their metabolism, in spite of our poor understanding of the underlying mechanisms. Hence, we have the hypothesis that PEMFs may also ameliorate cell responses to biomaterials, improving their growth, differentiation, and the expression of a mature phenotype and therefore increasing the tissue integration of the implanted devices and their clinical success. A broad range of settings used for PEMFs stimulation still represents a hurdle to better define treatment protocols and extensive research is needed to overcome this issue. The present review includes studies that investigated the effects of PEMFs on the response of bone cells to different classes of biomaterials and the reports that focused on in vivo investigations of biomaterials implanted in bone.
Collapse
|
18
|
Xi J, Li Q, Luo X, Li J, Guo L, Xue H, Wu G. Epigallocatechin‑3‑gallate protects against secondary osteoporosis in a mouse model via the Wnt/β‑catenin signaling pathway. Mol Med Rep 2018; 18:4555-4562. [PMID: 30221714 DOI: 10.3892/mmr.2018.9437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 11/03/2017] [Indexed: 11/05/2022] Open
Abstract
Epigallocatechin‑3‑gallate (EGCG) is a polyphenolic compound extracted and isolated from green tea, which has a variety of important biological activities in vitro and in vivo, including anti‑tumor, anti‑oxidation, anti‑inflammation and lowering blood pressure. The aim of the present study was to investigate the protective effect of EGCG against secondary osteoporosis in a mouse model via the Wnt/β‑catenin signaling pathway. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting were used to analyze runt‑related transcription factor 2 and osterix mRNA expression, and the protein expression of cyclin D1, Wnt and β‑catenin, and suppressed peroxisome proliferator‑activated receptor γ protein expression. The protective effect of EGCG against secondary osteoporosis was examined and its potential mechanism was analyzed. Treatment with EGCG significantly decreased serum calcium, urinary calcium, body weight and body fat, and increased leptin levels in mice with secondary osteoporosis. In addition, EGCG treatment significantly inhibited the structure score of articular cartilage and cancellous bone in proximal tibia metaphysis in mice with secondary osteoporosis. Treatment also significantly decreased alkaline phosphatase activity, runt‑related transcription factor 2 and osterix mRNA expression. EGCG also significantly induced the protein expression of cyclin D1, Wnt and β‑catenin, and suppressed peroxisome proliferator‑activated receptor γ protein expression in mice with secondary osteoporosis. Taken together, these results suggest that EGCG may be a possible new drug in clinical settings.
Collapse
Affiliation(s)
- Jiancheng Xi
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Qinggui Li
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Xiaobo Luo
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Jinlong Li
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Lixin Guo
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Haibin Xue
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| | - Guangsen Wu
- Department of Minimally Invasive Spinal Surgery, The 309th Hospital of The People's Liberation Army, Beijing 100091, P.R. China
| |
Collapse
|
19
|
Pulsed electromagnetic fields and platelet rich plasma alone and combined for the treatment of wear-mediated periprosthetic osteolysis: An in vivo study. Acta Biomater 2018; 77:106-115. [PMID: 29981946 DOI: 10.1016/j.actbio.2018.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/26/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022]
Abstract
Wear-mediated osteolysis is a common complication occurring around implanted prosthesis, which ultimately leads to bone loss with mechanical instability and the need for surgical revision. At the moment, revision surgery is the only effective treatment. The aim of this study was to assess the efficacy of pulsed electromagnetic fields (PEMFs) and platelet rich plasma (PRP), alone and in association, in a clinically relevant in vivo model of periprosthetic osteolysis. Titanium alloy pins were implanted intramedullary in distal femurs of male inbred rats and, after osseointegration, polyethylene particles were injected intra-articularly to induce osteolysis. Animals were divided in four groups of treatment: PEMFs, PRP, PEMFs + PRP and no treatment. Microtomography was performed during the course of experiments to monitor bone stock and microarchitecture. Histology, histomorphometry, immunohistochemistry and biomechanics were evaluated after treatments. Biophysical and biological stimulations significantly enhanced bone to implant contact, bone volume and bone microhardness and reduced fibrous capsule formation and the number of osteoclasts around implants. Among treatments, PEMFs alone and in association with PRP exerted better results than PRP alone. Present data suggest that biophysical stimulation, with or without the enrichment with platelet derived growth factors, might be a safe, mini-invasive and conservative therapy for counteracting osteolysis and prompting bone formation around implants. STATEMENT OF SIGNIFICANCE Pulsed electromagnetic fields (PEMFs) and platelet rich plasma (PRP) show anabolic and anti-inflammatory effects and they are already been used in clinical practice, but separately. To date, there are no preclinical in vivo studies evaluating their combined efficacy in periprosthetic osteolysis, in bone tissue microarchitecture and in biomechanics. The aim of the present study was to evaluate the effects of PEMFs and PRP in vivo, when administered individually and in combination in the treatment of periprosthetic wear mediated ostelysis, and in restoring the osteogenetic properties of perimplant bone tissue and its biomechanical competence. The combination of PEMFs and PRP could be employed for counteracting the ostelysis process in a conservative and non surgical manner.
Collapse
|
20
|
Jazayeri M, Shokrgozar MA, Haghighipour N, Bolouri B, Mirahmadi F, Farokhi M. Effects of Electromagnetic Stimulation on Gene Expression of Mesenchymal Stem Cells and Repair of Bone Lesions. CELL JOURNAL 2016; 19:34-44. [PMID: 28367415 PMCID: PMC5241516 DOI: 10.22074/cellj.2016.4870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/28/2016] [Indexed: 01/08/2023]
Abstract
Objective Most people experience bone damage and bone disorders during their lifetimes.
The use of autografts is a suitable way for injury recovery and healing. Mesenchymal stem
cells (MSCs) are key players in tissue engineering and regenerative medicine. Their proliferation potential and multipotent differentiation ability enable MSCs to be considered as appropriate cells for therapy and clinical applications. Differentiation of stem cells depends on
their microenvironment and biophysical stimulations. The aim of this study is to analyze the
effects of an electromagnetic field on osteogenic differentiation of stem cells.
Materials and Methods In this experimental animal study, we assessed the effects of the
essential parameters of a pulsatile electromagnetic field on osteogenic differentiation. The
main purpose was to identify an optimum electromagnetic field for osteogenesis induction. After isolating MSCs from male Wistar rats, passage-3 (P3) cells were exposed to an
electromagnetic field that had an intensity of 0.2 millitesla (mT) and frequency of 15 Hz for
10 days. Flow cytometry analysis confirmed the mesenchymal identity of the isolated cells.
Pulsatile electromagnetic field-stimulated cells were examined by immunocytochemistry
and real-time polymerase chain reaction (PCR).
Results Electromagnetic field stimulation alone motivated the expression of osteogenic
genes. This stimulation was more effective when combined with osteogenic differentiation
medium 6 hours per day for 10 days. For the in vivo study, an incision was made in the
cranium of each animal, after which we implanted a collagen scaffold seeded with stimulated cells into the animals. Histological analysis revealed bone formation after 10 weeks
of implantation.
Conclusion We have shown that the combined use of chemical factors and an electromagnetic field was more effective for inducing osteogenesis. These elements have synergistic effects and are beneficial for bone tissue engineering applications.
Collapse
Affiliation(s)
- Maryam Jazayeri
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Bahram Bolouri
- Department of Biophysics and Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
21
|
Storch K, Dickreuter E, Artati A, Adamski J, Cordes N. BEMER Electromagnetic Field Therapy Reduces Cancer Cell Radioresistance by Enhanced ROS Formation and Induced DNA Damage. PLoS One 2016; 11:e0167931. [PMID: 27959944 PMCID: PMC5154536 DOI: 10.1371/journal.pone.0167931] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
Each year more than 450,000 Germans are expected to be diagnosed with cancer subsequently receiving standard multimodal therapies including surgery, chemotherapy and radiotherapy. On top, molecular-targeted agents are increasingly administered. Owing to intrinsic and acquired resistance to these therapeutic approaches, both the better molecular understanding of tumor biology and the consideration of alternative and complementary therapeutic support are warranted and open up broader and novel possibilities for therapy personalization. Particularly the latter is underpinned by the increasing utilization of non-invasive complementary and alternative medicine by the population. One investigated approach is the application of low-dose electromagnetic fields (EMF) to modulate cellular processes. A particular system is the BEMER therapy as a Physical Vascular Therapy for which a normalization of the microcirculation has been demonstrated by a low-frequency, pulsed EMF pattern. Open remains whether this EMF pattern impacts on cancer cell survival upon treatment with radiotherapy, chemotherapy and the molecular-targeted agent Cetuximab inhibiting the epidermal growth factor receptor. Using more physiological, three-dimensional, matrix-based cell culture models and cancer cell lines originating from lung, head and neck, colorectal and pancreas, we show significant changes in distinct intermediates of the glycolysis and tricarboxylic acid cycle pathways and enhanced cancer cell radiosensitization associated with increased DNA double strand break numbers and higher levels of reactive oxygen species upon BEMER treatment relative to controls. Intriguingly, exposure of cells to the BEMER EMF pattern failed to result in sensitization to chemotherapy and Cetuximab. Further studies are necessary to better understand the mechanisms underlying the cellular alterations induced by the BEMER EMF pattern and to clarify the application areas for human disease.
Collapse
Affiliation(s)
- Katja Storch
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Ellen Dickreuter
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany
| | - Anna Artati
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Nils Cordes
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|