1
|
Amirian V, Russel M, Yusof ZNB, Chen JE, Movafeghi A, Kosari-Nasab M, Zhang D, Szpyrka E. Algae- and bacteria-based biodegradation of phthalic acid esters towards the sustainable green solution. World J Microbiol Biotechnol 2025; 41:24. [PMID: 39762597 DOI: 10.1007/s11274-024-04243-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms. Thus, environmentally friendly and sustainable solutions for their removal are urgently needed. In this context, both natural and engineered bacterial and algal communities have played a crucial role in the degradation of various phthalic acid esters present in water and soil. When algae-bacteria co-culture is compared to a singular algae or bacteria system, this symbiotic system shows superior performance in the removal of dibutyl phthalates and diethyl phthalates from synthetic wastewater. This review provides an optimistic outlook for co-culture systems by in-depth examining single microorganisms, namely bacteria and algae, as well as algae-bacterial consortiums for phthalates degradation, which will draw attention to species co-existence for the removal of various pollutants from the environment. In addition, further development and research, particularly on the mechanisms, genes involved in the degradation of phthalic acid esters, and interactions between bacterial and algal species, will lead to the discovery of more adaptable species as well as the production of targeted species to address the environmental pollution crisis and provide a green, efficient, and sustainable approach to environmental protection. Discrepancies in knowledge and potential avenues for exploration will enhance the existing body of literature, enabling researchers to investigate this field more comprehensively.
Collapse
Affiliation(s)
- Veghar Amirian
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, P.R. China
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 51666-14779, Iran
| | - Mohammad Russel
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, P.R. China.
| | - Zetty Norhana Balia Yusof
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Putra University Malaysia, Serdang, Selangor, 43400 UPM, Malaysia
| | - Jit Ern Chen
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor Darul Ehsan, Bandar Sunway, 47500, Malaysia
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, 29 Bahman Blvd, Tabriz, 51666-14779, Iran
| | - Morteza Kosari-Nasab
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 51656-65811, Iran
| | - Dayong Zhang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin, 124221, P.R. China
| | - Ewa Szpyrka
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland
| |
Collapse
|
2
|
Liu R, Tao Y. Occurrence, bioaccumulation, and partitioning of phthalate acid esters in the third largest freshwater lake (Lake Taihu) in China. ENVIRONMENTAL RESEARCH 2024; 263:120188. [PMID: 39427943 DOI: 10.1016/j.envres.2024.120188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Phthalate acid esters (PAEs) are a category of plasticizers that are ubiquitous in freshwater environments attributable to extensive utilization. We collected water, suspended particulate matter (SPM), surface sediments, phytoplankton, and zooplankton from 23 sampling sites to investigate and complement the occurrence, bioaccumulation, and partitioning of five PAEs including dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), and di (2-ethylhexyl) phthalate (DEHP) in the third largest freshwater lake (Lake Taihu) of China. PAEs were extracted using Soxhlet extraction and solid phase extraction, and determined by gas chromatography-mass spectrometry. The average concentrations of the five PAEs in the water column, SPM, sediments, phytoplankton, and zooplankton of Lake Taihu were 1.93 ± 1.57 μg L-1, 765 ± 766 μg g-1, 1.68 ± 1.47 μg g-1, 1358 ± 1877 μg g-1, and 72.7 ± 134 μg g-1, respectively. DBP and DEHP were the dominant PAE congeners in the five environment compartments. The logarithmic concentrations of DBP, BBP, and DEHP in the SPM were negatively correlated with the logarithmic content of the SPM. Biodilution significantly impacted the occurrence of PAEs in the plankton. Bioaccumulation of PAEs was found in the plankton with log BCF (bioconcentration factor) in the phytoplankton ranging from 1.78 ± 0.86 to 4.13 ± 1.23 and log BAF (bioaccumulation factor) in the zooplankton varying from -0.10 ± 0.26 to 3.04 ± 0.64. Biomagnification of the PAEs from phytoplankton to zooplankton was not observed. DMP, DEP, and BBP migrated from sediments to water. DBP was in dynamic equilibrium in the sediment-water system. DEHP transferred from water to sediments. Our results provide crucial complementary knowledge on bioaccumulation and transfer of PAEs in planktonic food web, and their partitioning in different compartments of waters.
Collapse
Affiliation(s)
- Ruiling Liu
- College of Oceanography, Hohai University, Nanjing 210024, China
| | - Yuqiang Tao
- College of Oceanography, Hohai University, Nanjing 210024, China.
| |
Collapse
|
3
|
Wang X, Wei J, Zhang X, Chen Q, Lakshmikandan M, Li M. Comparing the removal efficiency of diisobutyl phthalate by Bacillariophyta, Cyanophyta and Chlorophyta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169507. [PMID: 38142000 DOI: 10.1016/j.scitotenv.2023.169507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/17/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
The utilization of microalgae for both removing phthalate esters (PAEs) from wastewater and producing bioenergy has become a popular research topic. However, there is a lack of studies comparing the effectiveness of different types of microalgae in removing these harmful compounds. Therefore, the present study aimed to evaluate and compare the efficiency of various processes, such as hydrolysis, photolysis, adsorption, and biodegradation, in removing diisobutyl phthalate (DiBP) using six different species of microalgae. The study indicated that the average removal efficiency of DiBP (initial concentrations of 5, 0.5, and 0.05 mg L-1) by all six microalgae (initial cell density of 1 × 106 cells mL-1) was in the order of Scenedesmus obliquus (95.39 %) > Chlorella vulgaris (94.78 %) > Chroococcus sp. (91.16 %) > Cyclotella sp. (89.32 %) > Nitzschia sp. (88.38 %) > Nostoc sp. (84.33 %). The results of both hydrolysis and photolysis experiments revealed that the removal of DiBP had minimal impact, with respective removal efficiencies of only 0.89 % and 1.82 %. The adsorption efficiency of all six microalgae decreased significantly with increasing initial DiBP concentrations, while the biodegradation efficiency was elevated. Chlorella vulgaris and Chroococcus sp. demonstrated the highest adsorption and biodegradation efficiencies among the microalgae tested. Scenedesmus obliquus was chosen for the analysis of the degradation products of DiBP due to its exceptional ability to remove DiBP. The analysis yielded valuable results, identifying monoisobutyl phthalate (MiBP), phthalic acid (PA), and salicylic acid (SA) as the possible degradation products of DiBP. The possible degradation pathways mainly included dealkylation, the addition of hydroxyl groups, and decarboxylation. This study lays a theoretical foundation for the elimination of PAEs in the aquatic environment.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jianan Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyi Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Qiaoshen Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Manogaran Lakshmikandan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
4
|
Abo-Shady AM, Osman MEAH, Gaafar RM, Ismail GA, El-Nagar MMF. Cyanobacteria as a Valuable Natural Resource for Improved Agriculture, Environment, and Plant Protection. WATER, AIR, AND SOIL POLLUTION 2023; 234:313. [PMID: 37192997 PMCID: PMC10156578 DOI: 10.1007/s11270-023-06331-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/21/2023] [Indexed: 05/18/2023]
Abstract
Taking into consideration, the challenges faced by the environment and agro-ecosystem make increased for suggestions more reliable methods to help increase food security and deal with difficult environmental problems. Environmental factors play a critical role in the growth, development, and productivity of crop plants. Unfavorable changes in these factors, such as abiotic stresses, can result in plant growth deficiencies, yield reductions, long-lasting damage, and even death of the plants. In reflection of this, cyanobacteria are now considered important microorganisms that can improve the fertility of soils and the productivity of crop plants due to their different features like photosynthesis, great biomass yield, ability to fix the atmospheric N2, capability to grow on non-arable lands, and varied water sources. Furthermore, numerous cyanobacteria consist of biologically active substances like pigments, amino acids, polysaccharides, phytohormones, and vitamins that support plant growth enhancement. Many studies have exposed the probable role of these compounds in the alleviation of abiotic stress in crop plants and have concluded with evidence of physiological, biochemical, and molecular mechanisms that confirm that cyanobacteria can decrease the stress and induce plant growth. This review discussed the promising effects of cyanobacteria and their possible mode of action to control the growth and development of crop plants as an effective method to overcome different stresses. Graphical Abstract
Collapse
Affiliation(s)
- Atef M. Abo-Shady
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | | | - Reda M. Gaafar
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | - Gehan A. Ismail
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | | |
Collapse
|
5
|
Manzi HP, Zhang P, Zhang L, Xing X, Yue J, Song Z, Nan L, Yujun S, Khan A, Yoon Y, Salama ES. Effect of dibutyl phthalate on microalgal growth kinetics, nutrients removal, and stress enzyme activities. MARINE ENVIRONMENTAL RESEARCH 2022; 181:105741. [PMID: 36122470 DOI: 10.1016/j.marenvres.2022.105741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The dibutyl phthalate (DPB) is an emerging plasticizer contaminant that disrupts the biological processes of primary producers, especially phytoplankton. In this study, two microalgal species (Chlorella sp. GEEL-08 and Tetradesmus dimorphus GEEL-04) were exposed to various concentrations of DBP extending from 0 to 100 mg/L. The growth kinetics, N-nitrate, and P-phosphate removal efficiency were assessed. The response enzymes such as malonaldehyde (MDA) and superoxide dismutase (SOD) were also investigated. The results revealed that the Chlorella sp. GEEL-08 at 10 mg/L concentration of DBP exhibited higher growth (0.88 OD680nm) compared to T. dimorphus GEEL-04 (0.80 OD680nm). More than 94% of N and P were removed from culture media by both microalgal species. The DBP (>50 mg/L) significantly exacerbates the growth of both microalgae species and the growth inhibition ratio was in the range of 3.6%-25.9%. The SOD activity and MDA were higher in T. dimorphus culture media than in the culture media of Chlorella sp. The results reflect the hazard and the risk of plasticizers on primary producers in the ecosystem.
Collapse
Affiliation(s)
- Habasi Patrick Manzi
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Lihong Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Xiaohong Xing
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Jianwei Yue
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Zhongzhong Song
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Lan Nan
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Su Yujun
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China
| | - Aman Khan
- MOE, Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou City, Gansu Province, 730000, PR China
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou City, 730000, Gansu Province, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou City, Gansu Province, 730020, PR China.
| |
Collapse
|
6
|
Mishra P, Kiran NS, Romanholo Ferreira LF, Mulla SI. Algae bioprocess to deal with cosmetic chemical pollutants in natural ecosystems: A comprehensive review. J Basic Microbiol 2021; 62:1083-1097. [PMID: 34913513 DOI: 10.1002/jobm.202100467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 12/03/2021] [Indexed: 01/07/2023]
Abstract
Elevated demand and extensive exploitation of cosmetics in day-to-day life have hiked up its industrial productions worldwide. Organic and inorganic chemicals like parabens, phthalates, sulfates, and so forth are being applied as constituents towards the formulations, which tend to be the mainspring ecological complication due to their enduring nature and accumulation properties in various sections of the ecosystem. These cosmetic chemicals get accrued into the terrestrial and aquatic systems on account of various anthropogenic activities involving agricultural runoff, industrial discharge, and domestic effluents. Recently, the use of microbes for remediating persistent cosmetic chemicals has gained immense interest. Among different forms of the microbial community being applied as an environmental beneficiary, algae play a vital role in both terrestrial and aquatic ecosystems by their biologically beneficial metabolites and molecules, resulting in the biobenign and efficacious consequences. The use of various bacterial, fungal, and higher plant species has been studied intensely for their bioremediation elements. The bioremediating property of the algal cells through biosorption, bioassimilation, biotransformation, and biodegradation has made it favorable for the removal of persistent and toxic pollutants from the environment. However, the research investigation concerned with the bioremediation potential of the algal kingdom is limited. This review summarizes and provides updated and comprehensive insights into the potential remediation capabilities of algal species against ecologically hazardous pollutants concerning cosmetic chemicals.
Collapse
Affiliation(s)
- Prabhakar Mishra
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - N S Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Aracaju, Sergipe, Brazil.,Waste and Effluent Treatment Laboratory, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil
| | - Sikandar I Mulla
- Department of Biochemistry, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| |
Collapse
|
7
|
Mishra A, Gupta J, Kumari T, Pal R, Thakur IS. Unravelling the attributes of novel cyanobacteria Jacksonvillea sp. ISTCYN1 by draft genome sequencing. BIORESOURCE TECHNOLOGY 2021; 337:125473. [PMID: 34320753 DOI: 10.1016/j.biortech.2021.125473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Filamentous cyanobacteria, Jacksonvillea sp. ISTCYN1 was isolated from agriculture field and cultured in BG-11 medium. This study, report the genome sequence of cyanobacteria Jacksonvillea thatto the best of our knowledgeis the firstgenome sequenceof thisgenus. The 5.7 MB draft genome sequence of this cyanobacterium contains 5134 protein-coding genes. The phylogenetic tree was constructed based on genome and Desertifilum sp. IPPAS B-1220 validated the closest relationship with Jacksonvillea sp. ISTCYN1. The growth of strain ISTCYN1 has been reported in the presence of different types of plastic when used as a sole carbon source. SEM analysis revealed biofilm formation by cyanobacterial strain ISTCYN1 on the surface of high and low-density polyethylene and polypropylene. In the presence of these plastics, EPS production has also been reported by this strain. Whole genome sequence analysis reveals the presence of many genes involved in biofilm formation. The presence of key enzymes responsible for plastic degradation laccase, esterase, lipase, thioesterase, and peroxidase have been predicted in the genome analysis. Genome analysis also provides insight into the genes involved in biotin biosynthetic pathways. Furthermore, the presence of many selenoproteins reveals the selenium acquisition by this cyanobacterium.
Collapse
Affiliation(s)
- Arti Mishra
- Amity Institute of Microbial Technology, Amity University, Uttar Pradesh, Sector-125, Noida 201303, India
| | - Juhi Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India
| | - Taruna Kumari
- Department of Statistics, University of Delhi, New Delhi 110007, India
| | - Ruchita Pal
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi 110067, India
| | - I S Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, Delhi 110067, India.
| |
Collapse
|
8
|
Gao K, Li B, Xue C, Dong J, Qian P, Lu Q, Deng X. Oxidative stress responses caused by dimethyl phthalate (DMP) and diethyl phthalate (DEP) in a marine diatom Phaeodactylum tricornutum. MARINE POLLUTION BULLETIN 2021; 166:112222. [PMID: 33711610 DOI: 10.1016/j.marpolbul.2021.112222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
A marine diatom (Phaeodactylum tricornutum) was exposed to different concentrations of dimethyl phthalate (DMP) and diethyl phthalate (DEP) for 96 h within a batch-culture system to investigate their toxicities. Results showed that P. tricornutum could remove DMP and DEP effectively with removal rates of 0.20-0.30 and 0.14-0.21 mg L-1 h-1, respectively. In addition, DMP and DEP significantly inhibited the photosynthesis and chlorophyll a biosynthesis of P. tricornutum with 96-h EC50 values of 390.5 mg L-1 and 74.0 mg L-1, respectively. Results of reactive oxygen species (ROS) level suggested that the two PAEs could induce excessive ROS production in the diatom. Moreover, activities of antioxidant enzymes (i.e., SOD and POD) in the diatom increased with the increase of DMP and DEP concentrations. The results will help to understand the toxic mechanisms of PAEs, and provide strong evidences for evaluating their ecological risks in the marine environment.
Collapse
Affiliation(s)
- Kun Gao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Bin Li
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Chunye Xue
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Jingwei Dong
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Pingkang Qian
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Qian Lu
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Xiangyuan Deng
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| |
Collapse
|
9
|
Kaur R, Kumari A, Sharma G, Singh D, Kaur R. Biodegradation of endocrine disrupting chemicals benzyl butyl phthalate and dimethyl phthalate by Bacillus marisflavi RR014. J Appl Microbiol 2021; 131:1274-1288. [PMID: 33599367 DOI: 10.1111/jam.15045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 11/27/2022]
Abstract
AIM The objectives of the present study were to explore the benzyl butyl phthalate (BBP) and dimethyl phthalate (DMP) degradation potential of Bacillus marisflavi RR014 isolated from the tap water of public toilet and also to optimize the phthalates degradation process using response surface methodology. METHODS AND RESULTS The minimal salt medium was used for the biodegradation analysis of phthalates. The quantification of phthalates and their intermediate metabolites identification were done by using UHPLC and LC-MS/MS respectively. The results revealed that B. marisflavi RR014 is capable of degrading both the phthalates under varying pH, temperature and salinity conditions. The formation of phthalic acid from the breakdown of BBP and DMP (500 mg l-1 ) in the medium was observed after 24 h. After 72 h, 61% of BBP and 98·9% of DMP in the medium was degraded as monitored by UHPLC. The identification of intermediate metabolites by LC-MS/MS revealed that hydrolysis of BBP and DMP produces phthalic acid. CONCLUSIONS The degradation rate of both the phthalates was increased as the parameters increased up to an optimum level. The three environmental factors (pH, temperature and salt concentration) strongly affect the rate of degradation of both the phthalates. The maximum degradation rate for both the phthalates was achieved at pH 7, temperature 35°C and salt concentration of 1% as observed from the central composite experimental design. SIGNIFICANCE AND IMPACT OF THE STUDY It is the first report on the phthalates biodegradation potential of B. marisflavi RR014 isolated from the tap water of public toilet. The bacterium is capable of degrading BBP and DMP under varying pH, temperature and salinity, therefore, ideal to treat the phthalate contaminated environments.
Collapse
Affiliation(s)
- R Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - A Kumari
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - G Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - D Singh
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - R Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
10
|
Han S, Han W, Chen J, Sun Y, Dai M, Zhao G. Bioremediation of malachite green by cyanobacterium Synechococcus elongatus PCC 7942 engineered with a triphenylmethane reductase gene. Appl Microbiol Biotechnol 2020; 104:3193-3204. [PMID: 32067057 DOI: 10.1007/s00253-020-10438-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/24/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Malachite green is a carcinogenic dye that has been detected in fish tissues and freshwater. Here we evaluated the malachite green decoloring ability of a photoautotrophic cyanobacterium, Synechococcus elongatus PCC 7942 (Synechococcus), that lives in freshwater. Results show that 99.5% of the dye was removed by Synechococcus through bioabsorption and bioaccumulation; however, the dye was not degraded or chemically modified. Next, we established an engineered Synechococcus strain to degrade the dye after uptake. The triphenylmethane reductase gene katmr was heterologously expressed, resulting in high production of a soluble recombinant protein. The engineered strain showed advanced decoloring abilities at a low cell density and in stressful environments. It degraded malachite green into the smaller molecules 4-methylaminobenzoic acid and 4-hydroxyl-aniline. After treatment with the engineered cyanobacterium, the growth of wheat seeds was fully recovered in the presence of malachite green. These results demonstrate the potential application of the engineered Synechococcus as a photosynthetic cell factory for the removal of malachite green from wastewater.
Collapse
Affiliation(s)
- Sheng Han
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Wenbo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jun Chen
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Yuankai Sun
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China.
| | - Guoyan Zhao
- College of Life Science, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
11
|
Cheng X, Dong S, Chen D, Rui Q, Guo J, Jiang J. Potential of esterase DmtH in transforming plastic additive dimethyl terephthalate to less toxic mono-methyl terephthalate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109848. [PMID: 31670182 DOI: 10.1016/j.ecoenv.2019.109848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/16/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Dimethyl terephthalate (DMT) is a primary ingredient widely used in the manufacture of polyesters and industrial plastics; its environmental fate is of concern due to its global use. Microorganisms play key roles in the dissipation of DMT from the environment; however, the enzymes responsible for the initial transformation of DMT and the possible altered toxicity due to this biotransformation have not been extensively studied. To reduce DMT toxicity, we identified the esterase gene dmtH involved in the initial transformation of DMT from the AOPP herbicide-transforming strain Sphingobium sp. C3. DmtH shows 24-41% identity with α/β-hydrolases and belongs to subfamily V of bacterial esterases. The purified recombinant DmtH was capable of transforming DMT to mono-methyl terephthalate (MMT) and potentially transforming other p-phthalic acid esters, including diallyl terephthalate (DAT) and diethyl terephthalate (DET). Using C. elegans as an assay model, we observed the severe toxicity of DMT in inducing reactive oxygen species (ROS) production, decreasing locomotion behavior, reducing lifespan, altering molecular basis for oxidative stress, and inducing mitochondrial stress. In contrast, exposure to MMT did not cause obvious toxicity, induce oxidative stress, and activate mitochondrial stress in nematodes. Our study highlights the usefulness of Sphingobium sp. C3 and its esterase DmtH in transforming p-phthalic acid esters and reducing the toxicity of DMT to organisms.
Collapse
Affiliation(s)
- Xiaokun Cheng
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangshuang Dong
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Medical School, Southeast University, Nanjing, 210009, China
| | - Dian Chen
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Rui
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Guo
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
12
|
Żyszka-Haberecht B, Niemczyk E, Lipok J. Metabolic relation of cyanobacteria to aromatic compounds. Appl Microbiol Biotechnol 2019. [PMID: 30580382 DOI: 10.1007/s0025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Cyanobacteria, also known as blue-green (micro)algae, are able to sustain many types of chemical stress because of metabolic adaptations that allow them to survive and successfully compete in a variety of ecosystems, including polluted ones. As photoautotrophic bacteria, these microorganisms synthesize aromatic amino acids, which are precursors for a large variety of substances that contain aromatic ring(s) and that are naturally formed in the cells of these organisms. Hence, the transformation of aromatic secondary metabolites by cyanobacteria is the result of the possession of a suitable "enzymatic apparatus" to carry out the biosynthesis of these compounds according to cellular requirements. Another crucial aspect that should be evaluated using varied criteria is the response of cyanobacteria to the presence of extracellular aromatic compounds. Some aspects of the relationship between aromatic compounds and cyanobacteria such as the biosynthesis of aromatic compounds, the influence of aromatic compounds on these organisms and the fate of aromatic substances inside microalgal cells are presented in this paper. The search for this information has suggested that there is a lack of knowledge about the regulation of the biosynthesis of aromatic substances and about the transport of these compounds into cyanobacterial cells. These aspects are of pivotal importance with regard to the biotransformation of aromatic compounds and understanding them may be the goals of future research.
Collapse
Affiliation(s)
- Beata Żyszka-Haberecht
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Emilia Niemczyk
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Jacek Lipok
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland.
| |
Collapse
|
13
|
Studies on estrone biodegradation potential of cyanobacterial species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Sun C, Zhang G, Zheng H, Liu N, Shi M, Luo X, Chen L, Li F, Hu S. Fate of four phthalate esters with presence of Karenia brevis: Uptake and biodegradation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:81-90. [PMID: 30468977 DOI: 10.1016/j.aquatox.2018.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/11/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
Phthalate esters (PAEs), one class of the most frequently detected endocrine-disrupting chemicals (EDCs) in marine environment, have aroused wide public concerns because of their carcinogenicity, teratogenicity, and mutagenicity. However, the environmental fate of PAEs in the occurrence of harmful algal blooms remains unclear. In this research, four PAEs with different alkyl chains, i.e., dimethyl phthalate (DMP), diethyl phthalate (DEP), diallyl phthalate (DAP), and dipropyl phtalate (DPrP) were selected as models to investigate toxicity, uptake, and degradation of PAEs in seawater grown with K. brevis, one of the common harmful red tide species. The 96-h median effective concentration (96h-EC50) values followed the order of DMP (over 0.257 mmol L-1) > DEP (0.178 mmol L-1) > DAP (0.136 mmol L-1) > DPrP (0.095 mmol L-1), and the bio-concentration factors (BCFs) were positively correlated to the alkyl chain length. These results indicate that the toxicity of PAEs and their accumulation in K. brevis increased with increasing alkyl chains, due to the higher lipophicity of the longer chain PAEs. With growth of K. brevis for 96 h, the content of DMP, DEP, DAP, and DPrP decreased by 93.3%, 68.2%, 57.4% and 46.7%, respectively, mainly attributed to their biodegradation by K. brevis, accounting for 87.1%, 61%, 46%, 40% of their initial contents, respectively. It was noticed that abiotic degradation had little contribution to the total reduction of PAEs in the algal cultivation systems. Moreover, five metabolites were detected in the K. brevis when exposed to DEP including dimethyl phthalate (DMP), monoethyl phthalate (MEP), mono-methyl phthalate (MMP), phthalic acid (PA), and protocatechuic acid (PrA). While when exposed with to DPrP, one additional intermediate compound diethyl phthalate (DEP) was detected in the cells of K. brevis in addition to the five metabolites mentioned above. These results confirm that the main biodegradation pathways of DEP and DPrP by K. brevis included de-esterification, demethylation or transesterification. These findings will provide valuable evidences for predicting the environmental fate and assessing potential risk of PAEs in the occurrence of harmful algal blooms in marine environment.
Collapse
Affiliation(s)
- Cuizhu Sun
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Ge Zhang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Ning Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Mei Shi
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xianxiang Luo
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Lingyun Chen
- Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| | - Shugang Hu
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
15
|
Żyszka-Haberecht B, Niemczyk E, Lipok J. Metabolic relation of cyanobacteria to aromatic compounds. Appl Microbiol Biotechnol 2018; 103:1167-1178. [PMID: 30580382 PMCID: PMC6394484 DOI: 10.1007/s00253-018-9568-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
Cyanobacteria, also known as blue-green (micro)algae, are able to sustain many types of chemical stress because of metabolic adaptations that allow them to survive and successfully compete in a variety of ecosystems, including polluted ones. As photoautotrophic bacteria, these microorganisms synthesize aromatic amino acids, which are precursors for a large variety of substances that contain aromatic ring(s) and that are naturally formed in the cells of these organisms. Hence, the transformation of aromatic secondary metabolites by cyanobacteria is the result of the possession of a suitable "enzymatic apparatus" to carry out the biosynthesis of these compounds according to cellular requirements. Another crucial aspect that should be evaluated using varied criteria is the response of cyanobacteria to the presence of extracellular aromatic compounds. Some aspects of the relationship between aromatic compounds and cyanobacteria such as the biosynthesis of aromatic compounds, the influence of aromatic compounds on these organisms and the fate of aromatic substances inside microalgal cells are presented in this paper. The search for this information has suggested that there is a lack of knowledge about the regulation of the biosynthesis of aromatic substances and about the transport of these compounds into cyanobacterial cells. These aspects are of pivotal importance with regard to the biotransformation of aromatic compounds and understanding them may be the goals of future research.
Collapse
Affiliation(s)
- Beata Żyszka-Haberecht
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Emilia Niemczyk
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Jacek Lipok
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland.
| |
Collapse
|