1
|
Jang SB, Kim Y, Yeo HC, Kang GH, An BC, Ryu Y, Chung MJ, Cho SG. Probiotic-Derived P8 Protein: Promoting Proliferation and Migration in Stem Cells and Keratinocytes. Int J Stem Cells 2025; 18:87-98. [PMID: 39491493 PMCID: PMC11867908 DOI: 10.15283/ijsc24107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Probiotics exert various effects on the body and provide different health benefits. Previous reports have demonstrated that the P8 protein (P8), isolated from Lactobacillus rhamnosus, has anticancer properties. However, its efficacy in stem cells and normal cells has not been reported. In this study, the effect of P8 on cell proliferation and wound healing was evaluated, investigating its underlying mechanism. Based on scratch assay results, we demonstrated that P8 treatment significantly increases wound healing by activating the cell cycle and promoting stem cell stemness. Cellular mechanisms were further investigated by culturing stem cells in a medium containing Lactobacillus-derived P8 protein, revealing its promotion of cell proliferation and migration. Also, it is found that P8 enhances the expression of stemness markers, such as OCT4 and SOX2, along with activation of the mitogen-activated protein kinase (MAPK) signaling and Hippo pathways. These results indicate that P8 can promote cell growth by increasing stem cell proliferation, migration, and stemness in a manner associated with MAPK and Hippo signaling, which could contribute to the increased wound healing after P8 treatment. Furthermore, P8 could promote wound healing in keratinocytes by activating the MAPK signaling pathways. These results suggest that P8 might be a promising candidate to enhance stem cell culture efficiency by activating cell proliferation, and enhance therapeutic effects in skin diseases.
Collapse
Affiliation(s)
- Soo Bin Jang
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
| | - Yoojung Kim
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
| | - Han Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
| | | | | | - Yongku Ryu
- R&D Center, Cell Biotech Co., Ltd., Gimpo, Korea
| | | | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Molecular & Cellular Reprogramming Center and Institute of Advanced Regenerative Science, Konkuk University, Seoul, Korea
- R&D Team, StemExOne Co., Ltd., Seoul, Korea
| |
Collapse
|
2
|
Wada H, Mawatari T, Saito Y, Azuma N, Iwama Y. Lactobacillus helveticus Induces Two Types of Dendritic Cell Activation and Effectively Suppresses Onset of the Common Cold: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 17:101. [PMID: 39796535 PMCID: PMC11723090 DOI: 10.3390/nu17010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Lactobacillus helveticus GCL1815 is a lactic acid bacterium thought to activate dendritic cells. This randomized, placebo-controlled, double-blind study aimed to evaluate the effects of L. helveticus GCL1815 on human dendritic cells and the onset of the common cold. METHODS Two hundred participants were divided into two groups and took capsules containing either six billion L. helveticus GCL1815 cells or placebo for 8 weeks. RESULTS In the GCL1815 group, the cumulative incidence days of symptoms such as feverishness, fatigue, tiredness, runny nose, nasal congestion, and phlegm were significantly lower than in the placebo group. Moreover, the change in the expression of HLA-DR on plasmacytoid dendritic cells was significantly higher in the GCL1815 group than in the placebo group at 4 and 8 weeks of intake. The expression of CD86 on plasmacytoid dendritic cells was significantly increased in the GCL1815 group at 4 and 8 weeks compared with before intake. Additionally, the expression of HLA-DR on type 1 conventional dendritic cells was significantly higher in the GCL1815 group than in the placebo group at 8 weeks of intake. The expression of CD86 on type 1 conventional dendritic cells significantly decreased in the placebo group but remained statistically the same in the GCL1815 group after intake compared with before. CONCLUSIONS These results suggest that GCL1815 intake may enhance the response to viruses by activating two types of dendritic cells, thereby preventing the onset of systemic and local common colds in healthy adults.
Collapse
Affiliation(s)
- Hiroka Wada
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan; (T.M.); (Y.S.); (N.A.)
| | - Takashi Mawatari
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan; (T.M.); (Y.S.); (N.A.)
| | - Yasuo Saito
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan; (T.M.); (Y.S.); (N.A.)
| | - Naoki Azuma
- R&D Laboratory, Ezaki Glico Co., Ltd., 4-6-5 Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan; (T.M.); (Y.S.); (N.A.)
| | - Yoshitaka Iwama
- Nihonbashi Cardiology Clinic, Kyodo Bldg. #201, 13-4 Nihonbashi Kodenmacho, Chuo-ku, Tokyo 103-0001, Japan;
| |
Collapse
|
3
|
Zhang SL, Wang X, Cai QQ, Chen C, Zhang ZY, Xu YY, Yang MX, Jia QA, Wang Y, Wang ZM. Acarbose enhances the efficacy of immunotherapy against solid tumours by modulating the gut microbiota. Nat Metab 2024; 6:1991-2009. [PMID: 39322747 DOI: 10.1038/s42255-024-01137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
The crucial role of gut microbiota in shaping immunotherapy outcomes has prompted investigations into potential modulators. Here we show that oral administration of acarbose significantly increases the anti-tumour response to anti-PD-1 therapy in female tumour-bearing mice. Acarbose modulates the gut microbiota composition and tryptophan metabolism, thereby contributing to changes in chemokine expression and increased T cell infiltration within tumours. We identify CD8+ T cells as pivotal components determining the efficacy of the combined therapy. Further experiments reveal that acarbose promotes CD8+ T cell recruitment through the CXCL10-CXCR3 pathway. Faecal microbiota transplantation and gut microbiota depletion assays indicate that the effects of acarbose are dependent on the gut microbiota. Specifically, acarbose enhances the efficacy of anti-PD-1 therapy via the tryptophan catabolite indoleacetate, which promotes CXCL10 expression and thus facilitates CD8+ T cell recruitment, sensitizing tumours to anti-PD-1 therapy. The bacterial species Bifidobacterium infantis, which is enriched by acarbose, also improves response to anti-PD-1 therapy. Together, our study endorses the potential combination of acarbose and anti-PD-1 for cancer immunotherapy.
Collapse
Affiliation(s)
- Shi-Long Zhang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
| | - Xin Wang
- Department of Integrative Medicine, Shanghai Geriatric Center, Minhang District, Shanghai, P.R. China
| | - Qing-Qing Cai
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Chen Chen
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Zheng-Yan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Ya-Yun Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Meng-Xuan Yang
- Department of Gastrointestinal Surgery, Minhang hospital, Fudan University, Shanghai, P. R. China
| | - Qing-An Jia
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, P. R. China.
| | - Yan Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
| | - Zhi-Ming Wang
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China.
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, P. R. China.
| |
Collapse
|
4
|
Semertzidou A, Whelan E, Smith A, Ng S, Roberts L, Brosens JJ, Marchesi JR, Bennett PR, MacIntyre DA, Kyrgiou M. Microbial signatures and continuum in endometrial cancer and benign patients. MICROBIOME 2024; 12:118. [PMID: 38951935 PMCID: PMC11218081 DOI: 10.1186/s40168-024-01821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/22/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Endometrial cancer is a multifactorial disease with inflammatory, metabolic and potentially microbial cues involved in disease pathogenesis. The endometrial cancer microbiome has been poorly characterised so far and studies have often overestimated bacterial biomass due to lack of integration of appropriate contamination controls. There is also a scarcity of evidence on the functionality of microbial microenvironments in endometrial cancer. This work addresses that knowledge gap by interrogating the genuine, contamination-free microbial signatures in the female genital tract and rectum of women with endometrial cancer and the mechanistic role of microbiome on carcinogenic processes. RESULTS Here we sampled different regions of the reproductive tract (vagina, cervix, endometrium, fallopian tubes and ovaries) and rectum of 61 patients (37 endometrial cancer; 24 benign controls). We performed 16S rRNA gene sequencing of the V1-V2 hypervariable regions and qPCR of the 16S rRNA gene to qualitatively and quantitatively assess microbial communities and used 3D benign and endometrial cancer organoids to evaluate the effect of microbial products of L. crispatus, which was found depleted in endometrial cancer patients following primary analysis, on endometrial cell proliferation and inflammation. We found that the upper genital tract of a subset of women with and without endometrial cancer harbour microbiota quantitatively and compositionally distinguishable from background contaminants. Endometrial cancer was associated with reduced cervicovaginal and rectal bacterial load together with depletion of Lactobacillus species relative abundance, including L. crispatus, increased bacterial diversity and enrichment of Porphyromonas, Prevotella, Peptoniphilus and Anaerococcus in the lower genital tract and endometrium. Treatment of benign and malignant endometrial organoids with L. crispatus conditioned media exerted an anti-proliferative effect at high concentrations but had minimal impact on cytokine and chemokine profiles. CONCLUSIONS Our findings provide evidence that the upper female reproductive tract of some women contains detectable levels of bacteria, the composition of which is associated with endometrial cancer. Whether this is a cause or consequence of cancer pathophysiology and what is the functional significance of this finding remain to be elucidated to guide future screening tools and microbiome-based therapeutics. Video Abstract.
Collapse
Affiliation(s)
- Anita Semertzidou
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK
- Department of Obstetrics & Gynaecology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Eilbhe Whelan
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK
- Department of Obstetrics & Gynaecology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Ann Smith
- Faculty of Health and Applied Sciences, University West of England, Glenside Campus, Bristol, BS16 1DD, UK
| | - Sherrianne Ng
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK
| | - Lauren Roberts
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK
| | - Jan J Brosens
- Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry, CV2 2DX, UK
| | - Julian R Marchesi
- Division of Digestive Diseases, Department of Digestion, Metabolism and Reproduction, Imperial College London, London, W2 1NY, UK
| | - Phillip R Bennett
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK
- Department of Obstetrics & Gynaecology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - David A MacIntyre
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK
| | - Maria Kyrgiou
- Institute of Reproductive and Developmental Biology, Department of Digestion, Metabolism and Reproduction, Department of Surgery and Cancer, Imperial College Faculty of Medicine, Room 3006, 3rd Floor, Du Cane Road, London, W12 0NN, UK.
- Department of Obstetrics & Gynaecology, Imperial College Healthcare NHS Trust, London, W12 0HS, UK.
| |
Collapse
|
5
|
Sun J, Chen F, Wu G. Potential effects of gut microbiota on host cancers: focus on immunity, DNA damage, cellular pathways, and anticancer therapy. THE ISME JOURNAL 2023; 17:1535-1551. [PMID: 37553473 PMCID: PMC10504269 DOI: 10.1038/s41396-023-01483-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023]
Abstract
The symbiotic bacteria that live in the human gut and the metabolites they produce have long influenced local and systemic physiological and pathological processes of the host. The gut microbiota are increasingly being recognized for its impact on a range of human diseases, including cancer, it may play a key role in the occurrence, progression, treatment, and prognosis of many types of cancer. Understanding the functional role of the gut microbiota in cancer is crucial for the development of the era of personalized medicine. Here, we review recent advances in research and summarize the important associations and clear experimental evidence for the role of the gut microbiota in a variety of human cancers, focus on the application and possible challenges associated with the gut microbiota in antitumor therapy. In conclusion, our research demonstrated the multifaceted mechanisms of gut microbiota affecting human cancer and provides directions and ideas for future clinical research.
Collapse
Affiliation(s)
- Jiaao Sun
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
6
|
Mahmood R, Voisin A, Olof H, Khorasaniha R, Lawal SA, Armstrong HK. Host Microbiomes Influence the Effects of Diet on Inflammation and Cancer. Cancers (Basel) 2023; 15:521. [PMID: 36672469 PMCID: PMC9857231 DOI: 10.3390/cancers15020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Cancer is the second leading cause of death globally, and there is a growing appreciation for the complex involvement of diet, microbiomes, and inflammatory processes culminating in tumorigenesis. Although research has significantly improved our understanding of the various factors involved in different cancers, the underlying mechanisms through which these factors influence tumor cells and their microenvironment remain to be completely understood. In particular, interactions between the different microbiomes, specific dietary factors, and host cells mediate both local and systemic immune responses, thereby influencing inflammation and tumorigenesis. Developing an improved understanding of how different microbiomes, beyond just the colonic microbiome, can interact with dietary factors to influence inflammatory processes and tumorigenesis will support our ability to better understand the potential for microbe-altering and dietary interventions for these patients in future.
Collapse
Affiliation(s)
- Ramsha Mahmood
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Athalia Voisin
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Hana Olof
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Reihane Khorasaniha
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Samuel A. Lawal
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| | - Heather K. Armstrong
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
7
|
Smout J, Valentin C, Delbauve S, Pauwels J, Köhler A, Flamand V. Maternal Lactobacillus rhamnosus administration impacts neonatal CD4 T-cell activation and prevents murine T helper 2-type allergic airways disease. Front Immunol 2023; 13:1082648. [PMID: 36685549 PMCID: PMC9847498 DOI: 10.3389/fimmu.2022.1082648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Gut microbiota plays a role in the neonatal immune education and could influence susceptibility to Th2-type immune disorders, such as allergies, the most prevalent chronic diseases in early childhood. We studied the impact of oral Lactobacillus rhamnosus (L.rhamnosus) supplementation to pregnant/breastfeeding C57BL/6 mice on the development of allergic airways disease in their offspring. We observed that mice, from L.rhamnosus-treated mothers, inoculated with ovalbumin (OVA)-Aluminium hydroxide (ALUM) at 3 days of life and challenged intranasally 4 weeks later showed decreased Th2-associated cytokines, IgE and IgG1, lung eosinophilia and airway hyper-reactivity compared to OVA-sensitized mice from untreated mothers. In that setting, the L.rhamnosus treatment increased the number and maturation of splenic neonatal type 1 conventional dendritic cells (cDC1) that remained largely dominant over the cDC2 and favored their OVA-specific Th1 differentiation. In response to inhaled house dust mite (HDM) allergen, the maternal L.rhamnosus supplementation increased the number of neonatal pulmonary cDC1 expressing lower amount of costimulatory molecules compared with no supplementation and decreased the number of cDC2 without affecting their costimulatory molecules expression. An HDM-specific Foxp3+RORγt+ Treg polarization was monitored in the lung draining lymph nodes. Finally, we confirmed the inhibitory effect of maternal L.rhamnosus treatment on all the measured features of the HDM allergic airways reaction in their offspring. We conclude that maternal L.rhamnosus administration prevents Th2-type allergic airways disease in their neonates by favoring splenic cDC1/Th1 responses against ALUM-adjuvanted OVA or by promoting a pulmonary Foxp3+RORγt+ Treg activation against inhaled HDM.
Collapse
Affiliation(s)
- Justine Smout
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Clara Valentin
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Sandrine Delbauve
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Jeanne Pauwels
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Arnaud Köhler
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium,ULB Center for Research in Immunology (U-CRI), Université Libre de Bruxelles, Gosselies, Belgium,*Correspondence: Véronique Flamand,
| |
Collapse
|
8
|
Li T, Han L, Ma S, Lin W, Ba X, Yan J, Huang Y, Tu S, Qin K. Interaction of gut microbiota with the tumor microenvironment: A new strategy for antitumor treatment and traditional Chinese medicine in colorectal cancer. Front Mol Biosci 2023; 10:1140325. [PMID: 36950522 PMCID: PMC10025541 DOI: 10.3389/fmolb.2023.1140325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide and the second leading cause of cancer-related death. In recent years, the relationship between gut microbiota and CRC has attracted increasing attention from researchers. Studies reported that changes in the composition of gut microbiota, such as increase in the number of Fusobacterium nucleatum and Helicobacter hepaticus, impair the immune surveillance by affecting the intestinal mucosal immunity and increase the risk of tumor initiation and progression. The tumor microenvironment is the soil for tumor survival. Close contacts between gut microbiota and the tumor microenvironment may directly affect the progression of tumors and efficacy of antitumor drugs, thus influencing the prognosis of patients with CRC. Recently, many studies have shown that traditional Chinese medicine can safely and effectively improve the efficacy of antitumor drugs, potentially through remodeling of the tumor microenvironment by regulated gut microbiota. This article describes the effect of gut microbiota on the tumor microenvironment and possible mechanisms concerning the initiation and progression of CRC, and summarizes the potential role of traditional Chinese medicine.
Collapse
Affiliation(s)
- Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simin Ma
- Department of Nosocomial Infection Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Kai Qin,
| |
Collapse
|
9
|
Ivleva EA, Grivennikov SI. Microbiota-driven mechanisms at different stages of cancer development. Neoplasia 2022; 32:100829. [PMID: 35933824 PMCID: PMC9364013 DOI: 10.1016/j.neo.2022.100829] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 02/08/2023]
Abstract
A myriad of microbes living together with the host constitutes the microbiota, and the microbiota exerts very diverse functions in the regulation of host physiology. Microbiota regulates cancer initiation, progression, metastasis, and responses to therapy. Here we review known pro-tumorigenic and anti-tumorigenic functions of microbiota, and mechanisms of how microbes can shape tumor microenvironment and affect cancer cells as well as activation and functionality of immune and stromal cells within the tumor. While some of these mechanisms are distal, often distinct members of microbiota travel with and establish colonization with the tumors in the distant organs. We further briefly describe recent findings regarding microbiota composition in metastasis and highlight important future directions and considerations for the manipulation of microbiota for cancer treatment.
Collapse
Affiliation(s)
- Elena A Ivleva
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sergei I Grivennikov
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
10
|
Min K, Kim HT, Lee EH, Park H, Ha YS. Bacteria for Treatment: Microbiome in Bladder Cancer. Biomedicines 2022; 10:biomedicines10081783. [PMID: 35892683 PMCID: PMC9332069 DOI: 10.3390/biomedicines10081783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 12/26/2022] Open
Abstract
The human body contains a variety of microbes. The distribution of microbes varies from organ to organ. Sequencing and bioinformatics techniques have revolutionized microbial research. Although previously considered to be sterile, the urinary bladder contains various microbes. Several studies have used urine and bladder tissues to reveal the microbiome of the urinary bladder. Lactic acid-producing bacteria, such as Bifidobacterium, Lactobacillus, and Lactococcus, are particularly beneficial for human health and are linked to bladder cancer. This review highlights the analysis protocols for microbiome research, the studies undertaken to date, and the microbes with therapeutic potential in bladder cancer.
Collapse
Affiliation(s)
- Kyungchan Min
- Department of Biomedical Science & Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Eun Hye Lee
- Joint Institute for Regenerative Medicine, Kyungpook National University, Daegu 41940, Korea;
| | - Hansoo Park
- Department of Biomedical Science & Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea;
- Correspondence: (H.P.); (Y.-S.H.)
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Correspondence: (H.P.); (Y.-S.H.)
| |
Collapse
|
11
|
Liotti F, Marotta M, Sorriento D, Pagliuca C, Caturano V, Mantova G, Scaglione E, Salvatore P, Melillo RM, Prevete N. The probiotic Lactobacillus rhamnosus GG (LGG) restrains the angiogenic potential of colorectal carcinoma cells by activating a pro-resolving program via formyl peptide receptor 1. Mol Oncol 2022; 16:2959-2980. [PMID: 35808840 PMCID: PMC9394235 DOI: 10.1002/1878-0261.13280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/31/2022] [Accepted: 07/07/2022] [Indexed: 12/05/2022] Open
Abstract
Formyl peptide receptors (FPR1, FPR2 and FPR3) are innate immune sensors of pathogen and commensal bacteria and have a role in colonic mucosa homeostasis. We identified FPR1 as a tumour suppressor in gastric cancer cells due to its ability to sustain an inflammation resolution response with antiangiogenic potential. Here, we investigate whether FPR1 exerts similar functions in colorectal carcinoma (CRC) cells. Since it has been shown that the commensal bacterium Lactobacillus rhamnosus GG (LGG) can promote intestinal epithelial homeostasis through FPR1, we explored the possibility that it could induce proresolving and antiangiogenic effects in CRC cells. We demonstrated that pharmacologic inhibition or genetic deletion of FPR1 in CRC cells caused a reduction of proresolving mediators and a consequent upregulation of angiogenic factors. The activation of FPR1 mediates opposite effects. Proresolving, antiangiogenic and homeostatic functions were also observed upon treatment of CRC cells with supernatant of LGG culture, but not of other lactic acid or nonprobiotic bacteria (i.e. Bifidobacterium bifidum or Escherichia coli). These activities of LGG are dependent on FPR1 expression and on the subsequent MAPK signalling activation. Thus, the innate immune receptor FPR1 could be a regulator of the balance between microbiota, inflammation and cancer in CRC models.
Collapse
Affiliation(s)
- Federica Liotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| | - Maria Marotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Caturano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Mantova
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Elena Scaglione
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate s.c.ar.l., Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Rosa Marina Melillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| | - Nella Prevete
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy.,Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Zoqlam R, Lazauskaite S, Glickman S, Zaitseva L, Ilie PC, Qi S. Emerging molecular mechanisms and genetic targets for developing novel therapeutic strategies for treating bladder diseases. Eur J Pharm Sci 2022; 173:106167. [PMID: 35304859 DOI: 10.1016/j.ejps.2022.106167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 03/13/2022] [Indexed: 11/03/2022]
Abstract
Bladder diseases affect millions of patients worldwide and compromise their quality of life with a substantial economic impact. The not fully understood aetiologies of bladder diseases limit the current diagnosis and therapeutic options to primarily symptomatic treatment. In addition, bladder targeted drug delivery is challenging due to its unique anatomical features and its natural physiological function of urine storage and frequent voiding. Therefore, current treatment options often fail to provide a highly effective, precisely targeted and long-lasting treatment. With the growing maturity of gene therapy, comprehensive studies are needed to provide a better understanding of the molecular mechanisms underpinning bladder diseases and help to identify novel gene therapeutic targets and biomarkers for treating bladder diseases. In this review, molecular mechanisms involved in pathology of bladder cancer, interstitial cystitis and overactive bladder syndrome are reviewed, with focus on establishing potential novel treatment options. Proposed novel therapies, including gene therapy combined with nanotechnology, localised drug delivery by nanoparticles, and probiotics, are discussed in regard to their safety profiles, efficacy, treatment lenght, precise targeting, and in comparison to conventional treatment methods.
Collapse
Affiliation(s)
- Randa Zoqlam
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Sandra Lazauskaite
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | - Petre-Cristian Ilie
- The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn PE30 4ET, United Kingdom
| | - Sheng Qi
- School of Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| |
Collapse
|
13
|
Si W, Liang H, Bugno J, Xu Q, Ding X, Yang K, Fu Y, Weichselbaum RR, Zhao X, Wang L. Lactobacillus rhamnosus GG induces cGAS/STING- dependent type I interferon and improves response to immune checkpoint blockade. Gut 2022; 71:521-533. [PMID: 33685966 PMCID: PMC8710942 DOI: 10.1136/gutjnl-2020-323426] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Our goals were to evaluate the antitumour efficacy of Lactobacillus rhamnosus GG (LGG) in combination with immune checkpoint blockade (ICB) immunotherapies on tumour growth and to investigate the underlying mechanisms. DESIGN We used murine models of colorectal cancer and melanoma to evaluate whether oral administration of LGG improves the efficacy of ICB therapies. We performed the whole genome shotgun metagenome sequencing of intestinal contents and RNA sequencing of dendritic cells (DCs). In a series of in vitro and in vivo experiments, we further defined the immunological and molecular mechanisms of LGG-mediated antitumour immunity. RESULTS We demonstrate that oral administration of live LGG augmented the antitumour activity of anti-programmed cell death 1 (PD-1) immunotherapy by increasing tumour-infiltrating DCs and T cells. Moreover, the combination treatment shifted the gut microbial community towards enrichment in Lactobacillus murinus and Bacteroides uniformis, that are known to increase DC activation and CD8+tumour recruitment. Mechanistically, treatment with live LGG alone or in combination with anti-PD-1 antibody triggered type I interferon (IFN) production in DCs, enhancing the cross-priming of antitumour CD8+ T cells. In DCs, cyclic GMP-AMP synthase (cGAS)/stimulator of IFN genes (STING) was required for IFN-β induction in response to LGG, as evidenced by the significant decrease in IFN-β levels in cGAS or STING-deficient DCs. LGG induces IFN-β production via the cGAS/STING/TANK binding kinase 1/interferon regulatory factor 7 axis in DCs. CONCLUSION Our findings have offered valuable insight into the molecular mechanisms of live LGG-mediated antitumour immunity and establish an empirical basis for developing oral administration of live LGG as a combination agent with ICB for cancer therapies.
Collapse
Affiliation(s)
- Wei Si
- Department of Animal Science, McGill University, Montreal, Quebec, Canada
| | - Hua Liang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Jason Bugno
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA,The Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago, Chicago, Illinois, USA
| | - Qi Xu
- Department of Animal Science, McGill University, Montreal, Quebec, Canada
| | - Xingchen Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Yanbin Fu
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA .,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Quebec, Canada
| | - Liangliang Wang
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA .,The Ludwig Center for Metastasis Research, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
14
|
Lu Y, Liu H, Yang K, Mao Y, Meng L, Yang L, Ouyang G, Liu W. A comprehensive update: gastrointestinal microflora, gastric cancer and gastric premalignant condition, and intervention by traditional Chinese medicine. J Zhejiang Univ Sci B 2022; 23:1-18. [PMID: 35029085 DOI: 10.1631/jzus.b2100182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the recent upsurge of studies in the field of microbiology, we have learned more about the complexity of the gastrointestinal microecosystem. More than 30 genera and 1000 species of gastrointestinal microflora have been found. The structure of the normal microflora is relatively stable, and is in an interdependent and restricted dynamic equilibrium with the body. In recent years, studies have shown that there is a potential relationship between gastrointestinal microflora imbalance and gastric cancer (GC) and precancerous lesions. So, restoring the balance of gastrointestinal microflora is of great significance. Moreover, intervention in gastric premalignant condition (GPC), also known as precancerous lesion of gastric cancer (PLGC), has been the focus of current clinical studies. The holistic view of traditional Chinese medicine (TCM) is consistent with the microecology concept, and oral TCM can play a two-way regulatory role directly with the microflora in the digestive tract, restoring the homeostasis of gastrointestinal microflora to prevent canceration. However, large gaps in knowledge remain to be addressed. This review aims to provide new ideas and a reference for clinical practice.
Collapse
Affiliation(s)
- Yuting Lu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Huayi Liu
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China.
| | - Kuo Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Yijia Mao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Lingkai Meng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Liu Yang
- Department of Digestive Diseases, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Guangze Ouyang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| | - Wenjie Liu
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301608, China
| |
Collapse
|
15
|
Wu Z, Chen Y, Zhu D, Zheng Y, Ali KB, Hou K. Advancement of Traditional Chinese Medicine in Regulation of Intestinal Flora: Mechanism-based Role in Disease Management. Recent Pat Anticancer Drug Discov 2022; 17:136-144. [PMID: 34587887 DOI: 10.2174/1574892816666210929164930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Intestinal microecology is the largest and most complex human microecology. The intestinal microflora plays an important role in human health. Imbalance of intestinal microflora contributes to the occurrence and development of many diseases. Recently, the treatment of human diseases by regulating intestinal microflora has become a research topic of interest. Traditional Chinese medicine considers the whole human body as the central concept in disease treatment strategies. It advocates maintaining the coordination and balance of the functions of various organs and systems of the human body, including the intestinal microflora. Traditional Chinese medicine improves the metabolism and immune function of the human body by regulating the intestinal microflora. The intestinal microflora could trigger pharmacological activity or reduce toxicity of drugs through regulating metabolism, which enables traditional Chinese medicine formulations to exert their best therapeutic effects. This review summarized the relationship between the intestinal microflora and digestive system, tumors, and other diseases. Furthermore, the role of traditional Chinese medicine in the treatment of tumors, and other diseases is discussed. The relationship among traditional Chinese medicine and the common intestinal microflora, pathogenesis of human diseases, and effective intervention methods were elaborated. In addition, we explored the research progress of traditional Chinese medicine in the treatment of various human diseases by regulating intestinal microflora to provide new treatment concepts. There is a close relationship between traditional Chinese medicine and the intestinal microflora. Traditional Chinese medicine formulations contribute to maintain the natural balance of the intestinal tract and the intestinal microflora to achieve treatment effects. This paper summarizes the mechanism of action of traditional Chinese medicine formulations in regulating the intestinal microflora in the prevention and treatment of various diseases. Furthermore, it summarizes information on the application of the interaction between traditional Chinese medicine preparations and the regulation of intestinal microflora in the treatment of common human diseases. Intestinal microflora plays a key role in traditional Chinese medicine in maintaining the natural balance of physiology and metabolism of human body. It will provide a theoretical basis for the traditional Chinese medicine preparations in the prevention and treatment of common human diseases, and simulate future research on this aspect.
Collapse
Affiliation(s)
- Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong 515000, China and Graduate School, Shantou University Medical College, Shantou City, Guangdong 515000, China
- Graduate School, Shantou University Medical College, Shantou City, Guangdong, 515000, China
| | - Yongru Chen
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong, 515000, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong 515000, China and Graduate School, Shantou University Medical College, Shantou City, Guangdong 515000, China
| | - Yingmiao Zheng
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong 515000, China and Graduate School, Shantou University Medical College, Shantou City, Guangdong 515000, China
| | - Khan Barkat Ali
- Faculty of Pharmacy, Gomal University, D.I. Khan, 29050, Pakistan
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Medical College of Shantou University, Shantou City, Guangdong 515000, China and Graduate School, Shantou University Medical College, Shantou City, Guangdong 515000, China
- Graduate School, Shantou University Medical College, Shantou City, Guangdong, 515000, China
| |
Collapse
|
16
|
Genomic Stability and Phenotypic Characteristics of Industrially Produced Lacticaseibacillus rhamnosus GG in a Yogurt Matrix. Appl Environ Microbiol 2021; 87:e0157521. [PMID: 34613788 DOI: 10.1128/aem.01575-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lacticaseibacillus rhamnosus GG is a widely marketed probiotic with well-documented probiotic properties. Previously, deletion of the mucus-adhesive spaCBA-srtC1 genes in dairy isolates was reported. In this study, we examined the genome preservation of industrially produced L. rhamnosus GG (DSM 33156) cofermented in yogurts. In total, DNA of 66 samples, including 60 isolates, was sequenced. Population samples and 59 isolates exhibited an intact genome. One isolate exhibited loss of spaCBA-srtC1. In addition, we examined phenotypes related to the probiotic properties of L. rhamnosus GG either from frozen pellets or cofermented in yogurt. L. rhamnosus GG from frozen pellets induced a response in intestinal barrier function in vitro, in contrast to frozen pellets of the starter culture. Yogurt matrix, containing only the starter culture, induced a response, but cofermentation with L. rhamnosus GG induced a higher response. Conversely, only the starter culture stimulated cytokine secretion in dendritic cells, and it was observed that the addition of L. rhamnosus GG to the starter culture reduced the response. We conclude that the L. rhamnosus GG genome is preserved in yogurt and that common in vitro probiotic effects of L. rhamnosus GG are observed when examined in the yogurt matrix. IMPORTANCE Lacticaseibacillus rhamnosus GG is a well-documented probiotic strain recognized for its high acid and bile tolerance and properties of adhesion to enterocytes and mucus. The strain exhibits SpaCBA pili, which have been demonstrated to play an important role in adhesion and therefore are relevant for persistence in the gastrointestinal tract. Recently we demonstrated that the genome and phenotypes of L. rhamnosus GG are preserved throughout an industrial production pipeline. However, as gene deletions in L. rhamnosus GG were previously reported for isolates from dairy products, a key question on the genomic stability of L. rhamnosus GG in a yogurt matrix remained. The aim of this study was to analyze genome stability and phenotypic characteristics of L. rhamnosus GG in yogurt. We found that the genome of L. rhamnosus GG is well conserved when the organism is cofermented in yogurt. Some phenotypic characteristics are consistent in all product matrixes, while other characteristics are modulated.
Collapse
|
17
|
Spot-light on microbiota in obesity and cancer. Int J Obes (Lond) 2021; 45:2291-2299. [PMID: 34363002 DOI: 10.1038/s41366-021-00866-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/26/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Over the last few years, the complexity and diversity of gut microbiota within and across individuals has been detailed in relation to human health. Further, understanding of the bidirectional association between gut microbiota and metabolic disorders has highlighted a complimentary, yet crucial role for microbiota in the onset and progression of obesity-related cancers. While strategies for cancer prevention and cure are known to work efficiently when supported by healthy diet and lifestyle choices and physical activity, emerging evidence suggests that the complex interplay relating microbiota both to neoplastic and metabolic diseases could aid strategies for cancer treatment and outcomes. This review will explore the experimental and clinical grounds supporting the functional role of gut microbiota in the pathophysiology and progression of cancers in relation to obesity and its metabolic correlates. Therapeutic approaches aiding microbiota restoration in connection with cancer treatments will be discussed.
Collapse
|
18
|
Agraib LM, Yamani MI, Rayyan YM, Abu-Sneineh AT, Tamimi TA, Tayyem RF. The probiotic supplementation role in improving the immune system among people with ulcerative colitis: a narrative review. Drug Metab Pers Ther 2021; 37:7-19. [PMID: 35385892 DOI: 10.1515/dmpt-2021-0150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/23/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVES The purpose of this paper is to summarize the current evidence on probiotics' uses as an adjuvant for ulcerative colitis (UC) and provide an understanding of the effect of probiotics supplement on the immune system and inflammatory responses among UC patients and subsequent therapeutic benefits. CONTENT A narrative review of all the relevant published papers known to the author was conducted. SUMMARY UC is a chronic inflammatory bowel disease (IBD) that results in inflammation and ulceration of the colon and rectum. The primary symptoms of active disease are diarrhea, abdominal pain, and rectal bleeding. About 70% of the human immune system (mucosal-associated lymphoid tissue) originates in the intestine. Probiotics are live microorganisms that help in stabilizing the gut microbiota (nonimmunologic gut defense), restores normal flora, and enhance the humoral immune system. Probiotics especially Bifidobacterium, Saccharomyces boulardii, and lactic acid-producing bacteria have been used as an adjunct therapy for treating UC to ameliorate disease-related symptoms and reduce relapse rate. Probiotics, in general, modulate the immune system through their ability to enhance the mucosal barrier function, or through their interaction with the local immune system to enhance regulatory T cell responses, decrease the pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin 1 beta and increase anti-inflammatory factor interleukin 10. OUTLOOK More studies are needed to explore the properties of the various probiotic bacterial strains, their different uses, as well as the dosage of probiotics and duration for treating different disorders. Further clinical investigations on mechanisms of action and how probiotics modulate the immune system may lead to further advances in managing IBD.
Collapse
Affiliation(s)
- Lana M Agraib
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohammed I Yamani
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Yaser Mohammed Rayyan
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Awni Taleb Abu-Sneineh
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Tarek A Tamimi
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Reema Fayez Tayyem
- Department of Human Nutrition, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
19
|
Agraib LM, Yamani MI, Rayyan YM, Abu-Sneineh AT, Tamimi TA, Tayyem RF. The probiotic supplementation role in improving the immune system among people with ulcerative colitis: a narrative review. Drug Metab Pers Ther 2021; 0:dmdi-2021-0150. [PMID: 34428363 DOI: 10.1515/dmdi-2021-0150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The purpose of this paper is to summarize the current evidence on probiotics' uses as an adjuvant for ulcerative colitis (UC) and provide an understanding of the effect of probiotics supplement on the immune system and inflammatory responses among UC patients and subsequent therapeutic benefits. CONTENT A narrative review of all the relevant published papers known to the author was conducted. SUMMARY UC is a chronic inflammatory bowel disease (IBD) that results in inflammation and ulceration of the colon and rectum. The primary symptoms of active disease are diarrhea, abdominal pain, and rectal bleeding. About 70% of the human immune system (mucosal-associated lymphoid tissue) originates in the intestine. Probiotics are live microorganisms that help in stabilizing the gut microbiota (nonimmunologic gut defense), restores normal flora, and enhance the humoral immune system. Probiotics especially Bifidobacterium, Saccharomyces boulardii, and lactic acid-producing bacteria have been used as an adjunct therapy for treating UC to ameliorate disease-related symptoms and reduce relapse rate. Probiotics, in general, modulate the immune system through their ability to enhance the mucosal barrier function, or through their interaction with the local immune system to enhance regulatory T cell responses, decrease the pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin 1 beta and increase anti-inflammatory factor interleukin 10. OUTLOOK More studies are needed to explore the properties of the various probiotic bacterial strains, their different uses, as well as the dosage of probiotics and duration for treating different disorders. Further clinical investigations on mechanisms of action and how probiotics modulate the immune system may lead to further advances in managing IBD.
Collapse
Affiliation(s)
- Lana M Agraib
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohammed I Yamani
- Department of Nutrition and Food Technology, Faculty of Agriculture, The University of Jordan, Amman, Jordan
| | - Yaser Mohammed Rayyan
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Awni Taleb Abu-Sneineh
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Tarek A Tamimi
- Department of Gastroenterology & Hepatology, School of Internal Medicine, The University of Jordan, Amman, Jordan
| | - Reema Fayez Tayyem
- Department of Human Nutrition, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
20
|
Owens JA, Saeedi BJ, Naudin CR, Hunter-Chang S, Barbian ME, Eboka RU, Askew L, Darby TM, Robinson BS, Jones RM. Lactobacillus rhamnosus GG Orchestrates an Antitumor Immune Response. Cell Mol Gastroenterol Hepatol 2021; 12:1311-1327. [PMID: 34111601 PMCID: PMC8463873 DOI: 10.1016/j.jcmgh.2021.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS In colorectal cancer, approximately 95% of patients are refractory to immunotherapy because of low antitumor immune responses. Therefore, there is an exigent need to develop treatments that increase antitumor immune responses and decrease tumor burden to enhance immunotherapy. METHODS The gut microbiome has been described as a master modulator of immune responses. We administered the human commensal, Lactobacillus rhamnosus GG (LGG), to mice and characterized the changes in the gut immune landscape. Because the presence of lactobacilli in the gut microbiome has been linked with decreased tumor burden and antitumor immune responses, we also supplemented a genetic and a chemical model of murine intestinal cancer with LGG. For clinical relevance, we therapeutically administered LGG after tumors had formed. We also tested for the requirement of CD8 T cells in LGG-mediated modulation of gut tumor burden. RESULTS We detected increased colonic CD8 T-cell responses specifically in LGG-supplemented mice. The CD8 T-cell induction was dependent on dendritic cell activation mediated via Toll-like receptor-2, thereby describing a novel mechanism in which a member of the human microbiome induces an intestinal CD8 T-cell response. We also show that LGG decreased tumor burden in the murine gut cancer models by a CD8 T-cell-dependent manner. CONCLUSIONS These data support the potential use of LGG to augment antitumor immune responses in colorectal cancer patients and ultimately for increasing the breadth and efficacy of immunotherapy.
Collapse
Affiliation(s)
- Joshua A. Owens
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Bejan J. Saeedi
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Crystal R. Naudin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Sarah Hunter-Chang
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Maria E. Barbian
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Richard U. Eboka
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Lauren Askew
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Trevor M. Darby
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Brian S. Robinson
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia
| | - Rheinallt M. Jones
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia,Emory Microbiome Research Center, Emory University School of Medicine, Atlanta, Georgia,Correspondence Address correspondence to: Rheinallt M. Jones, PhD, Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322. fax: (404) 727-8538.
| |
Collapse
|
21
|
Oral Probiotic Vaccine Expressing Koi Herpesvirus (KHV) ORF81 Protein Delivered by Chitosan-Alginate Capsules Is a Promising Strategy for Mass Oral Vaccination of Carps against KHV Infection. J Virol 2021; 95:JVI.00415-21. [PMID: 33827944 DOI: 10.1128/jvi.00415-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Koi herpesvirus (KHV) is highly contagious and lethal to cyprinid fish, causing significant economic losses to the carp aquaculture industry, particularly to koi carp breeders. Vaccines delivered through intramuscular needle injection or gene gun are not suitable for mass vaccination of carp. So, the development of cost-effective oral vaccines that are easily applicable at a farm level is highly desirable. In this study, we utilized chitosan-alginate capsules as an oral delivery system for a live probiotic (Lactobacillus rhamnosus) vaccine, pYG-KHV-ORF81/LR CIQ249, expressing KHV ORF81 protein. The tolerance of the encapsulated recombinant Lactobacillus to various digestive environments and the ability of the probiotic strain to colonize the intestine of carp was tested. The immunogenicity and the protective efficacy of the encapsulated probiotic vaccine was evaluated by determining IgM levels, lymphocyte proliferation, expression of immune-related genes, and viral challenge to vaccinated fish. It was clear that the chitosan-alginate capsules protected the probiotic vaccine effectively against extreme digestive environments, and a significant level (P < 0.01) of antigen-specific IgM with KHV-neutralizing activity was detected, which provided a protection rate of ca. 85% for koi carp against KHV challenge. The strategy of using chitosan-alginate capsules to deliver probiotic vaccines is easily applicable for mass oral vaccination of fish.IMPORTANCE An oral probiotic vaccine, pYG-KHV-ORF81/LR CIQ249, encapsulated by chitosan-alginate capsules as an oral delivery system was developed for koi carp against koi herpesvirus (KHV) infection. This encapsulated probiotic vaccine can be protected from various digestive environments and maintain effectively high viability, showing a good tolerance to digestive environments. This encapsulated probiotic vaccine has a good immunogenicity in koi carp via oral vaccination, and a significant level of antigen-specific IgM was effectively induced after oral vaccination, displaying effective KHV-neutralizing activity. This encapsulated probiotic vaccine can provide effective protection for koi carp against KHV challenge, which is handling-stress free for the fish, cost effective, and suitable for the mass oral vaccination of koi carp at a farm level, suggesting a promising vaccine strategy for fish.
Collapse
|
22
|
Engevik MA, Ruan W, Esparza M, Fultz R, Shi Z, Engevik KA, Engevik AC, Ihekweazu FD, Visuthranukul C, Venable S, Schady DA, Versalovic J. Immunomodulation of dendritic cells by Lactobacillus reuteri surface components and metabolites. Physiol Rep 2021; 9:e14719. [PMID: 33463911 PMCID: PMC7814497 DOI: 10.14814/phy2.14719] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Lactic acid bacteria are commensal members of the gut microbiota and are postulated to promote host health. Secreted factors and cell surface components from Lactobacillus species have been shown to modulate the host immune system. However, the precise role of L. reuteri secreted factors and surface proteins in influencing dendritic cells (DCs) remains uncharacterized. HYPOTHESIS We hypothesize that L. reuteri secreted factors will promote DC maturation, skewing cells toward an anti-inflammatory phenotype. In acute colitis, we speculate that L. reuteri promotes IL-10 and dampens pro-inflammatory cytokine production, thereby improving colitis. METHODS & RESULTS Mouse bone marrow-derived DCs were differentiated into immature dendritic cells (iDCs) via IL-4 and GM-CSF stimulation. iDCs exposed to L. reuteri secreted factors or UV-irradiated bacteria exhibited greater expression of DC maturation markers CD83 and CD86 by flow cytometry. Additionally, L. reuteri stimulated DCs exhibited phenotypic maturation as denoted by cytokine production, including anti-inflammatory IL-10. Using mouse colonic organoids, we found that the microinjection of L. reuteri secreted metabolites and UV-irradiated bacteria was able to promote IL-10 production by DCs, indicating potential epithelial-immune cross-talk. In a TNBS-model of acute colitis, L. reuteri administration significantly improved histological scoring, colonic cytokine mRNA, serum cytokines, and bolstered IL-10 production. CONCLUSIONS Overall these data demonstrate that both L. reuteri secreted factors and its bacterial components are able to promote DC maturation. This work points to the specific role of L. reuteri in modulating intestinal DCs. NEW & NOTEWORTHY Lactobacillus reuteri colonizes the mammalian gastrointestinal tract and exerts beneficial effects on host health. However, the mechanisms behind these effects have not been fully explored. In this article, we identified that L. reuteri ATTC PTA 6475 metabolites and surface components promote dendritic cell maturation and IL-10 production. In acute colitis, we also demonstrate that L. reuteri can promote IL-10 and suppress inflammation. These findings may represent a crucial mechanism for maintaining intestinal immune homeostasis.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Magdalena Esparza
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Robert Fultz
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Kristen A Engevik
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Amy C Engevik
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Faith D Ihekweazu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Chonnikant Visuthranukul
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Pediatric Nutrition Research Unit, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Susan Venable
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Deborah A Schady
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
23
|
Andreeva NV, Gabbasova RR, Grivennikov SI. Microbiome in cancer progression and therapy. Curr Opin Microbiol 2020; 56:118-126. [PMID: 33147555 DOI: 10.1016/j.mib.2020.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
A myriad of microbes living together with the host constitute microbiota, which possesses very diverse functions in regulation of host physiology. Recently, it has been unequivocally demonstrated that microbiota regulates cancer initiation, progression and responses to therapy. Here we review known pro-tumorigenic and anti-tumorigenic function of microbiota and mechanisms how microbes can regulate cancer cells and immune and stromal cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Natalia V Andreeva
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Railia R Gabbasova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sergei I Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA; Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
24
|
Ngamkala S, Satchasataporn K, Setthawongsin C, Raksajit W. Histopathological study and intestinal mucous cell responses against Aeromonas hydrophila in Nile tilapia administered with Lactobacillus rhamnosus GG. Vet World 2020; 13:967-974. [PMID: 32636595 PMCID: PMC7311884 DOI: 10.14202/vetworld.2020.967-974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Aim This study aimed to examine the intestinal histopathological lesions and mucous cell responses in the entire intestines of Nile tilapia administered with Lactobacillus rhamnosus GG (LGG)-mixed feed, after Aeromonas hydrophila challenge. Materials and Methods Intestinal samples from fish fed with control normal diet or LGG-mixed feed (1010 colony-forming unit [CFU]/g feed) with or without A. hydrophila in phosphate-buffered saline challenge (7.46 × 108 CFU/mL/fish) were collected and processed for histopathological study. The mucous cell responses were evaluated using histochemistry, using Alcian blue (AB) at pH 2.5, AB at pH 1.0, and periodic acid-Schiff-AB at pH 2.5. The quantification of the intestinal mucous cell size and the staining character of each mucin type from the entire intestine were recorded and counted. Results Histopathological study showed remarkable lesions only in the proximal intestine in fish infected with A. hydrophila, while LGG-fed fish had less intestinal damage, perhaps resulting from heterophil infiltration. Furthermore, a significant (p<0.01) increase in mixed mucous cell numbers was observed mainly in the proximal intestine of all challenged fish, compared with normal diet-fed fish without challenge, and also in LGG-fed fish with A. hydrophila challenge compared with LGG-fed fish without challenge. Conclusion Dietary LGG-fed Nile tilapia showed improvements in host innate immunity. In addition, LGG was effective in decreasing intestinal lesions from A. hydrophila-induced intestinal damage. Moreover, increasing numbers of mixed mucous cells in the proximal intestine might be indicative of certain pathological conditions in Nile tilapia after A. hydrophila infection.
Collapse
Affiliation(s)
- Suchanit Ngamkala
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Khomson Satchasataporn
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Chanokchon Setthawongsin
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Wuttinun Raksajit
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
25
|
Li YT, Xu H, Ye JZ, Wu WR, Shi D, Fang DQ, Liu Y, Li LJ. Efficacy of Lactobacillus rhamnosus GG in treatment of acute pediatric diarrhea: A systematic review with meta-analysis. World J Gastroenterol 2019; 25:4999-5016. [PMID: 31543689 PMCID: PMC6737314 DOI: 10.3748/wjg.v25.i33.4999] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/04/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diarrhea is a major infectious cause of childhood morbidity and mortality worldwide. In clinical trials, Lactobacillus rhamnosus GG ATCC 53013 (LGG) has been used to treat diarrhea. However, recent randomized controlled trials (RCTs) found no evidence of a beneficial effect of LGG treatment.
AIM To evaluate the efficacy of LGG in treating acute diarrhea in children.
METHODS The EMBASE, MEDLINE, PubMed, Web of Science databases, and the Cochrane Central Register of Controlled Trials were searched up to April 2019 for meta-analyses and RCTs. The Cochrane Review Manager was used to analyze the relevant data.
RESULTS Nineteen RCTs met the inclusion criteria and showed that compared with the control group, LGG administration notably reduced the diarrhea duration [mean difference (MD) -24.02 h, 95% confidence interval (CI) (-36.58, -11.45)]. More effective results were detected at a high dose ≥ 1010 CFU per day [MD -22.56 h, 95%CI (-36.41, -8.72)] vs a lower dose. A similar reduction was found in Asian and European patients [MD -24.42 h, 95%CI (-47.01, -1.82); MD -32.02 h, 95%CI (-49.26, -14.79), respectively]. A reduced duration of diarrhea was confirmed in LGG participants with diarrhea for less than 3 d at enrollment [MD -15.83 h, 95%CI (-20.68, -10.98)]. High-dose LGG effectively reduced the duration of rotavirus-induced diarrhea [MD -31.05 h, 95%CI (-50.31, -11.80)] and the stool number per day [MD -1.08, 95%CI (-1.87, -0.28)].
CONCLUSION High-dose LGG therapy reduces the duration of diarrhea and the stool number per day. Intervention at the early stage is recommended. Future trials are expected to verify the effectiveness of LGG treatment.
Collapse
Affiliation(s)
- Ya-Ting Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Hong Xu
- Department of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Zhong Ye
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Wen-Rui Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ding Shi
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Dai-Qiong Fang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yang Liu
- Department of Orthopedics, Clinical Sciences, Lund, Lund University, Lund 22185, Sweden
| | - Lan-Juan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
26
|
Shi L, Sheng J, Wang M, Luo H, Zhu J, Zhang B, Liu Z, Yang X. Combination Therapy of TGF-β Blockade and Commensal-derived Probiotics Provides Enhanced Antitumor Immune Response and Tumor Suppression. Am J Cancer Res 2019. [PMID: 31281535 DOI: 10.7150/thno.35131.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Galunisertib (Gal) is a transforming growth factor (TGF-β) blockade which is being investigated as a potential tumor immunotherapy candidate drug in clinical trials. However, primary or acquired resistance is often found in the recruited cancer patients, which limits its clinical application. Tumor immune microenvironment can be regulated by intestinal microbiota, leading to different therapeutic outcomes. It is hypothesized that manipulation of cancer patients' intestinal microbiome in the early stage of therapy may be a promising strategy to improve the therapeutic efficacy of Gal. Methods: 4T1 and H22 subcutaneous tumor bearing mice were used to evaluate the therapeutic effect. Escherichia coli strain Nissle 1917 (EcN), a widely used probiotic bacteria, was orally delivered to the tumor bearing mice daily along with Gal treatment. Antitumor effect of the combination therapy was evaluated by tumor volume, histological staining of tumor tissues. Furthermore, flow cytometry was performed to analyze the alteration of immune microenvironment in tumor bed after treatment. The suppressing effect of the combination therapy on tumor invasiveness and metastasis was evaluated in both mice and zebrafish xenografts models. Fecal sample 16S rRNA gene sequencing was conducted to analyze changes of intestinal microbial diversity. The effect of intestinal microbiota on tumor suppression after receiving EcN was further tested by fecal transplant. Results: The therapeutic outcomes in tumor growth inhibition and metastasis suppression of Gal were significantly potentiated by EcN, resulting from the strengthened antitumor immunity. EcN was able to relieve the immunosuppressive tumor microenvironment, which was evidenced by enhanced tumor-specific effector T cells infiltration and dendritic cells activation. Intestinal microbiota was modulated by EcN, illustrated by a shift of gut microbiome toward certain beneficial bacteria. Conclusion: These results suggested that Gal combined with EcN might be a novel therapeutic approach with great potential of clinical implications for cancer prevention or treatment.
Collapse
Affiliation(s)
- Linlin Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianyong Sheng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengli Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Han Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Zhu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
27
|
Shi L, Sheng J, Wang M, Luo H, Zhu J, Zhang B, Liu Z, Yang X. Combination Therapy of TGF-β Blockade and Commensal-derived Probiotics Provides Enhanced Antitumor Immune Response and Tumor Suppression. Theranostics 2019; 9:4115-4129. [PMID: 31281535 PMCID: PMC6592171 DOI: 10.7150/thno.35131] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/07/2019] [Indexed: 12/23/2022] Open
Abstract
Galunisertib (Gal) is a transforming growth factor (TGF-β) blockade which is being investigated as a potential tumor immunotherapy candidate drug in clinical trials. However, primary or acquired resistance is often found in the recruited cancer patients, which limits its clinical application. Tumor immune microenvironment can be regulated by intestinal microbiota, leading to different therapeutic outcomes. It is hypothesized that manipulation of cancer patients' intestinal microbiome in the early stage of therapy may be a promising strategy to improve the therapeutic efficacy of Gal. Methods: 4T1 and H22 subcutaneous tumor bearing mice were used to evaluate the therapeutic effect. Escherichia coli strain Nissle 1917 (EcN), a widely used probiotic bacteria, was orally delivered to the tumor bearing mice daily along with Gal treatment. Antitumor effect of the combination therapy was evaluated by tumor volume, histological staining of tumor tissues. Furthermore, flow cytometry was performed to analyze the alteration of immune microenvironment in tumor bed after treatment. The suppressing effect of the combination therapy on tumor invasiveness and metastasis was evaluated in both mice and zebrafish xenografts models. Fecal sample 16S rRNA gene sequencing was conducted to analyze changes of intestinal microbial diversity. The effect of intestinal microbiota on tumor suppression after receiving EcN was further tested by fecal transplant. Results: The therapeutic outcomes in tumor growth inhibition and metastasis suppression of Gal were significantly potentiated by EcN, resulting from the strengthened antitumor immunity. EcN was able to relieve the immunosuppressive tumor microenvironment, which was evidenced by enhanced tumor-specific effector T cells infiltration and dendritic cells activation. Intestinal microbiota was modulated by EcN, illustrated by a shift of gut microbiome toward certain beneficial bacteria. Conclusion: These results suggested that Gal combined with EcN might be a novel therapeutic approach with great potential of clinical implications for cancer prevention or treatment.
Collapse
Affiliation(s)
- Linlin Shi
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianyong Sheng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mengli Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Center for Human Genome Research, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Han Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun Zhu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
28
|
Jacouton E, Torres Maravilla E, Boucard AS, Pouderous N, Pessoa Vilela AP, Naas I, Chain F, Azevedo V, Langella P, Bermúdez-Humarán LG. Anti-tumoral Effects of Recombinant Lactococcus lactis Strain Secreting IL-17A Cytokine. Front Microbiol 2019; 9:3355. [PMID: 30728820 PMCID: PMC6351453 DOI: 10.3389/fmicb.2018.03355] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 12/31/2018] [Indexed: 01/02/2023] Open
Abstract
Interleukin-17A (IL-17A) is a pro-inflammatory cytokine produced by TH17 cells that participates and contributes in host defense and autoimmune disease. We have recently reported antitumor properties of the probiotic strain of Lactobacillus casei BL23 in mice and TH17 cells was shown to play an important role in this beneficial effect. In order to better understand the role of IL-17A in cancer, we constructed a recombinant strain of Lactococcus lactis producing this cytokine and we determined its biological activity in: (i) a bioassay test for the induction of IL-6 production by murine fibroblasts 3T3 L1 cells line and (ii) in a mouse allograft model of human papilloma virus (HPV)-induced cancer. Our data show that recombinant L. lactis produces and efficiently secretes biologically active IL-17A cytokine. Interestingly, ∼26% of mice intranasally treated with L. lactis-IL-17A and challenged with TC-1 cells remained tumor free over the experiment, in contrast to control mice treated with the wild type strain of L. lactis which developed 100% of aggressive tumors. In addition, the median size of the ∼74% tumor-bearing mice treated with recombinant L. lactis-IL-17A, was significantly lower than mice treated with L. lactis-wt. Altogether, our results demonstrate that intranasal administration with L. lactis secreting IL-17A results in a partial protection against TC-1-induced tumors in mice, confirming antitumor effects of this cytokine in our cancer model.
Collapse
Affiliation(s)
- Elsa Jacouton
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Anne-Sophie Boucard
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Pouderous
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Ana Paula Pessoa Vilela
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France.,Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Isabelle Naas
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Florian Chain
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Philippe Langella
- Micalis Institute, AgroParisTech, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | |
Collapse
|
29
|
Jacouton E, Michel ML, Torres-Maravilla E, Chain F, Langella P, Bermúdez-Humarán LG. Elucidating the Immune-Related Mechanisms by Which Probiotic Strain Lactobacillus casei BL23 Displays Anti-tumoral Properties. Front Microbiol 2019; 9:3281. [PMID: 30687269 PMCID: PMC6336716 DOI: 10.3389/fmicb.2018.03281] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
We have recently described antitumor properties of Lactobacillus casei BL23 strain in both a mouse allograft model of human papilloma virus (HPV)-induced cancer and dimethylhydrazine-associated colorectal cancer. However, the mechanisms underlying these beneficial effects are still unknown. Interestingly, in vitro cellular models show that this bacterium is able to stimulate the production of high levels of IL-2. Because this cytokine has well-known antitumor properties, we decided to explore its role in the anti-cancer effects of BL23 using the HPV-induced cancer model. We found a negative correlation between IL-2 and tumor size confirming the necessity of IL-2 to protect from tumor development. Then, we blocked IL-2 synthesis using neutralizing monoclonal antibodies in mice that were challenged with lethal levels of tumor cells; this led to a significant reduction in the protective abilities of BL23. Next, we used a genetically modified strain of Lactococcus lactis to deliver exogenous IL-2 to the system, and in doing so, we were able to partially mimic the antitumor properties of BL23. Additionally, we showed the systemic role of T-cells in tumor protection through a negative correlation between tumor size and T-cells subpopulations and an increasement of BL23-specific local Foxp3 levels in tumor-bearing mice. Finally, we observed a negative correlation between tumor size and NK+ cells, but local recruitment of NK cells and cytotoxic activity appeared specific to BL23 treatment. Taken together, our data suggest that IL-2 signaling pathway plays an important role in the anti-tumoral effects of probiotic strain L. casei BL23. These results encourage further investigation in the use of probiotic strains for potential therapeutic applications to clinical practice, in particular for the treatment of colorectal cancer. Furthermore, our approach could be extended and applied to other potential beneficial microorganisms, such as gut microbiota, in order to better understand the crosstalk between microbes and the host.
Collapse
Affiliation(s)
- Elsa Jacouton
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marie-Laure Michel
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Florian Chain
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Philippe Langella
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | |
Collapse
|
30
|
Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G, Libra M. Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers (Basel) 2019; 11:38. [PMID: 30609850 PMCID: PMC6356461 DOI: 10.3390/cancers11010038] [Citation(s) in RCA: 342] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is a multifactorial pathology and it represents the second leading cause of death worldwide. In the recent years, numerous studies highlighted the dual role of the gut microbiota in preserving host's health. Gut resident bacteria are able to produce a number of metabolites and bioproducts necessary to protect host's and gut's homeostasis. Conversely, several microbiota subpopulations may expand during pathological dysbiosis and therefore produce high levels of toxins capable, in turn, to trigger both inflammation and tumorigenesis. Importantly, gut microbiota can interact with the host either modulating directly the gut epithelium or the immune system. Numerous gut populating bacteria, called probiotics, have been identified as protective against the genesis of tumors. Given their capability of preserving gut homeostasis, probiotics are currently tested to help to fight dysbiosis in cancer patients subjected to chemotherapy and radiotherapy. Most recently, three independent studies show that specific gut resident species may potentiate the positive outcome of anti-cancer immunotherapy. The highly significant studies, uncovering the tight association between gut microbiota and tumorigenesis, as well as gut microbiota and anti-cancer therapy, are here described. The role of the Lactobacillus rhamnosus GG (LGG), as the most studied probiotic model in cancer, is also reported. Overall, according to the findings here summarized, novel strategies integrating probiotics, such as LGG, with conventional anti-cancer therapies are strongly encouraged.
Collapse
Affiliation(s)
- Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy.
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy.
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, Tor Vergata University of Rome, 00133 Rome, Italy.
| | | | - Giuseppe Tonini
- Department of Medical Oncology, University Campus Bio-Medico of Rome, 00128 Rome, Italy.
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
31
|
Sun Y, Qian J, Xu X, Tang Y, Xu W, Yang W, Jiang Y, Yang G, Ding Z, Cong Y, Wang C. Dendritic cell-targeted recombinantLactobacilli induce DC activation and elicit specific immune responses against G57 genotype of avian H9N2 influenza virus infection. Vet Microbiol 2018; 223:9-20. [PMID: 30173758 DOI: 10.1016/j.vetmic.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 12/21/2022]
Abstract
H9N2 avian influenza viruses are of significance in poultry and public health for the past two decades. Vaccination plays an important role in preventing the infection in domestic poultry. Current H9N2 vaccines have not yet offered ideal protection and eliminated shedding of G57 genotype viruses responsible for H9N2 outbreaks during 2010-2013. Targeted vaccination is a promising strategy to improve vaccine effectiveness. Such a vaccine strategy can be achieved if it is targeted to dendritic cells (DCs) that directly elicit mucosal and adaptive immune responses against microbe challenge. For this purpose, we develop a DC-targeted mucosal vaccine for the oral delivery of the HA protein fused to a DCpep by using Lactobacillus plantarum as an antigen delivery system against G57 virus infection. It showed that Lactobacillus plantarum expressing HA-DCpep confers efficient protection against G57 H9N2 infection, due to have the potential to activate DCs by the TLR-induced NF-κB pathway, to promote DC migration by the CCR7-CCL19/CCL21 axis, thereby enhancing the presentation of immunogen to T and B lymphocytes, resulting in skewing T cells polarization towards Th1, Th2 and Treg cells and evoking more efficient mucosal and adaptive immunity responses. The presented oral mucosal vaccine strategy illustrates the feasibility and efficacy of antigen targeting to DCs through genetic fusion of vaccines to DC-targeting peptides and aids in the design and selection of indications that could be used with this oral vaccine platform against influenza.
Collapse
Affiliation(s)
- Yixue Sun
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jing Qian
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Xiaohong Xu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Yubo Tang
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Wenzhang Xu
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Wentao Yang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Zhuang Ding
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China.
| | - Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China.
| | - Chunfeng Wang
- Engineering Research Center of Jilin Province for Animals Probiotics, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
32
|
Chauhan A, Al Mamun A, Spiegel G, Harris N, Zhu L, McCullough LD. Splenectomy protects aged mice from injury after experimental stroke. Neurobiol Aging 2018; 61:102-111. [PMID: 29059593 PMCID: PMC5947993 DOI: 10.1016/j.neurobiolaging.2017.09.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/05/2017] [Accepted: 09/20/2017] [Indexed: 12/21/2022]
Abstract
Elderly stroke patients and aged animals subjected to experimental stroke have significantly worse functional recovery and higher mortality compared to younger subjects. Activation of the peripheral immune system is known to influence stroke outcome. Prior studies have shown that splenectomy reduces ischemic brain injury in young mice. As immune function changes with aging, it is unclear whether splenectomy will confer similar benefits in aged animals. We investigated the contribution of spleen to brain injury after cerebral ischemia in aged male mice. Splenic architecture and immune cell composition were altered in aged mice. Splenectomy 2 weeks before stroke resulted in improved neurobehavioral and infarct outcomes in aged male mice. In addition, there was a reduction in peripheral immune cell infiltration into the brain and decreased levels of peripheral inflammatory cytokines after stroke in aged splenectomized mice. Splenectomy immediately after reperfusion also improved behavioral and infarct outcomes. This study suggests that inhibition of the splenic immune response is a translationally relevant target to pursue for stroke treatment in aged individuals.
Collapse
Affiliation(s)
- Anjali Chauhan
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Abdullah Al Mamun
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Gabriel Spiegel
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA
| | - Nia Harris
- University of Connecticut Health Science Center, Farmington, Connecticut, USA
| | - Liang Zhu
- Biostatistics & Epidemiology Research Design Core, Center for Clinical and Translational Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Louise D McCullough
- Department of Neurology, the University of Texas McGovern Medical School at Houston, TX, USA; Memorial Hermann Hospital-Texas Medical Center, Houston, TX, USA.
| |
Collapse
|
33
|
Microbiome. Bladder Cancer 2018. [DOI: 10.1016/b978-0-12-809939-1.00032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
34
|
Banna GL, Torino F, Marletta F, Santagati M, Salemi R, Cannarozzo E, Falzone L, Ferraù F, Libra M. Lactobacillus rhamnosus GG: An Overview to Explore the Rationale of Its Use in Cancer. Front Pharmacol 2017; 8:603. [PMID: 28919861 PMCID: PMC5585742 DOI: 10.3389/fphar.2017.00603] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second leading cause of death in the western world. In the era of precision medicine, a significant number of cancer patients can be cured with several anti-cancer therapeutic regimens. However, therapy failure may be caused by treatment side effects, such as diarrhea, especially occurring in patients with gastrointestinal or pelvic malignancies. In particular, diarrhea is one of the most frequent gastrointestinal toxicity during cancer treatment and it can result from nearly bot chemo- and radio-therapeutic strategies currently used. Diarrhea has a serious impact on patients’ quality of life and treatment dosing and schedule modification due to its severity can negatively influence treatment outcomes. In this context, probiotics may play an interesting role in several human diseases with an inflammatory bowel involvement and, among these, Lactobacillus rhamnosus GG (LGG) is one of the most characterized and utilized. In particular, LGG is able to reverse intestinal dysbiosis and moderate diarrhea. Moreover, preclinical studies have documented its effects in reducing chronic inflammation associated with cancer development. This review summarizes the preclinical results of LGG on cancer cells proliferation and tumor invasion as well as the potential role of LGG use in cancer patients for the prevention and management of diarrhea associated with cancer treatment. Overall, these encouraging data support further investigation on the use of LGG in stratified patients undergoing specific therapeutic protocols, including chemotherapy and pelvic radiotherapy, in order to reduce the development of severe diarrhea and thus improve the adherence to the therapy and patients’ quality of life.
Collapse
Affiliation(s)
| | - Francesco Torino
- Department of Systems Medicine, Chair of Medical Oncology, Tor Vergata University of RomeRome, Italy
| | | | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of CataniaCatania, Italy
| | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of CataniaCatania, Italy
| | - Elisa Cannarozzo
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of CataniaCatania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of CataniaCatania, Italy
| | - Francesco Ferraù
- Division of Medical Oncology, San Vincenzo HospitalTaormina, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Laboratory of Translational Oncology and Functional Genomics, Section of General and Clinical Pathology and Oncology, University of CataniaCatania, Italy
| |
Collapse
|
35
|
IL-10 and TGF-β unbalanced levels in neutrophils contribute to increase inflammatory cytokine expression in childhood obesity. Eur J Nutr 2017; 57:2421-2430. [DOI: 10.1007/s00394-017-1515-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/19/2017] [Indexed: 01/31/2023]
|
36
|
Abstract
The human gut microbiome modulates many host processes, including metabolism, inflammation, and immune and cellular responses. It is becoming increasingly apparent that the microbiome can also influence the development of cancer. In preclinical models, the host response to cancer treatment has been improved by modulating the gut microbiome; this is known to have an altered composition in many diseases, including cancer. In addition, cancer treatment with microbial agents or their products has the potential to shrink tumours. However, the microbiome could also negatively influence cancer prognosis through the production of potentially oncogenic toxins and metabolites by bacteria. Thus, future antineoplastic treatments could combine the modulation of the microbiome and its products with immunotherapeutics and more conventional approaches that directly target malignant cells.
Collapse
|