1
|
Yamamoto K, Chiba M. MicroRNA‑21‑5p expression in extracellular vesicles is increased in the blood of aging mice and in vascular endothelial cells induced by ionizing radiation. Exp Ther Med 2025; 29:22. [PMID: 39650777 PMCID: PMC11621913 DOI: 10.3892/etm.2024.12772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024] Open
Abstract
In recent years, the Japanese population has been aging and the risk of contracting various age-related diseases has increased. Thus, there is a need to analyze components that are characteristic of aging and examine their association with diseases to detect age-related diseases at an early stage. In the present study, microRNAs (miRNAs/miRs) in serum extracellular vesicles (EVs) of 82-102-week-old mice were analyzed to identify miRNAs characteristic of aging. Increased expression of mmu-miR-21a-5p was observed. These miRNAs may be derived from senescent vascular endothelial cells, and RNA-sequencing data (GSE130727) of HUVECs induced to senesce by 4 Gy of radiation revealed that the miRNAs were involved in the cell cycle and DNA repair. Annotations to senescence-related pathways were also identified. Reduced expression of the miR-21-5p target gene, which has an identical sequence in humans and mice, was confirmed. In HUVECs induced to age under similar conditions, increased senescence-associated β-galactosidase activity and increased intracellular miR-21-5p expression were observed. A portion of the miR-21-5p was secreted extracellularly by internalizing tetraspanin-positive EVs, and miR-21-5p was secreted into the extracellular space. The present study also demonstrated that miR-21-5p expression was upregulated and extracellular secretion of miR-21-5p was enhanced during vascular endothelial cell senescence. These findings suggested that increased serum miR-21-5p represents a biomarker for vascular endothelial cell senescence.
Collapse
Affiliation(s)
- Keisuke Yamamoto
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
- Research Center for Biomedical Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
2
|
Melo WGGD, Bezerra DDO, Silva ERDDFS, Campêlo CB, Carvalho MAMD, Argôlo Neto NM. Behavioral dynamics of medicinal signaling cells from porcine bone marrow in long-term culture. Can J Physiol Pharmacol 2024; 102:672-679. [PMID: 39189463 DOI: 10.1139/cjpp-2023-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Medicinal signaling cells (MSC) hold promise for regenerative medicine due to their ability to repair damaged tissues. However, their effectiveness can be affected by how long they are cultured in the lab. This study investigated how passage number influences key properties for regenerative medicine of pig bone marrow MSC. The medicinal signiling cells derived from pig bone marrow (BM-MSC) were cultured in D-MEM High Glucose supplemented with 15% foetal bovine serum until the 25th passage and assessed their growth, viability, ability to differentiate into different cell types (plasticity), and cell cycle activity. Our findings showed that while the cells remained viable until the 25th passage, their ability to grow and differentiate declined after the 5th passage. Additionally, cells in later passages spent more time in a resting phase, suggesting reduced activity. In conclusion, the number of passages is a critical factor for maintaining ideal MSC characteristics. From the 9th passage BM-MSC exhibit decline in proliferation, differentiation potential, and cell cycle activity. Given this, it is possible to suggest that the use of 5th passage cells is the most suitable for therapeutic applications.
Collapse
Affiliation(s)
- Wanderson Gabriel Gomes de Melo
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Dayseanny de Oliveira Bezerra
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | | | - Camile Benício Campêlo
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Maria Acelina Martins de Carvalho
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| | - Napoleão Martins Argôlo Neto
- Núcleo Integrado de Morfologia e Pesquisa com Células-Tronco, Programa de Pós Graduação em Tecnologias Aplicadas a Animais de Interesse Regional, Universidade Federal do Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
3
|
Sun W, Lv J, Guo S, Lv M. Cellular microenvironment: a key for tuning mesenchymal stem cell senescence. Front Cell Dev Biol 2023; 11:1323678. [PMID: 38111850 PMCID: PMC10725964 DOI: 10.3389/fcell.2023.1323678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess the ability to self-renew and differentiate into multiple cell types, making them highly suitable for use as seed cells in tissue engineering. These can be derived from various sources and have been found to play crucial roles in several physiological processes, such as tissue repair, immune regulation, and intercellular communication. However, the limited capacity for cell proliferation and the secretion of senescence-associated secreted phenotypes (SASPs) pose challenges for the clinical application of MSCs. In this review, we provide a comprehensive summary of the senescence characteristics of MSCs and examine the different features of cellular microenvironments studied thus far. Additionally, we discuss the mechanisms by which cellular microenvironments regulate the senescence process of MSCs, offering insights into preserving their functionality and enhancing their effectiveness.
Collapse
Affiliation(s)
| | | | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Rahimi B, Panahi M, Lotfi H, Khalili M, Salehi A, Saraygord-Afshari N, Alizadeh E. Sodium selenite preserves rBM-MSCs' stemness, differentiation potential, and immunophenotype and protects them against oxidative stress via activation of the Nrf2 signaling pathway. BMC Complement Med Ther 2023; 23:131. [PMID: 37098557 PMCID: PMC10127330 DOI: 10.1186/s12906-023-03952-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND The physiological level of reactive oxygen species (ROS) is necessary for many cellular functions. However, during the in-vitro manipulations, cells face a high level of ROS, leading to reduced cell quality. Preventing this abnormal ROS level is a challenging task. Hence, here we evaluated the effect of sodium selenite supplementation on the antioxidant potential, stemness capacity, and differentiation of rat-derived Bone Marrow MSCs (rBM-MSCs) and planned to check our hypothesis on the molecular pathways and networks linked to sodium selenite's antioxidant properties. METHODS MTT assay was used to assess the rBM-MSCs cells' viability following sodium selenite supplementation (concentrations of: 0.001, 0.01, 0.1, 1, 10 µM). The expression level of OCT-4, NANOG, and SIRT1 was explored using qPCR. The adipocyte differentiation capacity of MSCs was checked after Sodium Selenite treatment. The DCFH-DA assay was used to determine intracellular ROS levels. Sodium selenite-related expression of HIF-1α, GPX, SOD, TrxR, p-AKT, Nrf2, and p38 markers was determined using western blot. Significant findings were investigated by the String tool to picture the probable molecular network. RESULTS Media supplemented with 0.1 µM sodium selenite helped to preserve rBM-MSCs multipotency and keep their surface markers presentation; this also reduced the ROS level and improved the rBM-MSCs' antioxidant and stemness capacity. We observed enhanced viability and reduced senescence for rBM-MSCs. Moreover, sodium selenite helped in rBM-MSCs cytoprotection by regulating the expression of HIF-1 of AKT, Nrf2, SOD, GPX, and TrxR markers. CONCLUSIONS We showed that sodium selenite could help protect MSCs during in-vitro manipulations, probably via the Nrf2 pathway.
Collapse
Affiliation(s)
- Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Shahid Hemmat Highway, Tehran, 1449614535, Iran
| | - Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mostafa Khalili
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Astireh Salehi
- Biology Department, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Shahid Hemmat Highway, Tehran, 1449614535, Iran.
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Al-Azab M, Safi M, Idiiatullina E, Al-Shaebi F, Zaky MY. Aging of mesenchymal stem cell: machinery, markers, and strategies of fighting. Cell Mol Biol Lett 2022; 27:69. [PMID: 35986247 PMCID: PMC9388978 DOI: 10.1186/s11658-022-00366-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
Human mesenchymal stem cells (MSCs) are primary multipotent cells capable of differentiating into osteocytes, chondrocytes, and adipocytes when stimulated under appropriate conditions. The role of MSCs in tissue homeostasis, aging-related diseases, and cellular therapy is clinically suggested. As aging is a universal problem that has large socioeconomic effects, an improved understanding of the concepts of aging can direct public policies that reduce its adverse impacts on the healthcare system and humanity. Several studies of aging have been carried out over several years to understand the phenomenon and different factors affecting human aging. A reduced ability of adult stem cell populations to reproduce and regenerate is one of the main contributors to the human aging process. In this context, MSCs senescence is a major challenge in front of cellular therapy advancement. Many factors, ranging from genetic and metabolic pathways to extrinsic factors through various cellular signaling pathways, are involved in regulating the mechanism of MSC senescence. To better understand and reverse cellular senescence, this review highlights the underlying mechanisms and signs of MSC cellular senescence, and discusses the strategies to combat aging and cellular senescence.
Collapse
|
6
|
Salazar-Terreros MJ, Vernot JP. In Vitro and In Vivo Modeling of Normal and Leukemic Bone Marrow Niches: Cellular Senescence Contribution to Leukemia Induction and Progression. Int J Mol Sci 2022; 23:7350. [PMID: 35806354 PMCID: PMC9266537 DOI: 10.3390/ijms23137350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/16/2022] Open
Abstract
Cellular senescence is recognized as a dynamic process in which cells evolve and adapt in a context dependent manner; consequently, senescent cells can exert both beneficial and deleterious effects on their surroundings. Specifically, senescent mesenchymal stromal cells (MSC) in the bone marrow (BM) have been linked to the generation of a supporting microenvironment that enhances malignant cell survival. However, the study of MSC's senescence role in leukemia development has been straitened not only by the availability of suitable models that faithfully reflect the structural complexity and biological diversity of the events triggered in the BM, but also by the lack of a universal, standardized method to measure senescence. Despite these constraints, two- and three dimensional in vitro models have been continuously improved in terms of cell culture techniques, support materials and analysis methods; in addition, research on animal models tends to focus on the development of techniques that allow tracking leukemic and senescent cells in the living organism, as well as to modify the available mice strains to generate individuals that mimic human BM characteristics. Here, we present the main advances in leukemic niche modeling, discussing advantages and limitations of the different systems, focusing on the contribution of senescent MSC to leukemia progression.
Collapse
Affiliation(s)
- Myriam Janeth Salazar-Terreros
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Jean-Paul Vernot
- Grupo de Investigación Fisiología Celular y Molecular, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia;
- Instituto de Investigaciones Biomédicas, Facultad de Medicina, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
7
|
Aghali A. Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy. Cells 2021; 10:cells10112993. [PMID: 34831216 PMCID: PMC8616509 DOI: 10.3390/cells10112993] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| |
Collapse
|
8
|
Purwaningrum M, Jamilah NS, Purbantoro SD, Sawangmake C, Nantavisai S. Comparative characteristic study from bone marrow-derived mesenchymal stem cells. J Vet Sci 2021; 22:e74. [PMID: 34697921 PMCID: PMC8636658 DOI: 10.4142/jvs.2021.22.e74] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
Tissue engineering has been extensively investigated and proffered to be a potential platform for novel tissue regeneration. The utilization of mesenchymal stem cells (MSCs) from various sources has been widely explored and compared. In this regard, MSCs derived from bone marrow have been proposed and described as a promising cell resource due to their high yield of isolated cells with colony-forming potential, self-renewal capacity, MSC surface marker expression, and multi-lineage differentiation capacities in vitro. However, there is evidence for bone marrow MSCs (BM-MSCs) both in vitro and in vivo from different species presenting identical and distinct potential stemness characteristics. In this review, the fundamental knowledge of the growth kinetics and stemness properties of BM-MSCs in different animal species and humans are compared and summarized. Finally, to provide a full perspective, this review will procure results of current information studies focusing on the use of BM-MSCs in clinical practice.
Collapse
Affiliation(s)
- Medania Purwaningrum
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nabila Syarifah Jamilah
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Steven Dwi Purbantoro
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirirat Nantavisai
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
9
|
Deng J, Ouyang P, Li W, Zhong L, Gu C, Shen L, Cao S, Yin L, Ren Z, Zuo Z, Deng J, Yan Q, Yu S. Curcumin Alleviates the Senescence of Canine Bone Marrow Mesenchymal Stem Cells during In Vitro Expansion by Activating the Autophagy Pathway. Int J Mol Sci 2021; 22:ijms222111356. [PMID: 34768788 PMCID: PMC8583405 DOI: 10.3390/ijms222111356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 12/16/2022] Open
Abstract
Senescence in mesenchymal stem cells (MSCs) not only hinders the application of MSCs in regenerative medicine but is also closely correlated with biological aging and the development of degenerative diseases. In this study, we investigated the anti-aging effects of curcumin (Cur) on canine bone marrow-derived MSCs (cBMSCs), and further elucidated the potential mechanism of action based on the modulation of autophagy. cBMSCs were expanded in vitro with standard procedures to construct a cell model of premature senescence. Our evidence indicates that compared with the third passage of cBMSCs, many typical senescence-associated phenotypes were observed in the sixth passage of cBMSCs. Cur treatment can improve cBMSC survival and retard cBMSC senescence according to observations that Cur (1 μM) treatment can improve the colony-forming unit-fibroblasts (CFU-Fs) efficiency and upregulated the mRNA expression of pluripotent transcription factors (SOX-2 and Nanog), as well as inhibiting the senescence-associated beta-galactosidase (SA-β-gal) activities and mRNA expression of the senescence-related markers (p16 and p21) and pro-inflammatory molecules (tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)). Furthermore, Cur (0.1 μM~10 μM) was observed to increase autophagic activity, as identified by upregulation of microtubule-associated protein 1 light chain 3 (LC3), unc51-like autophagy-activating kinase-1 (ULK1), autophagy-related gene (Atg) 7 and Atg12, and the generation of type II of light chain 3 (LC3-II), thereby increasing autophagic vacuoles and acidic vesicular organelles, as well as causing a significant decrease in the p62 protein level. Moreover, the autophagy activator rapamycin (RAP) and Cur were found to partially ameliorate the senescent features of cBMSCs, while the autophagy inhibitor 3-methyladenine (3-MA) was shown to aggravate cBMSCs senescence and Cur treatment was able to restore the suppressed autophagy and counteract 3-MA-induced cBMSC senescence. Hence, our study highlights the important role of Cur-induced autophagy and its effects for ameliorating cBMSC senescence and provides new insight for delaying senescence and improving the therapeutic potential of MSCs.
Collapse
Affiliation(s)
- Jiaqiang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
- College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Weiyao Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Lijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Congwei Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
- Laboratory Animal Centre, Southwest Medical University, Luzhou 646000, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
- Correspondence: (Q.Y.); (S.Y.); Tel.: +86-139-8160-8208 (Q.Y.); +86-189-8057-3629 (S.Y.)
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (J.D.); (P.O.); (W.L.); (L.Z.); (C.G.); (L.S.); (S.C.); (L.Y.); (Z.R.); (Z.Z.); (J.D.)
- Correspondence: (Q.Y.); (S.Y.); Tel.: +86-139-8160-8208 (Q.Y.); +86-189-8057-3629 (S.Y.)
| |
Collapse
|
10
|
Downregulation of MicroRNA-206 Alleviates the Sublethal Oxidative Stress-Induced Premature Senescence and Dysfunction in Mesenchymal Stem Cells via Targeting Alpl. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7242836. [PMID: 32148656 PMCID: PMC7042556 DOI: 10.1155/2020/7242836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have shown great promise in tissue engineering and regenerative medicine; however, the regenerative capacity of senescent MSCs is greatly reduced, thus exhibiting limited therapy potential. Previous studies uncovered that microRNA-206 (miR-206) could largely regulate cell functions, including cell proliferation, survival, and apoptosis, but whether miR-206 is involved in the senescent process of MSCs remains unknown. In this study, we mainly elucidated the effects of miR-206 on MSC senescence and the underlying mechanism. We discovered that miR-206 was upregulated in the senescent MSCs induced by H2O2, and abrogation of miR-206 could alleviate this tendency. Besides, we determined that by targeting Alpl, miR-206 could ameliorate the impaired migration and paracrine function in MSCs reduced by H2O2. In vivo study, we revealed that inhibition of miR-206 in senescent MSCs could effectively protect their potential for myocardial infarction treatment in a rat MI model. In summary, we examined that inhibition of miR-206 in MSCs can alleviate H2O2-induced senescence and dysfunction, thus protecting its therapeutic potential.
Collapse
|
11
|
Chi B, Fan X, Li Z, Liu G, Zhang G, Xu H, Li Z, Lian Q, Xing L, Tian F. Identification of Gli1-interacting proteins during simvastatin-stimulated osteogenic differentiation of bone marrow mesenchymal stem cells. J Cell Biochem 2019; 120:18979-18994. [PMID: 31245876 DOI: 10.1002/jcb.29221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 01/20/2023]
Abstract
Simvastatin has been shown to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Our study aimed to illuminate the underlying mechanism, with a specific focus on the role of Hedgehog signaling in this process. BMSCs cultured with or without 10-7 mol/L simvastatin were subjected to evaluation of osteogenic differentiation capacity. Osteogenic markers such as type 1 collagen (COL1) and osteocalcin (OCN), as well as key molecules of Hedgehog signaling molecules, were examined by Western blot and real-time polymerase chain reaction (PCR). Co-immunoprecipitation and mass spectrometry assays were applied to screen for Gli1-interacting proteins. Cyclopamine (Cpn) was used as a Hedgehog signaling inhibitor. Our results indicated that simvastatin increased alkaline phosphatase (ALP) activity; mineralization of extracellular matrix; mRNA expression of ALP, COL1, and OCN; and expression and nuclear translocation of Gli1. Contrasting effects were observed in Cpn-exposed groups, but were partially rescued by the simvastatin treatment. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that Gli1-interacting proteins were primarily associated with mitogen-activated protein kinase (MAPK) (P = 7.04E-04 ), hippo, insulin, and glucagon signaling. Further, hub genes identified by protein-protein interaction network analysis included Gli1-interacting proteins such as Ppp2r1a, Rac1, Etf1, and XPO1/CRM1. In summary, the current study showed that the mechanism by which simvastatin stimulates osteogenic differentiation of BMSCs involves activation of Hedgehog signaling, as indicated by interactions with Gli1 and, most notably, the MAPK signaling pathway.
Collapse
Affiliation(s)
- Bojing Chi
- Medical Research Center, North China University of Science and Technology, Tangshan, China.,Department of Geriatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Xinhao Fan
- Department of Stomatology, Kailuan General Hospital, Tangshan, China
| | - Zhengxiao Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangyuan Liu
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Guobin Zhang
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Hong Xu
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Zhiguo Li
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Qiangqiang Lian
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Lei Xing
- Department of Geriatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Faming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
12
|
FGF21 Mediates Mesenchymal Stem Cell Senescence via Regulation of Mitochondrial Dynamics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4915149. [PMID: 31178962 PMCID: PMC6501200 DOI: 10.1155/2019/4915149] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cell- (MSC-) based therapy is a novel strategy in regenerative medicine. The functional and regenerative capacities of MSCs decline with senescence. Nonetheless, the potential mechanisms that underlie their senescence are not fully understood. This study was aimed at exploring the potential mechanisms of fibroblast growth factor 21 (FGF21) in the regulation of MSC senescence. The senescence of MSCs was determined by senescence-associated β-galactosidase (SA-β-gal) staining. The morphology and the level of mitochondrial reactive oxygen species (ROS) of MSCs were assessed by MitoTracker and Mito-Sox staining, respectively. The expression of FGF21 and mitochondrial dynamics-related proteins was detected by Western blotting. As MSCs were expanded in vitro, the expression of FGF21 decreased. Depletion of FGF21 enhanced production of mitochondrial reactive oxidative species (ROS) and increased the senescence of early-passage MSCs whereas inhibition of ROS abolished these effects. The senescent MSCs exhibited increased mitochondrial fusion and decreased mitochondrial fission. Treatment of early-passage MSCs with FGF21 siRNA enhanced mitochondrial fusion and reduced mitochondrial fission. Moreover, treatment of mitofusin2- (Mfn2-) siRNA inhibited depletion of FGF21-induced MSC senescence. Furthermore, we demonstrated that depletion of FGF21-induced mitochondrial fusion was regulated by the AMPK signaling pathway. Treatment with an AMPK activator, AICAR, abrogated the depletion of FGF21-induced senescence of MSCs by inhibiting mitochondrial fusion. Compared with MSCs isolated from young donors, those derived from aged donors showed a lower level of FGF21 and a higher level of senescent activity. Furthermore, overexpression of FGF21 in aged MSCs inhibited senescence. Our study shows that FGF21, via the AMPK signaling pathway, regulates the senescence of MSCs by mediating mitochondrial dynamics. Targeting FGF21 might represent a novel strategy to improve the quality and quantity of MSCs.
Collapse
|
13
|
Comparative Study on In Vitro Culture of Mouse Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2018; 2018:6704583. [PMID: 29760732 PMCID: PMC5924976 DOI: 10.1155/2018/6704583] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/08/2018] [Accepted: 02/25/2018] [Indexed: 12/11/2022] Open
Abstract
In vitro culture of mesenchymal stem cells (MSCs) from mouse bone marrow (BM) has been hampered because of the low yield of MSCs during isolation and the contamination of hematopoietic cells during expansion. The lack of specific mouse BM-MSC markers increases the difficulty. Several techniques have been reported to improve the purity and in vitro growth of mouse BM-MSCs. However, systematic report on comparison of characteristics in primary BM-MSCs between different culture conditions is rare. Here, we studied the effects of oxygen concentrations and initial medium replacement intervals, along with cell passages, on mouse BM-MSCs isolated with differential adhesion method. BM-MSCs exhibited elevated proliferative and clonogenic abilities in 5% oxygen compared with 10% and 21% oxygen, as well as a better expression of the MSC marker Sca-1. Adipogenic and osteogenetic differentiation of BM-MSCs can be observed in both 21% and 5% oxygen. Adipogenic differentiation appeared stronger under normoxia conditions. BM-MSCs showed increased proliferative capacity and adipogenic/osteogenetic differentiation potential when initial medium replacement interval was 4 days compared with 1 day. As passage number increased, cells were more MSC-like in morphology and in expression of surface markers (positive for CD29, CD44, and Sca-1 and negative for CD11b, CD19, and CD45). These data provide new insight into optimizing the culture method and understanding the biological characteristics of mouse BM-MSCs during in vitro expansion.
Collapse
|
14
|
Zhang T, Kawaguchi N, Hayama E, Furutani Y, Nakanishi T. High expression of CXCR4 and stem cell markers in a monocrotaline and chronic hypoxia-induced rat model of pulmonary arterial hypertension. Exp Ther Med 2018; 15:4615-4622. [PMID: 29805477 PMCID: PMC5952071 DOI: 10.3892/etm.2018.6027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/09/2018] [Indexed: 12/22/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe and fatal clinical syndrome. C-X-C chemokine receptor type 4 (CXCR4) is known to serve a key role in recruiting mesenchymal stem cells (MSCs) from the bone marrow. In the present study, a rat model of PAH induced by 5 weeks of chronic hypoxia and treatment with a single injection of monocrotaline (60 mg/kg) was used to investigate the involvement of CXCR4 in PAH. Successful establishment of the PAH model was confirmed by significant differences between the PAH and control groups in right ventricular systolic pressure, Fulton index, wall thickness, vascular occlusion score determined by immunohistochemical staining and the expression of inflammatory markers measured by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression of CXCR4 and other stem cell markers were compared in the PAH and control groups. RT-qPCR showed that the expression of CXCR4, SCF, c-Kit, and CD29, which are expressed in MSCs, was significantly higher in the PAH group. Immunohistochemical staining also showed that the numbers of CXCR4-, c-Kit- and CD90-positive cells were significantly higher in the PAH group. These results suggest that CXCR4 is involved in the pathogenesis of PAH and that stem cells may serve an important role in pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Nanako Kawaguchi
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Emiko Hayama
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Yoshiyuki Furutani
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Toshio Nakanishi
- Department of Pediatric Cardiology, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| |
Collapse
|
15
|
Carmona MD, Cañadillas S, Romero M, Blanco A, Nogueras S, Herrera C. Intramyocardial bone marrow mononuclear cells versus bone marrow-derived and adipose mesenchymal cells in a rat model of dilated cardiomyopathy. Cytotherapy 2017; 19:947-961. [PMID: 28673775 DOI: 10.1016/j.jcyt.2017.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Effects of cell therapy on dilated cardiomyopathy (DCM) have been investigated in pre-clinical models using distinct cellular types in each study. A single study that compares the effectiveness of different cells is lacking. METHODS We have compared the effects of intramyocardial injection (IMI) of bone marrow (BM)-derived mononuclear cells (MNCs), BM and adipose tissue (AT) mesenchymal stromal cells (BM-MSCs and AT-MSCs) on heart function, histological changes and myocardial ultrastructure in a rat model of DCM. Isogenic Wistar rats were used to isolate the different cell types and to induce DCM by autoimmune myocarditis. Animals were randomly assigned to receive BM-MNCs, BM-MSCs, AT-MSCs or placebo at day 42 by IMI. Serial echocardiography was used to assess cardiac function and hearts obtained after sacrifice at day 70, were used for histological and ultrastructural analysis. Serum levels of type B-natriuretic peptide (BNP) and vascular endothelial growth-factor (VEGF) were determined at different time points. RESULTS BM-MSC treatment induced significant improvement in ejection fraction (EF), fractional shortening (FS), left ventricular systolic diameter (LVESD) and systolic volume (LVESV). In contrast, changes in echocardiographic parameters with respect to pre-treatment values in animals receiving placebo, AT-MSCs or BM-MNCs were not statistically significant. EF and FS in animals receiving AT-MSCs were superior to those receiving placebo. BM-MSC transplantation induced also improvement in cardiac fibers organization and capillary density, fibrotic tissue reduction, increase in final VEGF concentration and BNP decrease. DISCUSSION IMI of BM or AT-MSCs improves LV function and induces more angiogenesis processes than BM-MNCs. In addition, BM-MSCs showed more anti-fibrotic effects and more ability to reorganize myocardial tissue compared with the other cell types.
Collapse
Affiliation(s)
- M Dolores Carmona
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain.
| | - Sagrario Cañadillas
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain
| | - Miguel Romero
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; University of Cordoba, Spain; Cardiology Department, Reina Sofia University Hospital, Cordoba, Spain
| | - Alfonso Blanco
- Anatomy and Comparative Pathology Department, University of Cordoba, Spain
| | - Sonia Nogueras
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Spain; Cellular Therapy Unit, Reina Sofia University Hospital, Cordoba, Spain; University of Cordoba, Spain; Hematology Department, Reina Sofia University Hospital, Cordoba, Spain
| |
Collapse
|
16
|
Monsanto MM, White KS, Kim T, Wang BJ, Fisher K, Ilves K, Khalafalla FG, Casillas A, Broughton K, Mohsin S, Dembitsky WP, Sussman MA. Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy. Circ Res 2017; 121:113-124. [PMID: 28446444 DOI: 10.1161/circresaha.116.310494] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/26/2022]
Abstract
RATIONALE The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. OBJECTIVE Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. METHODS AND RESULTS Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit+ cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit- mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit+ population is further enriched by selection for a CD133+ endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. CONCLUSIONS Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients.
Collapse
Affiliation(s)
- Megan M Monsanto
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Kevin S White
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Taeyong Kim
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Bingyan J Wang
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Kristina Fisher
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Kelli Ilves
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Farid G Khalafalla
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Alexandria Casillas
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Kathleen Broughton
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Sadia Mohsin
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Walter P Dembitsky
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.)
| | - Mark A Sussman
- From the San Diego Heart Research Institute, San Diego State University, CA (M.M.M., K.S.W., T.K., B.J.W., K.F., K.I., F.G.K., A.C., K.B., S.M., M.A.S.); and Sharp Memorial Hospital, San Diego, CA (W.P.D.).
| |
Collapse
|