1
|
Zhu XY, Liu WT, Hou XJ, Zong C, Yu W, Shen ZM, Qu SP, Tao M, Xue MM, Zhou DY, Bai HR, Gao L, Jiang JH, Zhao QD, Wei LX, Yang X, Han ZP, Zhang L. CD34 +CLDN5 + tumor associated senescent endothelial cells through IGF2-IGF2R signaling increased cholangiocellular phenotype in hepatocellular carcinoma. J Adv Res 2024:S2090-1232(24)00564-2. [PMID: 39674501 DOI: 10.1016/j.jare.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/02/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024] Open
Abstract
INTRODUCTION The heterogeneity of hepatocellular carcinoma (HCC) is linked to tumor malignancy and poor prognosis. Nevertheless, the precise mechanisms underlying the development of the cholangiocellular phenotype (CCA) within HCC remain unclear. Emerging studies support that the cross-talk among the host cells within tumor microenvironment (TME) sustains the cancer cell plasticity. OBJECTIVES This study sought to identify the specific cell types involved in the formation of CCA and to elucidate their functional roles in the progression of HCC. METHODS Single-cell RNA sequencing was employed to identify the specific cell types involved in the formation of CCA. Both in vitro and vivo analyses were used to identify the tumor-associated senescent ECs and investigate the function in TME. The diethylnitrosamine-induced model was utilized to investigate the interaction between senescent ECs and MSCs, aiming to elucidate their synergistic contributions to the progression of CCA. RESULTS Using single-cell RNA sequencing, we identified a distinct senescent-associated subset of endothelial cells (ECs), namely CD34+CLDN5+ ECs, which mainly enriched in tumor tissue. Further, the senescent ECs were observed to secrete IGF2, which recruited mesenchymal stem cells (MSCs) into the TME through IGF2R/MAPK signaling. In primary liver cancer model, MSCs exhibited a strong tumor-promoting effect, increasing the CCA and tumor malignancy after HCC formation. Interestingly, knockdown of IGF2R expression in MSCs inhibited the increase of CCA caused by MSCs in HCC. Meanwhile, it was revealed that MSCs released multiple inflammatory and trophic-related cytokines to enhance the cancer stem cell-like characteristics in HCC cells. Finally, we demonstrated that CEBPβ up-regulated IGF2 expression in tumor senescent ECs by combining with Igf2-promtor-sequence. CONCLUSIONS Together, our findings illustrated that tumor associated senescent ECs in HCC recruited the MSCs into TME, enhancing cancer stem cell (CSC)-like features of HCC cells and contributing to the CCA formation.
Collapse
Affiliation(s)
- Xin-Yu Zhu
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Wen-Ting Liu
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiao-Juan Hou
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Chen Zong
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Wei Yu
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Zhe-Min Shen
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Shu-Ping Qu
- Department of Hepatic Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Min Tao
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Meng-Meng Xue
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Dao-Yu Zhou
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China; Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Hao-Ran Bai
- Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Gao
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Jing-Hua Jiang
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Qiu-Dong Zhao
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Li-Xin Wei
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China
| | - Xue Yang
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China.
| | - Zhi-Peng Han
- Tumor Immunology and Metabolism Center, National Center for Liver Cancer, Naval Medical University, Shanghai, China; Department of Oncology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li Zhang
- Changhai Clinical Research Unit, Changhai Hospital of Naval Medical University, Shanghai, China.
| |
Collapse
|
2
|
Lin S, Gao H, Ma H, Liao Z, Zhang D, Pan J, Zhu Y. A comprehensive meta-analysis of stem cell therapy for liver failure: Assessing treatment efficacy and modality. Ann Hepatol 2024; 30:101586. [PMID: 39293783 DOI: 10.1016/j.aohep.2024.101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION AND OBJECTIVES This meta-analysis aims to evaluate the efficacy of stem cell therapy (SCT) for liver failure. MATERIALS AND METHODS The study adhered to the recommended guidelines of the PRISMA statement. Eligible studies published prior to May 13, 2023, were comprehensively searched in databases including PubMed, Web of Science, and Embase. Quality assessment was conducted using the Cochrane risk-of-bias tool, and the standard mean differences were calculated for the clinical parameters. The hazard ratios were determined by extracting individual patient data from the Kaplan-Meier curve. RESULTS A total of 2,937 articles were retrieved, and eight studies were included in the final analysis. Most of the studies focused on HBV-related liver failure and were randomized controlled trials. All studies utilized mesenchymal stem cells (MSCs), with the majority (62.5%) being allogeneic. The analysis revealed that combining stem cell therapy with standard medical treatment or plasma exchange significantly enhanced patient survival and reduced MELD scores. Specifically, allogeneic stem cells showed superior efficacy in improving survival outcomes compared to autologous stem cells. Furthermore, deep vessel injection plus a single injection demonstrated better effectiveness than peripheral vessel injection plus multiple injections in reducing MELD scores. CONCLUSIONS This comprehensive analysis underscores the potential of MSC therapy in significantly improving survival and clinical outcomes in patients with liver failure, highlighting the superior benefits of allogeneic MSCs and deep vessel plus single injection administration.
Collapse
Affiliation(s)
- Shenglong Lin
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China; Department of Hepatology, Hepatology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province 350005, China
| | - Haibing Gao
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China
| | - Huaxi Ma
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China
| | - Ziyuan Liao
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China
| | - Dongqing Zhang
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian Province 350028, China
| | - Jinshui Pan
- Department of Hepatology, Hepatology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province 350005, China; Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou, Fujian Province 350005, China
| | - Yueyong Zhu
- Department of Hepatology, Hepatology Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province 350005, China; Fujian Clinical Research Center for Liver and Intestinal Diseases, Fuzhou, Fujian Province 350005, China.
| |
Collapse
|
3
|
Hokkoku D, Sasaki K, Kobayashi S, Shimbo T, Kitayama T, Yamazaki S, Yamamoto Y, Ouchi Y, Imamura H, Kado T, Toya K, Fujii W, Iwagami Y, Yamada D, Tomimaru Y, Noda T, Takahashi H, Tamai K, Doki Y, Eguchi H. High-mobility group box 1 fragment ameliorates chronic pancreatitis induced by caerulein in mice. J Gastroenterol 2024; 59:744-757. [PMID: 38727823 DOI: 10.1007/s00535-024-02112-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/26/2024] [Indexed: 07/29/2024]
Abstract
BACKGROUND Chronic pancreatitis (CP) is a progressive disease characterized by pancreatic fibrosis for which effective treatment options are lacking. Mesenchymal stem cells (MSCs) have shown potential for fibrosis treatment but face limitations in clinical application. The high-mobility group box 1 (HMGB1) fragment mobilizes MSCs from bone marrow into the blood and has emerged as a promising therapeutic agent for tissue regeneration in various pathological conditions. The aim of this study was to investigate the potential therapeutic effects of systemic administration of the HMGB1 fragment in a mouse model of CP. METHODS A caerulein-induced CP mouse model was used, and the HMGB1 fragment was administered by tail vein injection. Parameters such as body weight, pancreatic tissue damage, fibrosis, inflammatory cytokine expression, and collagen-related gene expression were evaluated using various assays, including immunohistochemistry, real-time PCR, serum analysis, and single-cell transcriptome analysis. And the migration of MSCs to the pancreas was evaluated using the parabiosis model. RESULTS Administration of the HMGB1 fragment was associated with significant improvements in pancreatic tissue damage and fibrosis. It suppressed the expression of inflammatory cytokines and activated platelet-derived growth factor receptor-α+ MSCs, leading to their accumulation in the pancreas. The HMGB1 fragment also shifted gene expression patterns associated with pancreatic fibrosis toward those of the normal pancreas. Systemic administration of the HMGB1 fragment demonstrated therapeutic efficacy in attenuating pancreatic tissue damage and fibrosis in a CP mouse model. CONCLUSION These findings highlight the potential of the HMGB1 fragment as a therapeutic target for the treatment of CP.
Collapse
Affiliation(s)
- Daiki Hokkoku
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan.
| | - Takashi Shimbo
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Osaka, Japan
| | - Tomomi Kitayama
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Inc, Ibaraki, Osaka, Japan
| | - Sho Yamazaki
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Inc, Ibaraki, Osaka, Japan
| | - Yukari Yamamoto
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuya Ouchi
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- StemRIM Institute of Regeneration-Inducing Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroki Imamura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Takeshi Kado
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Keisuke Toya
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Wataru Fujii
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Katsuto Tamai
- Department of Stem Cell Therapy Science, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka E-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Zhang B, Gao S, Liu S, Gong X, Wu J, Zhang Y, Ma L, Sheng L. Regenerative mechanisms of stem cells and their clinical applications for degenerative eye diseases. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2024; 29:42. [PMID: 40224196 PMCID: PMC11992415 DOI: 10.4103/jrms.jrms_358_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2025]
Abstract
There are different types of treatment for eye diseases. Although the majority of eye diseases are curable with primary treatments and surgery, some of degenerative eye damages need regeneration that is not gained by conventional procedures. Stem cells, such as mesenchymal stem cells, human embryonic stem cell-derived retinal pigmented epithelium, and inducible pluripotent stem cells, are now considered one of the most important and safe methods for regeneration of various damaged tissues or organs. However, how will stem cell therapy contribute to regeneration and overcome degenerative eye diseases? This review discusses the regenerative mechanisms, clinical applications, and advantages of different types of stem cells for restoring degenerative eye diseases.
Collapse
Affiliation(s)
- Baodong Zhang
- Department of Ophthalmology, Hulun Buir Aier Eye Hospital, Hulunbuir, Inner Mongolia, China
| | - Shusong Gao
- Department of Ophthalmology, Ezhou Central Hospital, Ezhou, Hubei, China
| | - Shibo Liu
- Department of Ophthalmology, Hulun Buir Aier Eye Hospital, Hulunbuir, Inner Mongolia, China
| | - Xuewu Gong
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jing Wu
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yu Zhang
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Li Ma
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Lijie Sheng
- Department of Ophthalmologic, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
5
|
Mei R, Wan Z, Yang C, Shen X, Wang R, Zhang H, Yang R, Li J, Song Y, Su H. Advances and clinical challenges of mesenchymal stem cell therapy. Front Immunol 2024; 15:1421854. [PMID: 39100671 PMCID: PMC11294097 DOI: 10.3389/fimmu.2024.1421854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
In recent years, cell therapy has provided desirable properties for promising new drugs. Mesenchymal stem cells are promising candidates for developing genetic engineering and drug delivery strategies due to their inherent properties, including immune regulation, homing ability and tumor tropism. The therapeutic potential of mesenchymal stem cells is being investigated for cancer therapy, inflammatory and fibrotic diseases, among others. Mesenchymal stem cells are attractive cellular carriers for synthetic nanoparticles for drug delivery due to their inherent homing ability. In this review, we comprehensively discuss the various genetic and non-genetic strategies of mesenchymal stem cells and their derivatives in drug delivery, tumor therapy, immune regulation, tissue regeneration and other fields. In addition, we discuss the current limitations of stem cell therapy and the challenges in clinical translation, aiming to identify important development areas and potential future directions.
Collapse
Affiliation(s)
- Ruiyan Mei
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xiangjing Shen
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haihua Zhang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Rui Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
6
|
He JL, You YX, Pei X, Jiang W, Zeng QM, Chen B, Wang YH, Chen EQ, Tang H, Gao XF, Wu DB. Tracking of Stem Cells in Chronic Liver Diseases: Current Trends and Developments. Stem Cell Rev Rep 2024; 20:447-454. [PMID: 37993759 DOI: 10.1007/s12015-023-10659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Stem cell therapy holds great promise for future clinical practice for treatment of advanced liver diseases. However, the fate of stem cells after transplantation, including the distribution, viability, and the cell clearance, has not been fully elucidated. Herein, recent advances regarding the imaging tools for stem cells tracking mainly in chronic liver diseases with the advantages and disadvantages of each approach have been described. Magnetic resonance imaging is a promising clinical imaging modality due to non-radioactivity, excellent penetrability, and high spatial resolution. Fluorescence imaging and radionuclide imaging demonstrate relatively increased sensitivity, with the latter excelling in real-time monitoring. Reporter genes specialize in long-term tracing. Nevertheless, the disadvantages of low sensitivity, radiation, exogenous gene risk are inevitably present in each of these means, respectively. In this review, we aim to comprehensively evaluate the current state of methods for tracking of stem cell, highlighting their strengths and weaknesses, and providing insights into their future potential. Multimodality imaging strategies may overcome the inherent limitations of single-modality imaging by combining the strengths of different imaging techniques to provide more comprehensive information in the clinical setting.
Collapse
Affiliation(s)
- Jin-Long He
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Yi-Xian You
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiong Pei
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Jiang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qing-Min Zeng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bin Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong-Hong Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - En-Qiang Chen
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiu-Feng Gao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China.
| | - Dong-Bo Wu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Akbaribazm M. Exploring the Regenerative Potential of Stem Cells for Treating Eye Diseases: A Review of the New Findings. OBM GENETICS 2024; 08:1-14. [DOI: 10.21926/obm.genet.2401212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The escalating prevalence of vision loss due to eye diseases has instigated a quest for innovative therapies, given that conventional approaches often fall short in repairing and regenerating damaged eye tissues, particularly the retina. Stem cell-based interventions have emerged as a promising avenue, with numerous studies in animal models and human trials exploring their potential to enhance visual acuity. Beyond addressing conditions like age-related macular degeneration (AMD) and diabetic retinopathy (DR), stem cell therapies demonstrate efficacy in treating genetic disorders such as retinitis pigmentosa (RP). In severe eye damage necessitating regeneration, stem cells play a pivotal role, leveraging their regenerative capabilities. Noteworthy is the transplantation of retinal pigment epithelial (RPE) cells derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), showcasing promising results in preclinical models and clinical studies, leading to improved retinal function without severe side effects. Mesenchymal stem cells (MSCs) have successfully treated optic neuropathy, RP, DR, and glaucoma, yielding positive clinical outcomes. The safety of adult stem cells, particularly MSCs derived from adipose tissue or bone marrow, has been firmly established. This review highlights significant advancements in utilizing human ESC-derived retinal pigmented epithelium and iPSCs for treating eye injuries. While cell-based therapy is relatively nascent, with numerous clinical trials pending review, stem cells' regenerative potential and clinical applications in addressing eye diseases offer substantial promise. This study aims to comprehensively examine the applications of stem cells in the context of eye diseases and their potential role in regenerative medicine.
Collapse
|
8
|
Yang X, Xiong M, Fu X, Sun X. Bioactive materials for in vivo sweat gland regeneration. Bioact Mater 2024; 31:247-271. [PMID: 37637080 PMCID: PMC10457517 DOI: 10.1016/j.bioactmat.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 08/29/2023] Open
Abstract
Loss of sweat glands (SwGs) commonly associated with extensive skin defects is a leading cause of hyperthermia and heat stroke. In vivo tissue engineering possesses the potential to take use of the body natural ability to regenerate SwGs, making it more conducive to clinical translation. Despite recent advances in regenerative medicine, reconstructing SwG tissue with the same structure and function as native tissue remains challenging. Elucidating the SwG generation mechanism and developing biomaterials for in vivo tissue engineering is essential for understanding and developing in vivo SwG regenerative strategies. Here, we outline the cell biology associated with functional wound healing and the characteristics of bioactive materials. We critically summarize the recent progress in bioactive material-based cell modulation approaches for in vivo SwG regeneration, including the recruitment of endogenous cells to the skin lesion for SwG regeneration and in vivo cellular reprogramming for SwG regeneration. We discussed the re-establishment of microenvironment via bioactive material-mediated regulators. Besides, we offer promising perspectives for directing in situ SwG regeneration via bioactive material-based cell-free strategy, which is a simple and effective approach to regenerate SwG tissue with both fidelity of structure and function. Finally, we discuss the opportunities and challenges of in vivo SwG regeneration in detail. The molecular mechanisms and cell fate modulation of in vivo SwG regeneration will provide further insights into the regeneration of patient-specific SwGs and the development of potential intervention strategies for gland-derived diseases.
Collapse
Affiliation(s)
- Xinling Yang
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Mingchen Xiong
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, PR China
| |
Collapse
|
9
|
Abubakr S, Hazem NM, Sherif RN, Elhawary AA, Botros KG. Correlation between SDF-1α, CD34 positive hematopoietic stem cells and CXCR4 expression with liver fibrosis in CCl4 rat model. BMC Gastroenterol 2023; 23:323. [PMID: 37730560 PMCID: PMC10512633 DOI: 10.1186/s12876-023-02932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND One of the most frequent disorders is liver fibrosis. An improved understanding of the different events during the process of liver fibrosis & its reversibility could be helpful in its staging and in finding potential therapeutic agents. AIM The goal of this research was to evaluate the relationship among CD34 + HPSCs, SDF-1α, and CXCR4 receptor expression with the percentage of the area of hepatic fibrosis. MATERIALS AND METHODS Thirty-six male Sprague-Dawley rats were separated into the control group, liver injury group & spontaneous reversion group. The liver injury was induced by using 2 ml/kg CCl4 twice a week. Flow cytometric examination of CD34 + cells in the blood & liver was performed. Bone marrow & liver samples were taken for evaluation of the SDF-1α mRNA by PCR. Liver specimens were stained for histopathological and CXCR4 immuno-expression evaluation. RESULTS In the liver injury group, the hepatic enzymes, fibrosis area percentage, CXCR4 receptor expression in the liver, CD34 + cells in the blood and bone marrow & the level SDF-1α in the liver and its concentration gradient were statistically significantly elevated with the progression of the liver fibrosis. On the contrary, SDF-1α in the bone marrow was statistically significantly reduced with the development of liver fibrosis. During the spontaneous reversion group, all the studied parameters apart from SDF-1α in the bone marrow were statistically substantially decreased compared with the liver injury group. We found a statistically substantial positive correlation between fibrosis area and all of the following: liver enzymes, CXCR4 receptor expression in the liver, CD34 + cells in the blood and liver, and SDF- 1α in the liver and its concentration gradient. In conclusion, in CCl4 rat model, the fibrosis area is significantly correlated with many parameters in the blood, bone marrow, and liver, which can be used during the process of follow-up during the therapeutic interventions.
Collapse
Affiliation(s)
- Sara Abubakr
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Noha M Hazem
- Medical Biochemistry and Molecular Biology Department, Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Algomhoria Street, Mansoura, 35516, Egypt.
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia.
| | - R N Sherif
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Adel Abdelmohdy Elhawary
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Kamal G Botros
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
10
|
Luo M, Zhao Z, Yi J. Osteogenesis of bone marrow mesenchymal stem cell in hyperglycemia. Front Endocrinol (Lausanne) 2023; 14:1150068. [PMID: 37415664 PMCID: PMC10321525 DOI: 10.3389/fendo.2023.1150068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Diabetes mellitus (DM) has been shown to be a clinical risk factor for bone diseases including osteoporosis and fragility. Bone metabolism is a complicated process that requires coordinated differentiation and proliferation of bone marrow mesenchymal stem cells (BMSCs). Owing to the regenerative properties, BMSCs have laid a robust foundation for their clinical application in various diseases. However, mounting evidence indicates that the osteogenic capability of BMSCs is impaired under high glucose conditions, which is responsible for diabetic bone diseases and greatly reduces the therapeutic efficiency of BMSCs. With the rapidly increasing incidence of DM, a better understanding of the impacts of hyperglycemia on BMSCs osteogenesis and the underlying mechanisms is needed. In this review, we aim to summarize the current knowledge of the osteogenesis of BMSCs in hyperglycemia, the underlying mechanisms, and the strategies to rescue the impaired BMSCs osteogenesis.
Collapse
Affiliation(s)
- Meng Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jianru Yi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Administration of stem cells against cardiovascular diseases with a focus on molecular mechanisms: Current knowledge and prospects. Tissue Cell 2023; 81:102030. [PMID: 36709696 DOI: 10.1016/j.tice.2023.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases (CVDs) are a serious global concern for public and human health. Despite the emergence of significant therapeutic advances, it is still the leading cause of death and disability worldwide. As a result, extensive efforts are underway to develop practical therapeutic approaches. Stem cell-based therapies could be considered a promising strategy for the treatment of CVDs. The efficacy of stem cell-based therapeutic approaches is demonstrated through recent laboratory and clinical studies due to their inherent regenerative properties, proliferative nature, and their capacity to differentiate into different cells such as cardiomyocytes. These properties could improve cardiovascular functioning leading to heart regeneration. The two most common types of stem cells with the potential to cure heart diseases are induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs). Several studies have demonstrated the use, efficacy, and safety of MSC and iPSCs-based therapies for the treatment of CVDs. In this study, we explain the application of stem cells, especially iPSCs and MSCs, in the treatment of CVDs with a focus on cellular and molecular mechanisms and then discuss the advantages, disadvantages, and perspectives of using this technology in the treatment of these diseases.
Collapse
|
12
|
Kawai H, Oo MW, Takabatake K, Tosa I, Soe Y, Eain HS, Sanou S, Fushimi S, Sukegawa S, Nakano K, Takeshi T, Nagatsuka H. Enzyme-Cleaved Bone Marrow Transplantation Improves the Engraftment of Bone Marrow Mesenchymal Stem Cells. JBMR Plus 2023; 7:e10722. [PMID: 36936364 PMCID: PMC10020919 DOI: 10.1002/jbm4.10722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is a promising approach to curing bone diseases and disorders. In treating genetic bone disorders, MSC therapy is local or systemic transplantation of isolated and in vitro proliferated MSC rather than bone marrow transplantation. Recent evidence showed that bone marrow MSC engraftment to bone regeneration has been controversial in animal and human studies. Here, our modified bone marrow transplantation (BMT) method solved this problem. Like routine BMT, our modified method involves three steps: (i) isolation of bone marrow cells from the donor, (ii) whole-body lethal irradiation to the recipient, and (iii) injection of isolated bone marrow cells into irradiated recipient mice via the tail vein. The significant modification is imported at the bone marrow isolation step. While the bone marrow cells are flushed out from the bone marrow with the medium in routine BMT, we applied the enzymes' (collagenase type 4 and dispase) integrated medium to wash out the bone marrow cells. Then, cells were incubated in enzyme integrated solution at 37°C for 10 minutes. This modification designated BMT as collagenase-integrated BMT (c-BMT). Notably, successful engraftment of bone marrow MSC to the new bone formation, such as osteoblasts and chondrocytes, occurs in c-BMT mice, whereas routine BMT mice do not recruit bone marrow MSC. Indeed, flow cytometry data showed that c-BMT includes a higher proportion of LepR+, CD51+, or RUNX2+ non-hematopoietic cells than BMT. These findings suggested that c-BMT is a time-efficient and more reliable technique that ensures the disaggregation and collection of bone marrow stem cells and engraftment of bone marrow MSC to the recipient. Hence, we proposed that c-BMT might be a promising approach to curing genetic bone disorders. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hotaka Kawai
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Ikue Tosa
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Cartilage Biology and Regenerative Medicine Laboratory, College of Dental MedicineColumbia University Irving Medical CenterNew YorkNYUSA
| | - Yamin Soe
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Htoo Shwe Eain
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Sho Sanou
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shigeko Fushimi
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Shintaro Sukegawa
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Oral and Maxillofacial SurgeryKagawa Prefectural Central HospitalTakamatsuJapan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Takarada Takeshi
- Department of Regenerative Science, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
13
|
Ma J, Dong L, Chang Q, Chen S, Zheng J, Li D, Wu S, Yang H, Li X. CXCR4 knockout induces neuropathological changes in the MPTP-lesioned model of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166597. [PMID: 36368650 DOI: 10.1016/j.bbadis.2022.166597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
C-X-C chemokine receptor type 4 (CXCR4) is highly expressed in Parkinson's disease (PD) mice's brains and is related to astrocyte signaling and microglial activation. This makes CXCR4 related to neuroinflammation and also makes CXCR4 considered to be the PD development mechanism and possible therapeutic targets. Therefore, it is worth studying the effect of CXCR4 on neuropathological changes and its potential therapeutic value for PD. This study aimed to investigate the effect of CXCR4 knockout on neuropathological changes in the mouse model of PD and its mechanism. In this study, CXCR4-WT and CXCR4+/- C57BL mice were used to make Parkinson's model. Behavioral experiments, dopaminergic neuron markers, neuroinflammation, and blood-brain barrier damage were detected to verify the effect of CXCR4 knockout on neuropathological changes. CXCR4 knockout improved the behavioral results and tyrosine hydroxylase (TH) expression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mice. In the substantia nigra (SN) area of the brain of PD mouse model, the number of Iba1-positive (p = 0.0004) and GFAP-positive cells (p = 0.0349) was significantly lower in CXCR4 knockout group than CXCR4-WT group. CXCR4 knockout reduced MPTP-induced infiltration of peripheral immune cells and the expression of pro-inflammatory cytokines. CXCR4 knockout also protected blood-brain barrier (BBB) from MPTP-induced damage. In conclusion, CXCR4 knockout inhibits the degeneration of dopamine neurons, microglial and astrocyte activation, neuroinflammation, and BBB damages in the MPTP-lesioned PD mice.
Collapse
Affiliation(s)
- Jianjun Ma
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China.
| | - Linrui Dong
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China
| | - Qingqing Chang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China
| | - Siyuan Chen
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Jinhua Zheng
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Dongsheng Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Shaopu Wu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Hongqi Yang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| | - Xue Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou 450003, PR China; Department of Neurology, Henan University People's Hospital, Zhengzhou 450003, PR China
| |
Collapse
|
14
|
Huang Y, Zhu M, Liu Z, Hu R, Li F, Song Y, Geng Y, Ma W, Song K, Zhang M. Bone marrow mesenchymal stem cells in premature ovarian failure: Mechanisms and prospects. Front Immunol 2022; 13:997808. [PMID: 36389844 PMCID: PMC9646528 DOI: 10.3389/fimmu.2022.997808] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
Premature ovarian failure (POF) is a common female reproductive disorder and characterized by menopause, increased gonadotropin levels and estrogen deficiency before the age of 40 years old. The etiologies and pathogenesis of POF are not fully clear. At present, hormone replacement therapy (HRT) is the main treatment options for POF. It helps to ameliorate perimenopausal symptoms and related health risks, but can't restore ovarian function and fertility fundamentally. With the development of regenerative medicine, bone marrow mesenchymal stem cells (BMSCs) have shown great potential for the recovery of ovarian function and fertility based on the advantages of abundant sources, high capacity for self-renewal and differentiation, low immunogenicity and less ethical considerations. This systematic review aims to summarize the possible therapeutic mechanisms of BMSCs for POF. A detailed search strategy of preclinical studies and clinical trials on BMSCs and POF was performed on PubMed, MEDLINE, Web of Science and Embase database. A total of 21 studies were included in this review. Although the standardization of BMSCs need more explorations, there is no doubt that BMSCs transplantation may represent a prospective therapy for POF. It is hope to provide a theoretical basis for further research and treatment for POF.
Collapse
Affiliation(s)
- Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengdi Zhu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Mingmin Zhang, ; Kunkun Song,
| |
Collapse
|
15
|
Ling L, Hou J, Wang Y, Shu H, Huang Y. Effects of Low-Intensity Pulsed Ultrasound on the Migration and Homing of Human Amnion-Derived Mesenchymal Stem Cells to Ovaries in Rats With Premature Ovarian Insufficiency. Cell Transplant 2022; 31:9636897221129171. [PMID: 36282038 PMCID: PMC9608022 DOI: 10.1177/09636897221129171] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Premature ovarian insufficiency (POI) can cause multiple sequelae and is currently incurable. Mesenchymal stem cell (MSC) transplantation might provide an effective treatment method for POI. However, the clinical application of systemic MSC transplantation is limited by the low efficiency of cell homing to target tissue in vivo, including systemic MSC transplantation for POI treatment. Thus, exploration of methods to promote MSC homing is necessary. This study was to investigate the effects of low-intensity pulsed ultrasound (LIPUS) on the migration and homing of transplanted human amnion–derived MSCs (hAD-MSCs) to ovaries in rats with chemotherapy-induced POI. For LIPUS treatment, hAD-MSCs were exposed to LIPUS or sham irradiation. Chemokine receptor expressions in hAD-MSCs were detected by polymerase chain reaction (PCR), Western blot, and immunofluorescence assays. hAD-MSC migration was detected by wound healing and transwell migration assays. Cyclophosphamide-induced POI rat models were established to evaluate the effects of LIPUS on the homing of systemically transplanted hAD-MSCs to chemotherapy-induced POI ovaries in vivo. We found that hAD-MSCs expressed chemokine receptors. The LIPUS promoted the expression of chemokine receptors, especially CXCR4, in hAD-MSCs. SDF-1 induced hAD-MSC migration. The LIPUS promoted hAD-MSC migration induced by SDF-1 through SDF-1/CXCR4 axis. SDF-1 levels significantly increased in ovaries induced by chemotherapy in POI rats. Pretreating hAD-MSCs with LIPUS increased the number of hAD-MSCs homing to ovaries in rats with chemotherapy-induced POI to some extent. However, the difference was not significant. Both hAD-MSC and LIPUS-pretreated hAD-MSC transplantation reduced ovarian injuries and improved ovarian function in rats with chemotherapy-induced POI. CXCR4 antagonist significantly reduced the number of hAD-MSCs- and LIPUS-pretreated hAD-MSCs homing to POI ovaries, and further reduced their efficacy in POI treatment. According to these findings, pretreating MSCs with LIPUS before transplantation might provide a novel, convenient, and safe technique to explore for improving the homing of systemically transplanted MSCs to target tissue.
Collapse
Affiliation(s)
- Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,Li Ling, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing 400010, China.
| | - Jiying Hou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubin Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
16
|
Prospects and Challenges of Electrospun Cell and Drug Delivery Vehicles to Correct Urethral Stricture. Int J Mol Sci 2022; 23:ijms231810519. [PMID: 36142432 PMCID: PMC9502833 DOI: 10.3390/ijms231810519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Current therapeutic modalities to treat urethral strictures are associated with several challenges and shortcomings. Therefore, significant strides have been made to develop strategies with minimal side effects and the highest therapeutic potential. In this framework, electrospun scaffolds incorporated with various cells or bioactive agents have provided promising vistas to repair urethral defects. Due to the biomimetic nature of these constructs, they can efficiently mimic the native cells’ niches and provide essential microenvironmental cues for the safe transplantation of multiple cell types. Furthermore, these scaffolds are versatile platforms for delivering various drug molecules, growth factors, and nucleic acids. This review discusses the recent progress, applications, and challenges of electrospun scaffolds to deliver cells or bioactive agents during the urethral defect repair process. First, the current status of electrospinning in urethral tissue engineering is presented. Then, the principles of electrospinning in drug and cell delivery applications are reviewed. Finally, the recent preclinical studies are summarized and the current challenges are discussed.
Collapse
|
17
|
Yuan M, Hu X, Yao L, Jiang Y, Li L. Mesenchymal stem cell homing to improve therapeutic efficacy in liver disease. Stem Cell Res Ther 2022; 13:179. [PMID: 35505419 PMCID: PMC9066724 DOI: 10.1186/s13287-022-02858-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation, as an alternative strategy to orthotopic liver transplantation, has been evaluated for treating end-stage liver disease. Although the therapeutic mechanism of MSC transplantation remains unclear, accumulating evidence has demonstrated that MSCs can regenerate tissues and self-renew to repair the liver through differentiation into hepatocyte-like cells, immune regulation, and anti-fibrotic mechanisms. Multiple clinical trials have confirmed that MSC transplantation restores liver function and alleviates liver damage. A sufficient number of MSCs must be home to the target tissues after administration for successful application. However, inefficient homing of MSCs after systemic administration is a major limitation in MSC therapy. Here, we review the mechanisms and clinical application status of MSCs in the treatment of liver disease and comprehensively summarize the molecular mechanisms of MSC homing, and various strategies for promoting MSC homing to improve the treatment of liver disease.
Collapse
Affiliation(s)
- Mengqin Yuan
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Hu
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lichao Yao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Lanjuan Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China. .,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
18
|
Safina I, Embree MC. Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta Biomater 2022; 143:26-38. [PMID: 35292413 PMCID: PMC9035107 DOI: 10.1016/j.actbio.2022.03.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
Over the past two decades in situ tissue engineering has emerged as a new approach where biomaterials are used to harness the body's own stem/progenitor cells to regenerate diseased or injured tissue. Immunomodulatory biomaterials are designed to promote a regenerative environment, recruit resident stem cells to diseased or injured tissue sites, and direct them towards tissue regeneration. This review explores advances gathered from in vitro and in vivo studies on in situ tissue regenerative therapies. Here we also examine the different ways this approach has been incorporated into biomaterial sciences in order to create customized biomaterial products for therapeutic applications in a broad spectrum of tissues and diseases. STATEMENT OF SIGNIFICANCE: Biomaterials can be designed to recruit stem cells and coordinate their behavior and function towards the restoration or replacement of damaged or diseased tissues in a process known as in situ tissue regeneration. Advanced biomaterial constructs with precise structure, composition, mechanical, and physical properties can be transplanted to tissue site and exploit local stem cells and their micro-environment to promote tissue regeneration. In the absence of cells, we explore the critical immunomodulatory, chemical and physical properties to consider in material design and choice. The application of biomaterials for in situ tissue regeneration has the potential to address a broad range of injuries and diseases.
Collapse
|
19
|
Ling L, Hou J, Liu D, Tang D, Zhang Y, Zeng Q, Pan H, Fan L. Important role of the SDF-1/CXCR4 axis in the homing of systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) to ovaries in rats with chemotherapy-induced premature ovarian insufficiency (POI). Stem Cell Res Ther 2022; 13:79. [PMID: 35197118 PMCID: PMC8867754 DOI: 10.1186/s13287-022-02759-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Chemotherapy can induce premature ovarian insufficiency (POI). POI causes multiple sequelae and is currently incurable. As shown in our previous studies, systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) home to ovaries with chemotherapy-induced POI and subsequently reduce ovarian injury and improve ovarian function in rats with POI. However, the cellular mechanisms that direct the migration and homing of hAD-MSCs to ovaries with chemotherapy-induced POI are incompletely understood. This study investigated the role of the SDF-1/CXCR4 axis in the migration and homing of systemically transplanted hAD-MSCs to ovaries with chemotherapy-induced POI and its relevant downstream signalling pathways. Methods CXCR4 expression in hAD-MSCs was assessed using Western blotting and immunofluorescence staining. hAD-MSC migration was tested using Transwell migration assays. SDF-1 levels were detected using ELISA. Seventy-two female SD rats were randomly divided into the control, POI, hAD-MSCs and hAD-MSCs + AMD3100 groups. Cyclophosphamide was used to establish rat POI models. For inhibitor treatment, hAD-MSCs were pretreated with AMD3100 before transplantation. PKH26-labeled hAD-MSCs were injected into the tail vein of POI rats 24 h after chemotherapy. After hAD-MSC transplantation, the homing of hAD-MSCs to ovaries and ovarian function and pathological changes were examined. We further investigated the molecular mechanisms by detecting the PI3K/Akt and ERK1/2 signalling pathways. Results hAD-MSCs expressed CXCR4. SDF-1 induced hAD-MSC migration in vitro. SDF-1 levels in ovaries and serum were significantly increased in rats with chemotherapy-induced POI, and ovaries with POI induced the homing of hAD-MSCs expressing CXCR4. Blocking the SDF-1/CXCR4 axis with AMD3100 significantly reduced the number of hAD-MSCs homing to ovaries with POI and further reduced their efficacy in POI treatment. The binding of SDF-1 to CXCR4 activated the PI3K/Akt signalling pathway, and LY294002 significantly inhibited hAD-MSC migration induced by SDF-1 in vitro. Moreover, inhibition of the PI3K/Akt signalling pathway significantly reduced the number of systemically transplanted hAD-MSCs homing to chemotherapy-induced ovaries in rats with POI. Conclusions SDF-1/CXCR4 axis partially mediates the migration and homing of systemically transplanted hAD-MSCs to the ovaries of rats with chemotherapy-induced POI, and the PI3K/Akt signalling pathway might be involved in the migration and homing of hAD-MSCs mediated by the SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China.
| | - Jiying Hou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| | - Dandan Liu
- Department of Otolaryngology, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| | - Dongyuan Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| | - Yanqin Zhang
- Department of Obstetrics and Gynecology, Wushan County People's Hospital of Chongqing, Chongqing, 404700, China
| | - Qianru Zeng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| | - Heng Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| | - Ling Fan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| |
Collapse
|
20
|
Tao R, Qu Z, Zhang K, Chen J, Wang X, Deng Y. Substance P modulates BMSCs migration for tissue repair through NK-1R/CXCR4/p-Akt signal activation. Mol Biol Rep 2022; 49:2227-2236. [PMID: 35034285 DOI: 10.1007/s11033-021-07044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The migration of bone marrow-derived mesenchymal stem cells (BMSCs) to the wound site played an important role in tissue repair. Substance P (SP) has been studied and reported to be involved in tissue repair by promoting the growth of endothelial cells and the migration of BMSCs. However, the complicated process and the molecular mechanisms were not fully understood. Thus, we aimed to investigate the effect of SP-induced BMSCs migration on tissue repair and its possible mechanism. METHODS AND RESULTS Western blot and q-PCR assay revealed that SP could induce the BMSCs migration through overexpression of CXCR4 and upregulation of Akt phosphorylation. And the upregulation was related to the activation of neurokinin-1 receptor (NK-1R). Besides, we found that the increased phosphorylation Akt caused by SP could be canceled by the inhibition of CXCR4 both in vitro and in vivo. Furthermore, a skin-injury animal model was established and used to observe the tissue repair process. Results showed that SP could accelerate wound closure, gain more granulation tissue accumulation, and more collagen deposition through the promotion of angiogenesis and induction of the BMSCs migration to the wound site. And these effects could be impaired by inhibition of CXCR4 and p-Akt. CONCLUSIONS Our results suggested that SP promoted tissue repair through BMSCs migration via upregulation of CXCR4 and p-Akt. The expression of CXCR4 and p-Akt were regulated by NK-1R activation. These findings add more evidence in understanding the mechanisms of SP-induced BMSCs migration and highlight the potential for clinical implementation of SP in tissue repair.
Collapse
Affiliation(s)
- Ran Tao
- Day Surgery Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Zhan Qu
- Department of Essential Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ke Zhang
- Day Surgery Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Jie Chen
- Day Surgery Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Xinyu Wang
- Department of Gastrointestinal Surgery, The First Hospital of Changsha, Changsha, 410008, Hunan Province, People's Republic of China
| | - Youming Deng
- Department of Essential Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
21
|
Therapeutic approach of adipose-derived mesenchymal stem cells in refractory peptic ulcer. Stem Cell Res Ther 2021; 12:515. [PMID: 34565461 PMCID: PMC8474857 DOI: 10.1186/s13287-021-02584-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022] Open
Abstract
Peptic ulcer is one of the most common gastrointestinal tract disorders worldwide, associated with challenges such as refractory morbidity, bleeding, interference with use of anticoagulants, and potential side effects associated with long-term use of proton pump inhibitors. A peptic ulcer is a defect in gastric or duodenal mucosa extending from muscularis mucosa to deeper layers of the stomach wall. In most cases, ulcers respond to standard treatments. However, in some people, peptic ulcer becomes resistant to conventional treatment or recurs after initially successful therapy. Therefore, new and safe treatments, including the use of stem cells, are highly favored for these patients. Adipose-derived mesenchymal stem cells are readily available in large quantities with minimal invasive intervention, and isolation of adipose-derived mesenchymal stromal stem cells (ASC) produces large amounts of stem cells, which are essential for cell-based and restorative therapies. These cells have high flexibility and can differentiate into several types of cells in vitro. This article will investigate the effects and possible mechanisms and signaling pathways of adipose tissue-derived mesenchymal stem cells in patients with refractory peptic ulcers.
Collapse
|
22
|
Wang S, Gao S, Li Y, Qian X, Luan J, Lv X. Emerging Importance of Chemokine Receptor CXCR4 and Its Ligand in Liver Disease. Front Cell Dev Biol 2021; 9:716842. [PMID: 34386499 PMCID: PMC8353181 DOI: 10.3389/fcell.2021.716842] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
Chemokine receptors are members of the G protein-coupled receptor superfamily, which together with chemokine ligands form chemokine networks to regulate various cellular functions, immune and physiological processes. These receptors are closely related to cell movement and thus play a vital role in several physiological and pathological processes that require regulation of cell migration. CXCR4, one of the most intensively studied chemokine receptors, is involved in many functions in addition to immune cells recruitment and plays a pivotal role in the pathogenesis of liver disease. Aberrant CXCR4 expression pattern is related to the migration and movement of liver specific cells in liver disease through its cross-talk with a variety of significant cell signaling pathways. An in-depth understanding of CXCR4-mediated signaling pathway and its role in liver disease is critical to identifying potential therapeutic strategies. Current therapeutic strategies for liver disease mainly focus on regulating the key functions of specific cells in the liver, in which the CXCR4 pathway plays a crucial role. Multiple challenges remain to be overcome in order to more effectively target CXCR4 pathway and identify novel combination therapies with existing strategies. This review emphasizes the role of CXCR4 and its important cell signaling pathways in the pathogenesis of liver disease and summarizes the targeted therapeutic studies conducted to date.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yueran Li
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xueyi Qian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, China
| |
Collapse
|
23
|
Saleh M, Vaezi AA, Aliannejad R, Sohrabpour AA, Kiaei SZF, Shadnoush M, Siavashi V, Aghaghazvini L, Khoundabi B, Abdoli S, Chahardouli B, Seyhoun I, Alijani N, Verdi J. Cell therapy in patients with COVID-19 using Wharton's jelly mesenchymal stem cells: a phase 1 clinical trial. Stem Cell Res Ther 2021; 12:410. [PMID: 34271988 PMCID: PMC8283394 DOI: 10.1186/s13287-021-02483-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have received particular attention because of their ability to modulate the immune system and inhibit inflammation caused by cytokine storms due to SARS-CoV-2. New alternative therapies may reduce mortality rates in patients with COVID19. This study aimed to assess the safety and efficacy of injecting intravenous Wharton's jelly-derived MSCs in patients with COVID-19 as a treatment. METHODS In this study, five patients with severe COVID-19 were treated with Wharton's jelly-derived mesenchymal stem cells (150 × 106 cells per injection). These patients were subject to three intravenous injections 3 days apart, and monitoring was done on days 0, 3, 6, and 14 in routine tests, inflammatory cytokines, and flow cytometry of CD4 and CD8 markers. A lung CT scan was performed on base and days 14 and 28. In addition, IgM and IgG antibodies against SARS-CoV-2 were measured before and after treatment. RESULTS The results showed that IL-10 and SDF-1 increased after cell therapy, but VEGF, TGF-β, IFN-γ, IL-6, and TNFα decreased. Routine hematology tests, myocardial enzyme tests, biochemical tests, and inflammation tests were performed for all patients before and after cell therapy on base and days 3, 6, and 14, which indicated the improvement of test results over time. COVID-19 antibody tests rose in 14 days after WJ-MSC injection. The total score of zonal involvement in both lungs was improved. CONCLUSIONS In patients, the trend of tests was generally improving, and we experienced a reduction in inflammation. No serious complications were observed in patients except the headache in one of them, which was resolved without medication. In this study, we found that patients with severe COVID-19 in the inflammatory phase respond better to cell therapy. More extensive clinical trials should be performed in this regard. TRIAL REGISTRATION IRCT, IRCT20190717044241N2 . Registered April 22, 2020.
Collapse
Affiliation(s)
- Mahshid Saleh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Abbas Vaezi
- Department of Internal Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Rasoul Aliannejad
- Department of Pulmonary and Critical Care, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Advanced Thoracic Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Sohrabpour
- Associate Professor of Gastroenterology and Hepatology, Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition & Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Siavashi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Leila Aghaghazvini
- Associate Professor, Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Batoul Khoundabi
- Iran Helal Institute of Applied-Science and Technology, Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
| | - Shahriyar Abdoli
- Pasteur Institute of Iran, National Cell Bank of Iran, Tehran, Iran
| | - Bahram Chahardouli
- Hematology, Oncology, and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Seyhoun
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Neda Alijani
- Department of Infectious Diseases, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Javad Verdi
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Xiu G, Li X, Yin Y, Li J, Li B, Chen X, Liu P, Sun J, Ling B. SDF-1/CXCR4 Augments the Therapeutic Effect of Bone Marrow Mesenchymal Stem Cells in the Treatment of Lipopolysaccharide-Induced Liver Injury by Promoting Their Migration Through PI3K/Akt Signaling Pathway. Cell Transplant 2021; 29:963689720929992. [PMID: 32452221 PMCID: PMC7563832 DOI: 10.1177/0963689720929992] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are thought to have great potential in the therapy of acute liver injury. It is possible that these cells may be regulated by the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) signaling axis, which has been shown to promote stem cells migration in the inflammation-associated diseases. However, the effects of SDF-1/CXCR4 axis on the MSCs-transplantation-based treatment for acute liver injury and the underlying mechanisms are largely unknown. In this study, we sought to determine whether SDF-1/CXCR4 would augment the therapeutic effect of bone marrow mesenchymal stem cells (BMSCs) by promoting their migration, which may result from activating the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, in a rat acute liver injury model induced by lipopolysaccharide (LPS). We found that BMSCs transplantation markedly attenuated liver injury and improved the survival of LPS-treated rats. Of interest, overexpression of CXCR4 in BMSCs could substantially promote their migration both in vitro and in vivo, and result in even better therapeutic effects. This might be attributed to the activation of PI3K/Akt signaling pathway in BMSCs that is downstream of CXCR4, as demonstrated by the use of the CXCR4 antagonist AMD3100 and PI3K pathway inhibitor LY294002 assays in vitro and in vivo. Together, our results unraveled a novel molecular mechanism for the therapeutic effect of BMSCs for the treatment of acute liver injury, which may shed a new light on the clinical application of BMSCs for acute liver failure.
Collapse
Affiliation(s)
- Guanghui Xiu
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China.,These authors contributed equally to this article
| | - Xiuling Li
- Department of Obstetrics, The First People's Hospital of Yunnan province, Kunming, Yunnan Province, China.,These authors contributed equally to this article
| | - Yunyu Yin
- Department of Intensive Care Unit, The Affiliated hospital of North Sichuan Medical College, Nanchong, Sichuan Province, China.,These authors contributed equally to this article
| | - Jintao Li
- The Institute of Neuroscience, The Kunming Medical University, Kunming, Yunnan Province, China
| | - Bingqin Li
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Xianzhong Chen
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Ping Liu
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Jie Sun
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| | - Bin Ling
- Department of Intensive Care Unit, The Second People's Hospital of Yunnan Province (The Fourth Affiliated Hospital of Kunming Medical University), Kunming, Yunnan Province, China
| |
Collapse
|
25
|
He Q, Li R, Hu B, Li X, Wu Y, Sun P, Jia Y, Guo Y. Stromal cell-derived factor-1 promotes osteoblastic differentiation of human bone marrow mesenchymal stem cells via the lncRNA-H19/miR-214-5p/BMP2 axis. J Gene Med 2021; 23:e3366. [PMID: 34032330 DOI: 10.1002/jgm.3366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Stromal cell-derived factor-1 (SDF-1) plays an important role in the osteoblastic differentiation of human bone marrow mesenchymal stem cells (hBMMSCs), but the specific mechanism remains unclear. Our study aimed to clarify the role of the lncRNA-H19/miR-214-5p/BMP2 axis in the osteoblastic differentiation of hBMMSCs induced by SDF-1. METHODS We used reverse-transcriptase polymerase chain reaction, western blotting, alkaline phosphatase activity test, and Alizarin red staining to evaluate the osteoblastic differentiation of primary hBMMSCs and the luciferase reporter assay to determine if lncRNA-H19 binds with miR-214-5p. RESULTS Our results indicated that SDF-1 (50 ng/mL) promotes the osteoblastic differentiation of hBMMSCs, significantly upregulates osteoblastogenic genes (OCN, OSX, RUNX2, and ALP), and increases Alizarin red staining, alkaline phosphatase activity, and lncRNA-H19 expression. Luciferase reporter assay verified that lncRNA-H19 binds with and represses miR-214-5p, thereby upregulating BMP2 expression. Use of miR-214-5p inhibitor or overexpression of lncRNA-H19 can promote the osteoblastic differentiation of hBMMSCs, but miR-214-5p or shH19 inhibits the osteoblastic differentiation of hBMMSCs. Treatment with an miR-214-5p inhibitor could rescue the inhibitory effect of shH19 on the osteoblastic differentiation of hBMMSCs. CONCLUSIONS Taken together, SDF-1 promotes the osteoblastic differentiation of hBMMSCs through the lncRNA-H19/miR-214-5p/BMP2 axis. Increased osteoblastic differentiation by an miR-214-5p inhibitor reveals a new possible strategy for the treatment of bone defect and osteoporosis.
Collapse
Affiliation(s)
- Qiting He
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ruibin Li
- Department of Orthopedic Surgery, Linyi central hospital, Linyi, Shandong, China
| | - Beibei Hu
- Department of Ultrasound, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Xuezhou Li
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunpeng Wu
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Pengfei Sun
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuhua Jia
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongyuan Guo
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
26
|
Iansante V, Brooks A, Coney L. Considerations in the Design of Non-Clinical Development Programmes to Support Non-Viral Genetically Modified Mesenchymal Stromal Cell Therapies. Pharmaceutics 2021; 13:pharmaceutics13060823. [PMID: 34199356 PMCID: PMC8228211 DOI: 10.3390/pharmaceutics13060823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 12/02/2022] Open
Abstract
Due to their immune suppressive pharmacology, regenerative capacity, and immune privileged status, mesenchymal stromal cells (MSCs) are an attractive cell type to treat a variety of diseases. Genetically engineered MSCs are currently in non-clinical and clinical development for a wide range of applications including the delivery of pro-drugs and therapeutic proteins or modified to enhance their regenerative potential. Unmodified MSCs have been shown to have good safety profiles in clinical development. The introduction of exogenous transgenes introduces possible additional risks that need to be assessed in non-clinical studies prior to initiating clinical studies. The use of ex vivo non-viral genetic modification approaches potentially reduces the risks associated with viral vector transfection approaches, including the potential for cell transformation. This review provides an overview of the regulatory-compliant non-clinical proof-of-concept and safety studies required to take MSC-based gene therapy products from the bench to the clinic.
Collapse
Affiliation(s)
| | | | - Lee Coney
- Correspondence: ; Tel.: +44-(0)-203-728-9500
| |
Collapse
|
27
|
Platelet-Derived Growth Factor Stimulated Migration of Bone Marrow Mesenchymal Stem Cells into an Injectable Gelatin-Hydroxyphenyl Propionic Acid Matrix. Biomedicines 2021; 9:biomedicines9020203. [PMID: 33671438 PMCID: PMC7923108 DOI: 10.3390/biomedicines9020203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/22/2022] Open
Abstract
Bone marrow mesenchymal stem cells (bMSCs) are responsible in the repair of injured tissue through differentiation into multiple cell types and secretion of paracrine factors, and thus have a broad application profile in tissue engineering/regenerative medicine, especially for the musculoskeletal system. The lesion due to injury or disease may be a closed irregular-shaped cavity deep within tissue necessitating an injectable biomaterial permissive of host (endogenous) cell migration, proliferation and differentiation. Gelatin-hydroxyphenyl propionic acid (Gtn-HPA) is a natural biopolymer hydrogel which is covalently cross-linked by horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) in situ and can be delivered to the lesion by needle injection. Growth factors and cytokines can be directly incorporated into the gel or into nano- and micro-particles, which can be employed for sustained release of biomolecules while maintaining their bioactivity. In this study, we selected polyelectrolyte complex nanoparticles (PCNs) prepared with dextran sulfate and chitosan as the carrier for platelet-derived growth factor (PDGF)-BB and stromal cell-derived factor (SDF)-1α, which have been tested effectively in recruiting stem cells. Our in vitro results showed a high degree of viability of bMSCs through the process of Gtn-HPA covalent cross-linking gelation. The Gtn-HPA matrix was highly permissive of bMSC migration, proliferation, and differentiation. PDGF-BB (20 ng/mL) directly incorporated into the gel and, alternatively, released from PCNs stimulated bMSC migration and proliferation. There were only small differences in the results for the direct incorporation of PDGF into the gel compared with its release from PCNs, and for increased doses of the growth factor (200 ng/mL and 2 µg/mL). In contrast, SDF-1α elicited an increase in migration and proliferation only when released from PCNs; its effect on migration was notably less than PDGF-BB. The in vitro results demonstrate that PDGF-BB substantially increases migration of bMSCs into Gtn-HPA and their proliferation in the gel, and that these benefits can be derived from incorporation of a relatively low dose of the growth factor directly into the gel. These findings commend the use of Gtn-HPA/PDGF-BB as an injectable therapeutic agent to treat defects in musculoskeletal tissues.
Collapse
|
28
|
Liang Q, Du L, Zhang R, Kang W, Ge S. Stromal cell-derived factor-1/Exendin-4 cotherapy facilitates the proliferation, migration and osteogenic differentiation of human periodontal ligament stem cells in vitro and promotes periodontal bone regeneration in vivo. Cell Prolif 2021; 54:e12997. [PMID: 33511708 PMCID: PMC7941242 DOI: 10.1111/cpr.12997] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives Stromal cell‐derived factor‐1 (SDF‐1) actively directs endogenous cell homing. Exendin‐4 (EX‐4) promotes stem cell osteogenic differentiation. Studies revealed that EX‐4 strengthened SDF‐1‐mediated stem cell migration. However, the effects of SDF‐1 and EX‐4 on periodontal ligament stem cells (PDLSCs) and bone regeneration have not been investigated. In this study, we aimed to evaluate the effects of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro and periodontal bone regeneration in vivo. Methods Cell‐counting kit‐8 (CCK8), transwell assay, qRT‐PCR and western blot were used to determine the effects and mechanism of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro. A rat periodontal bone defect model was developed to evaluate the effects of topical application of SDF‐1 and systemic injection of EX‐4 on endogenous cell recruitment, osteoclastogenesis and bone regeneration in vivo. Results SDF‐1/EX‐4 cotherapy had additive effects on PDLSC proliferation, migration, alkaline phosphatase (ALP) activity, mineral deposition and osteogenesis‐related gene expression compared to SDF‐1 or EX‐4 in vitro. Pretreatment with ERK inhibitor U0126 blocked SDF‐1/EX‐4 cotherapy induced ERK signal activation and PDLSC proliferation. SDF‐1/EX‐4 cotherapy significantly promoted new bone formation, recruited more CXCR4+ cells and CD90+/CD34‐ stromal cells to the defects, enhanced early‐stage osteoclastogenesis and osteogenesis‐related markers expression in regenerated bone compared to control, SDF‐1 or EX‐4 in vivo. Conclusions SDF‐1/EX‐4 cotherapy synergistically regulated PDLSC activities, promoted periodontal bone formation, thereby providing a new strategy for periodontal bone regeneration.
Collapse
Affiliation(s)
- Qianyu Liang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan Shandong, China
| | - Lingqian Du
- Department of Stomatology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan Shandong, China
| | - Rui Zhang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan Shandong, China.,Department of Endodontics, Hospital of stomatology, Zunyi Medical University, Zunyi Guizhou, China
| | - Wenyan Kang
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan Shandong, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan Shandong, China
| |
Collapse
|
29
|
Shu P, Sun DL, Shu ZX, Tian S, Pan Q, Wen CJ, Xi JY, Ye SN. Therapeutic Applications of Genes and Gene-Engineered Mesenchymal Stem Cells for Femoral Head Necrosis. Hum Gene Ther 2020; 31:286-296. [PMID: 32013585 DOI: 10.1089/hum.2019.306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a common and disabling joint disease. Although there is no clear consensus on the complex pathogenic mechanism of ONFH, trauma, abuse of glucocorticoids, and alcoholism are implicated in its etiology. The therapeutic strategies are still limited, and the clinical outcomes are not satisfactory. Mesenchymal stem cells (MSCs) have been shown to exert a positive impact on ONFH in preclinical experiments and clinical trials. The beneficial properties of MSCs are due, at least in part, to their ability to home to the injured tissue, secretion of paracrine signaling molecules, and multipotentiality. Nevertheless, the regenerative capacity of transplanted cells is impaired by the hostile environment of necrotic tissue in vivo, limiting their clinical efficacy. Recently, genetic engineering has been introduced as an attractive strategy to improve the regenerative properties of MSCs in the treatment of early-stage ONFH. This review summarizes the function of several genes used in the engineering of MSCs for the treatment of ONFH. Further, current challenges and future perspectives of genetic manipulation of MSCs are discussed. The notion of genetically engineered MSCs functioning as a "factory" that can produce a significant amount of multipotent and patient-specific therapeutic product is emphasized.
Collapse
Affiliation(s)
- Peng Shu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deng Long Sun
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Zi Xing Shu
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuo Tian
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Pan
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cen Jin Wen
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Ya Xi
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Shu Nan Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Xu JT, Qian Y, Wang W, Chen XX, Li Y, Li Y, Yang ZY, Song XB, Lu D, Deng XL. Effect of stromal cell-derived factor-1/CXCR4 axis in neural stem cell transplantation for Parkinson's disease. Neural Regen Res 2020; 15:112-119. [PMID: 31535659 PMCID: PMC6862426 DOI: 10.4103/1673-5374.264470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Previous studies have shown that neural stem cell transplantation has the potential to treat Parkinson's disease, but its specific mechanism of action is still unclear. Stromal cell-derived factor-1 and its receptor, chemokine receptor 4 (CXCR4), are important regulators of cell migration. We speculated that the CXCR4/stromal cell-derived factor 1 axis may be involved in the therapeutic effect of neural stem cell transplantation in the treatment of Parkinson's disease. A Parkinson's disease rat model was injected with 6-hydroxydopamine via the right ascending nigrostriatal dopaminergic pathway, and then treated with 5 μL of neural stem cell suspension (1.5 × 104/L) in the right substantia nigra. Rats were intraperitoneally injected once daily for 3 days with 1.25 mL/kg of the CXCR4 antagonist AMD3100 to observe changes after neural stem cell transplantation. Parkinson-like behavior in rats was detected using apomorphine-induced rotation. Immunofluorescence staining was used to determine the immunoreactivity of tyrosine hydroxylase, CXCR4, and stromal cell-derived factor-1 in the brain. Using quantitative real-time polymerase chain reaction, the mRNA expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra were measured. In addition, western blot assays were performed to analyze the protein expression of stromal cell-derived factor-1 and CXCR4. Our results demonstrated that neural stem cell transplantation noticeably reduced apomorphine-induced rotation, increased the mRNA and protein expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra, and enhanced the immunoreactivity of tyrosine hydroxylase, CXCR4, and stromal cell-derived factor-1 in the brain. Injection of AMD3100 inhibited the aforementioned effects. These findings suggest that the stromal cell-derived factor-1/CXCR4 axis may play a significant role in the therapeutic effect of neural stem cell transplantation in a rat model of Parkinson's disease. This study was approved by the Animal Care and Use Committee of Kunming Medical University, China (approval No. SYXKK2015-0002) on April 1, 2014.
Collapse
Affiliation(s)
- Jiao-Tian Xu
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuan Qian
- Diagnosis Prenatal Unit, Department of Obstetrics, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Wang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming; The People's Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, Yunnan Province, China
| | - Xiao-Xiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yang Li
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Yu Li
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhi-Yong Yang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Xiao-Bin Song
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Di Lu
- Rehabilitation Engineering Research Laboratory, Biomedicine Engineering Research Center, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xing-Li Deng
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
31
|
Fu X, Liu G, Halim A, Ju Y, Luo Q, Song AG. Mesenchymal Stem Cell Migration and Tissue Repair. Cells 2019; 8:E784. [PMID: 31357692 PMCID: PMC6721499 DOI: 10.3390/cells8080784] [Citation(s) in RCA: 633] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/13/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multilineage cells with the ability to self-renew and differentiate into a variety of cell types, which play key roles in tissue healing and regenerative medicine. Bone marrow-derived mesenchymal stem cells (BMSCs) are the most frequently used stem cells in cell therapy and tissue engineering. However, it is prerequisite for BMSCs to mobilize from bone marrow and migrate into injured tissues during the healing process, through peripheral circulation. The migration of BMSCs is regulated by mechanical and chemical factors in this trafficking process. In this paper, we review the effects of several main regulatory factors on BMSC migration and its underlying mechanism; discuss two critical roles of BMSCs-namely, directed differentiation and the paracrine function-in tissue repair; and provide insight into the relationship between BMSC migration and tissue repair, which may provide a better guide for clinical applications in tissue repair through the efficient regulation of BMSC migration.
Collapse
Affiliation(s)
- Xiaorong Fu
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China
| | - Ge Liu
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China
| | - Alexander Halim
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Qing Luo
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China
| | - And Guanbin Song
- College of Bioengineering, Chongqing University, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing 400030, China.
| |
Collapse
|
32
|
Li G, An J, Han X, Zhang X, Wang W, Wang S. Hypermethylation of microRNA‐149 activates SDF‐1/CXCR4 to promote osteogenic differentiation of mesenchymal stem cells. J Cell Physiol 2019; 234:23485-23494. [PMID: 31206187 DOI: 10.1002/jcp.28917] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Guangjie Li
- The First Hospital of Lanzhou University Lanzhou China
- Lanzhou University Second Hospital Lanzhou China
| | - Jiangdong An
- Lanzhou University Second Hospital Lanzhou China
| | - Xingwen Han
- The First Hospital of Lanzhou University Lanzhou China
| | | | - Wenjin Wang
- The First Hospital of Lanzhou University Lanzhou China
| | - Shuanke Wang
- Lanzhou University Second Hospital Lanzhou China
| |
Collapse
|
33
|
Li G, Yu H, Liu N, Zhang P, Tang Y, Hu Y, Zhang Y, Pan C, Deng H, Wang J, Li Q, Tang Z. Overexpression of CX3CR1 in Adipose-Derived Stem Cells Promotes Cell Migration and Functional Recovery After Experimental Intracerebral Hemorrhage. Front Neurosci 2019; 13:462. [PMID: 31133793 PMCID: PMC6517499 DOI: 10.3389/fnins.2019.00462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
Stem cell therapy has emerged as a new promising therapeutic strategy for intracerebral hemorrhage (ICH). However, the efficiency of stem cell therapy is partially limited by low retention and engraftment of the delivered cells. Therefore, it’s necessary to improve the migration ability of stem cells to the injured area in order to save the costs and duration of cell preparation. This study aimed to investigate whether overexpression of CX3CR1, the specific receptor of chemokine fractalkine (FKN), in adipose-derived stem cells (ADSCs) can stimulate the cell migration to the injured area in the brain, improve functional recovery and protect against cell death following experimental ICH. ADSCs were isolated from subcutaneous adipose tissues of rats. ICH was induced by means of an injection of collagenase type VII. ELISA showed that the expression levels of fractalkine/FKN were increased at early time points, with a peak at day 3 after ICH. And it was found that different passages of ADSCs could express the chemokine receptor CX3CR1. Besides, the chemotactic movements of ADSCs toward fractalkine have been verified by transwell migration assay. ADSCs overexpressing CX3CR1 were established through lentivirus transfection. We found that after overexpression of CX3CR1 receptor, the migration ability of ADSCs was increased both in vitro and in vivo. In addition, reduced cell death and improved sensory and motor functions were seen in the mice ICH model. Thus, ADSCs overexpression CX3CR1 might be taken as a promising therapeutic strategy for the treatment of ICH.
Collapse
Affiliation(s)
- Gaigai Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haihan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Hu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Mobilization of Transplanted Bone Marrow Mesenchymal Stem Cells by Erythropoietin Facilitates the Reconstruction of Segmental Bone Defect. Stem Cells Int 2019; 2019:5750967. [PMID: 31065275 PMCID: PMC6466852 DOI: 10.1155/2019/5750967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/30/2018] [Accepted: 01/13/2019] [Indexed: 02/05/2023] Open
Abstract
Reconstruction of segmental bone defects poses a tremendous challenge for both orthopedic clinicians and scientists, since bone rehabilitation is requisite substantially and may be beyond the capacity of self-healing. Bone marrow mesenchymal stem cells (BMSCs) have been identified as an optimal progenitor cell source to facilitate bone repair since they have a higher ability for proliferation and are more easily accessible than mature osteoblastic cells. In spite of the potential of BMSCs in regeneration medicine, particularly for bone reconstruction, noteworthy limitations still remain in previous application of BMSCs, including the amount of cells that could be recruited, the compromised bone migration of grafted cells, reduced proliferation and osteoblastic differentiation ability, and likely tumorigenesis. Our current work demonstrates that BMSCs transplanted through the caudal vein can be mobilized by erythropoietin (EPO) to the bone defect area and participate in regeneration of new bone. Based on the histological analysis and micro-CT findings of this study, EPO can dramatically promote the effects on the osteogenesis and angiogenesis efficiency of BMSCs in vivo. Animals that underwent EPO+BMSC administration demonstrated a remarkable increase in new bone formation, tissue structure organization, new vessel density, callus formation, and bone mineral density (BMD) compared with the BMSCs alone and control groups. At the biomechanical level, we demonstrated that combing transplantation of EPO and BMSCs enhances bone defect reconstruction by increasing the strength of the diaphysis, making it less fragile. Therefore, combination therapy using EPO infusion and BMSC transplantation may be a new therapeutic strategy for the reconstruction of segmental bone defect.
Collapse
|
35
|
Circulating levels of CXCL11 and CXCL12 are biomarkers of cirrhosis in patients with chronic hepatitis C infection. Cytokine 2019; 117:72-78. [PMID: 30826602 DOI: 10.1016/j.cyto.2019.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/21/2019] [Accepted: 02/01/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The chemokines CXCL10 (interferon ϒ-inducible protein 10 [IP-10]), CXCL11 (Human interferon inducible T cell alpha chemokine [I-TAC]), and CXCL12 (stromal cell derived factor 1 [SDF-1]) contribute to cell recruitment, migration, activation, and homing in liver diseases and their serum levels have been shown to be associated with the degree of liver inflammation or fibrosis in various etiologies. However, the data may be contradictory or insufficient, particularly for CXCL12, in the field of chronic HCV infection. Here, we aimed to provide evidence for these chemokines as biomarkers for chronic HCV infection. METHODS We analyzed the serum concentration of the three chemokines in healthy donors (n = 39) and patients (n = 87) with chronic HCV infection. Chemokine serum levels were compared to the stage of liver inflammation and fibrosis obtained from liver biopsies. RESULTS Serum CXCL10 and CXCL11 levels were higher at advanced stages of liver inflammation than at earlier stages, but the results were only of medium significance. Both serum CXCL11 and CXCL12 levels were significantly higher in cirrhotic patients than those with low or medium stages of fibrosis. The AUROCs were 0.8167 and 0.8574, respectively, for the diagnosis of cirrhotic patients. CONCLUSION These data provide evidence for the value of CXCL10, CXCL11, and CXCL12 as biomarkers of liver inflammation and fibrosis during chronic HCV infection. Serum CXCL10 and CXCL11 levels were associated with liver inflammation, but the level of significance was insufficient. However, serum CXCL11 and CXCL12 levels were elevated in cirrhotic patients, showing equivalent diagnostic accuracy as the existing established single serum fibrosis markers or algorithms.
Collapse
|
36
|
Chalin A, Lefevre B, Devisme C, Pronier C, Carrière V, Thibault V, Amiot L, Samson M. Serum CXCL10, CXCL11, CXCL12, and CXCL14 chemokine patterns in patients with acute liver injury. Cytokine 2018; 111:500-504. [DOI: 10.1016/j.cyto.2018.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 02/08/2023]
|
37
|
Hersh TA, Dimond AL, Ruth BA, Lupica NV, Bruce JC, Kelley JM, King BL, Lutton BV. A role for the CXCR4-CXCL12 axis in the little skate, Leucoraja erinacea. Am J Physiol Regul Integr Comp Physiol 2018; 315:R218-R229. [PMID: 29641231 PMCID: PMC6139610 DOI: 10.1152/ajpregu.00322.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The interaction between C-X-C chemokine receptor type 4 (CXCR4) and its cognate ligand C-X-C motif chemokine ligand 12 (CXCL12) plays a critical role in regulating hematopoietic stem cell activation and subsequent cellular mobilization. Extensive studies of these genes have been conducted in mammals, but much less is known about the expression and function of CXCR4 and CXCL12 in non-mammalian vertebrates. In the present study, we identify simultaneous expression of CXCR4 and CXCL12 orthologs in the epigonal organ (the primary hematopoietic tissue) of the little skate, Leucoraja erinacea. Genetic and phylogenetic analyses were functionally supported by significant mobilization of leukocytes following administration of Plerixafor, a CXCR4 antagonist and clinically important drug. Our results provide evidence that, as in humans, Plerixafor disrupts CXCR4/CXCL12 binding in the little skate, facilitating release of leukocytes into the bloodstream. Our study illustrates the value of the little skate as a model organism, particularly in studies of hematopoiesis and potentially for preclinical research on hematological and vascular disorders.
Collapse
Affiliation(s)
- Taylor A Hersh
- Mount Desert Island Biological Laboratory , Bar Harbor, Maine
| | - Alexandria L Dimond
- Mount Desert Island Biological Laboratory , Bar Harbor, Maine
- School of Arts and Sciences, Endicott College , Beverly, Massachusetts
| | - Brittany A Ruth
- Mount Desert Island Biological Laboratory , Bar Harbor, Maine
- School of Arts and Sciences, Endicott College , Beverly, Massachusetts
| | - Noah V Lupica
- Mount Desert Island Biological Laboratory , Bar Harbor, Maine
| | - Jacob C Bruce
- Mount Desert Island Biological Laboratory , Bar Harbor, Maine
| | - John M Kelley
- School of Arts and Sciences, Endicott College , Beverly, Massachusetts
- Beth Israel Deaconess Medical Center, Program in Placebo Studies, Harvard Medical School , Boston, Massachusetts
| | - Benjamin L King
- Department of Molecular and Biomedical Sciences, University of Maine , Orono, Maine
| | - Bram V Lutton
- Mount Desert Island Biological Laboratory , Bar Harbor, Maine
- School of Arts and Sciences, Endicott College , Beverly, Massachusetts
| |
Collapse
|
38
|
Hajinejad M, Pasbakhsh P, Omidi A, Mortezaee K, Nekoonam S, Mahmoudi R, Kashani IR. Resveratrol pretreatment enhanced homing of SDF-1α-preconditioned bone marrow-derived mesenchymal stem cells in a rat model of liver cirrhosis. J Cell Biochem 2018; 119:2939-2950. [PMID: 29130552 DOI: 10.1002/jcb.26500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/09/2017] [Indexed: 02/06/2023]
Abstract
Stromal cell-derived factor-1α (SDF-1α) has been known to implicate in homing of MSCs, and resveratrol has been reported to have a positive influence on SDF-1 level in the site of injury. In this study, a combined strategy was applied to evaluate bone marrow-derived MSCs (BMSCs) homing to the rat model of liver cirrhosis induced by common bile duct ligation (CBDL): (1) pretreatment delivery of resveratrol into the cirrhotic liver, and (2) transplantation of ex vivo BMSC preconditioning with SDF-1α. BMSCs were preconditioned with 10 ng/µL SDF-1α for 1 h and then labeled with the CM-Dil. Cirrhosis was induced by CBDL. Animals received intraperitoneal injection of resveratrol for 7 days, started on day 28 of CBDL post-operative. On day 36 post-operative, 1 × 106 of SDF-1α-preconditioned BMSCs was injected via caudal vein. Animals were sacrificed at 72 h post-cell transplantation. Immunofluorescence and flow cytometry assessments showed that the BMSC+SDF+RV group had an increased rate of homing into the liver, but it had a decreased rate of homing into the lung and spleen, as compared with the other groups (P < 0.05). The BMSC+SDF+RV group showed high protein expression of SIRT1, but low protein expression of p53 in the liver (P < 0.05 vs other groups). CXCR4 and matrix metalloproteinase (MMP)-9 highly expressed in SDF-1α-preconditioned BMSCs in vitro, and that AKTs and CXCL12 expressed in injured liver undergoing resveratrol injection. Our findings suggest that reseveratrol pretreatment prior to SDF-1α preconditioning could be a promising strategy for designing cell-based therapies for liver cirrhosis.
Collapse
Affiliation(s)
- Mehrdad Hajinejad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parichehr Pasbakhsh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Omidi
- Department of Anatomy, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Saied Nekoonam
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Zhou Q, Wu X, Dai X, Yuan R, Qi H. The different dosages of estrogen affect endometrial fibrosis and receptivity, but not SDF-1/CXCR4 axis in the treatment of intrauterine adhesions. Gynecol Endocrinol 2018; 34:49-55. [PMID: 28531361 DOI: 10.1080/09513590.2017.1328050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE The study was to evaluate whether fibrotic markers, endometrial receptivity markers and SDF-1/CXCR4 had been changed in the treatment of intrauterine adhesions (IUAs) by different dosages of estrogen. STUDY DESIGN A total of 39 patients with IUAs were treated with EV 4 mg or 9 mg randomly post-surgery. TGF-β1/MMP-9, VEGF/αvβ3 and SDF-1/CXCR4 were detected in endometrial tissue before and after treatment by real-time PCR and Western blot. RESULTS TGF-β1 and MMP-9 expression significantly decreased after treatment for 3 months than before (p < .05), the falling range was larger with EV 4 mg than 9 mg in the mild-moderate degree IUAs (p < .05); Integrin avβ3 expression significantly increased after treatment for 3 months than before (p < .05), the variation range was larger with EV 4 mg than 9 mg (p < .05); CXCR4 expression had no significant change after treatment 3 months compared to that before treatment (p > .05). SDF-1 presented an upward tendency at early phase, and it came back to the level of pre-surgery. But there were no significant difference between treatment with 4 mg and 9 mg in the rate of menstrual restoration and pregnancy follow-up 3 months after the treatment. CONCLUSIONS Endometrium fibrosis may be inhibited and endometrium receptivity may be improved by estrogen with moderate dosage therapy. Compared to the large one, it seems to be advantageous.
Collapse
Affiliation(s)
- Qin Zhou
- a Department of Obstetrics and Gynecology , First Affiliated Hospital, Chongqing Medical University , Chongqing , China
| | - Xixi Wu
- b First Affiliated Hospital, Chongqing Medical University , Chongqing , China
| | - Xuelin Dai
- b First Affiliated Hospital, Chongqing Medical University , Chongqing , China
| | - Rui Yuan
- a Department of Obstetrics and Gynecology , First Affiliated Hospital, Chongqing Medical University , Chongqing , China
| | - Hongbo Qi
- b First Affiliated Hospital, Chongqing Medical University , Chongqing , China
| |
Collapse
|
40
|
Peyvandi AA, Roozbahany NA, Peyvandi H, Abbaszadeh HA, Majdinasab N, Faridan M, Niknazar S. Critical role of SDF-1/CXCR4 signaling pathway in stem cell homing in the deafened rat cochlea after acoustic trauma. Neural Regen Res 2018; 13:154-160. [PMID: 29451220 PMCID: PMC5840981 DOI: 10.4103/1673-5374.224382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Previous animal studies have shown that stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) signaling pathway plays an important role in the targeted migration of bone marrow-derived mesenchymal stem cells (BMSCs) to the injured area. In the present study, we aimed to investigate the potential role of chemotactic SDF-1/CXCR4 signaling pathway in the homing of transplanted BMSCs to the injured cochlea after noise-induced hearing loss (NIHL) in a rat model. White noise exposure (110 dB) paradigm was used for hearing loss induction in male rats for 6 hours in 5 days. Distortion-product otoacoustic emission (DPOAE) responses were recorded before the experiment and post noise exposure. Hoechst 33342-labeled BMSCs and CXCR4 antagonist (AMD3100)-treated BMSCs were injected into the rat cochlea through the round window. SDF-1 protein expression in the cochlear tissue was assayed using western blot assay. The number of labeled BMSCs reaching the endolymph was determined after 24 hours. SDF-1 was significantly increased in the cochlear tissue of rats in the noise exposure group than in the control group. The number of Hoechst 33342-labeled BMSCs reaching the endolymph of the cochlea was significantly smaller in the AMD3100-treated BMSCs group than in the normal BMSCs group. Our present findings suggest that the SDF-1/CXCR4 signaling pathway has a critical role in BMSCs migration to the injured cochlea in a rat model of noise-induced hearing loss.
Collapse
Affiliation(s)
- Ali Asghar Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Ahmady Roozbahany
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; G. Raymond Chang School, Ryerson University, Toronto, Canada
| | - Hassan Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Yale University, New Haven, CT, USA
| | - Hojjat-Allah Abbaszadeh
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences; Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Majdinasab
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Faridan
- Department of Occupational Health Engineering, School of Health, Loorestan University of Medical Sciences, Khorramabad, Iran
| | - Somayeh Niknazar
- Hearing Disorders Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Namiri M, Kazemi Ashtiani M, Abbasalizadeh S, Mazidi Z, Mahmoudi E, Nikeghbalian S, Aghdami N, Baharvand H. Improving the biological function of decellularized heart valves through integration of protein tethering and three-dimensional cell seeding in a bioreactor. J Tissue Eng Regen Med 2017; 12:e1865-e1879. [PMID: 29164801 DOI: 10.1002/term.2617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 07/22/2017] [Accepted: 11/09/2017] [Indexed: 12/30/2022]
Abstract
Decellularized xenogeneic heart valves (DHVs) are promising products for valve replacement. However, the widespread clinical application of such products is limited due to the risk of immune reaction, progressive degeneration, inflammation, and calcification. Here, we have developed an optimized decellularization protocol for a xenogeneic heart valve. We improved the biological function of DHVs by protein tethering onto DHV and three-dimensional (3D) cell seeding in a bioreactor. Our results showed that heart valves treated with a Triton X-100 and sodium deoxycholate-based protocol were completely cell-free, with preserved biochemical and biomechanical properties. The immobilization of stromal derived factor-1α (SDF-1α) and basic fibroblast growth factor on DHV significantly improved recellularization with endothelial progenitor cells under the 3D culture condition in the bioreactor compared to static culture conditions. Cell phenotype analysis showed higher fibroblast-like cells and less myofibroblast-like cells in both protein-tethered DHVs. However, SDF-DHV significantly enhanced recellularization both in vitro and in vivo compared to basic fibroblast growth factor DHV and demonstrated less inflammatory cell infiltration. SDF-DHV had less calcification and platelet adhesion. Altogether, integration of SDF-1α immobilization and 3D cell seeding in a bioreactor might provide a novel, promising approach for production of functional heart valves.
Collapse
Affiliation(s)
- Mehrnaz Namiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Abbasalizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Mazidi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Elena Mahmoudi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saman Nikeghbalian
- Shiraz Transplant Center, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
42
|
Wang K, Li Y, Zhu T, Zhang Y, Li W, Lin W, Li J, Zhu C. Overexpression of c-Met in bone marrow mesenchymal stem cells improves their effectiveness in homing and repair of acute liver failure. Stem Cell Res Ther 2017; 8:162. [PMID: 28679425 PMCID: PMC5499016 DOI: 10.1186/s13287-017-0614-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
Background Transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) has emerged as a novel therapy for acute liver failure (ALF). However, the homing efficiency of BMSCs to the injured liver sites appears to be poor. In this study, we aimed to determine if overexpression of c-Met in BMSCs could promote the homing ability of BMSCs to rat livers affected by ALF. Methods Overexpression of c-Met in BMSCs (c-Met-BMSCs) was attained by transfection of naive BMSCs with the lenti-c-Met-GFP. The impact of transplanted c-Met-BMSCs on both homing and repair of ALF was evaluated and compared with lenti-GFP empty vector transfected BMSCs (control BMSCs). Results After cells were transfected with the lenti-c-Met-GFP vector, the BMSCs displayed very high expression of c-Met protein as demonstrated by Western blot. In addition, in vitro transwell migration assays showed that the migration ability of c-Met-BMSCs was significantly increased in comparison with that of control BMSCs (P < 0.05), and was dependent on hepatocyte growth factor (HGF). Furthermore, rats with ALF that received transplanted c-Met-BMSCs showed significantly improved homing ability to the injured liver; this was accompanied by elevated survival rates and liver function in the ALF rats. Parallel pathological examination further confirmed that transplantation of c-Met-BMSCs ameliorated liver injury with reduced hepatic activity index (HAI) scores, and that the effects of c-Met-BMSCs were more profound than those of control BMSCs. Conclusions Overexpression of c-Met promotes the homing of BMSCs to injured hepatic sites in a rat model of ALF, thereby improving the efficacy of BMSC therapy for ALF repair.
Collapse
Affiliation(s)
- Kun Wang
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yuwen Li
- Department of Pediatrics, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Tiantian Zhu
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.,Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Yongting Zhang
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Wenting Li
- Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jun Li
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Chuanlong Zhu
- Department of Infectious Disease, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| |
Collapse
|
43
|
Xue L, Mao X, Ren L, Chu X. Inhibition of CXCL12/CXCR4 axis as a potential targeted therapy of advanced gastric carcinoma. Cancer Med 2017; 6:1424-1436. [PMID: 28544785 PMCID: PMC5463074 DOI: 10.1002/cam4.1085] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 01/30/2023] Open
Abstract
The whole outcome for patients with gastric carcinoma (GC) is very poor because most of them remain metastatic disease during survival even at diagnosis or after surgery. Despite many improvements in multiple strategies of chemotherapy, immunotherapy, and targeted therapy, exploration of novel alternative therapeutic targets is still warranted. Chemokine receptor 4 (CXCR4) and its chemokine ligand 12 (CXCL12) have been identified with significantly elevated levels in various malignancies including GC, which correlates with the survival, proliferation, angiogenesis, and metastasis of tumor cells. Increasing experimental evidence suggests an implication of inhibition of CXCL12/CXCR4 axis as a promising targeted therapy, although there are rare trials focused on the therapeutic efficacy of CXCR4 inhibitors in GC until recently. Therefore, it is reasonable to infer that specific antagonists or antibodies targeting CXCL12/CXCR4 axis alone or combined with chemotherapy will be effective and worthy of further translational studies as a potential treatment strategy in advanced GC.
Collapse
Affiliation(s)
- Li‐Jun Xue
- Department of Medical OncologyJinling HospitalNanjing University Clinical School of MedicineNanjing210002China
| | - Xiao‐Bei Mao
- Department of Medical OncologyJinling HospitalNanjing University Clinical School of MedicineNanjing210002China
| | - Li‐Li Ren
- Department of Medical OncologyJinling HospitalNanjing University Clinical School of MedicineNanjing210002China
| | - Xiao‐Yuan Chu
- Department of Medical OncologyJinling HospitalNanjing University Clinical School of MedicineNanjing210002China
| |
Collapse
|
44
|
Liu JM, Zhao K, Du LX, Zhou Y, Long XH, Chen XY, Liu ZL. AMD3100 inhibits the migration and differentiation of neural stem cells after spinal cord injury. Sci Rep 2017; 7:64. [PMID: 28246405 PMCID: PMC5427924 DOI: 10.1038/s41598-017-00141-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/09/2017] [Indexed: 11/09/2022] Open
Abstract
It was reported that CXCR4 signaling played an important role in the migration and differentiation of endogenous neural stem cells after spinal cord injury (SCI). However, the molecular mechanism of it is still unclear. Here, we established a model of SCI in rats and AMD3100 was used to treat them. The rats were then sacrificed and the injured spinal cord specimens were harvested. Additionally, the neural stem cells (NSCs) line was culture and treated with AMD3100 in vitro. Results showed the locomotor function of SCI rats was worse after treated with AMD3100. And the expression levels of Nestion in neural stem cells and β-tubulin in neuron cells were significantly increased in the injured spinal cord, which can be inhibited by the CXCR4 antagonist of AMD3100. Additionally, the expression of β-catenin and phosphorylase β-catenin protein was significantly down regulated by AMD3100. In vitro, the NSCs proliferation ability was inhibited and the migration was decreased after treated with AMD3100. Also, the expression of Nestion, β-tubulin, β-catenin and phosphorylase β-catenin protein was significantly decreased in AMD3100 group comparing with untreated group. Taken together, this study suggested that AMD3100 could inhibit the migration and differentiation of endogenous neural stem cells in rats with SCI. The mechanism of it maybe that AMD3100 could down regulate of SDF-1/CXCR4 by targeting β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jia-Ming Liu
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Kai Zhao
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China.,Department of Orthopaedic Surgery, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, PR China
| | - Liu-Xue Du
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Yang Zhou
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xin-Hua Long
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xuan-Yin Chen
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Zhi-Li Liu
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China.
| |
Collapse
|