1
|
Mee PT, Buultjens AH, Oliver J, Brown K, Crowder JC, Porter JL, Hobbs EC, Judd LM, Taiaroa G, Puttharak N, Williamson DA, Blasdell KR, Tay EL, Feldman R, Muzari MO, Sanders C, Larsen S, Crouch SR, Johnson PDR, Wallace JR, Price DJ, Hoffmann AA, Gibney KB, Stinear TP, Lynch SE. Mosquitoes provide a transmission route between possums and humans for Buruli ulcer in southeastern Australia. Nat Microbiol 2024; 9:377-389. [PMID: 38263454 PMCID: PMC10847040 DOI: 10.1038/s41564-023-01553-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/08/2023] [Indexed: 01/25/2024]
Abstract
Buruli ulcer, a chronic subcutaneous infection caused by Mycobacterium ulcerans, is increasing in prevalence in southeastern Australia. Possums are a local wildlife reservoir for M. ulcerans and, although mosquitoes have been implicated in transmission, it remains unclear how humans acquire infection. We conducted extensive field survey analyses of M. ulcerans prevalence among mosquitoes in the Mornington Peninsula region of southeastern Australia. PCR screening of trapped mosquitoes revealed a significant association between M. ulcerans and Aedes notoscriptus. Spatial scanning statistics revealed overlap between clusters of M. ulcerans-positive Ae. notoscriptus, M. ulcerans-positive possum excreta and Buruli ulcer cases, and metabarcoding analyses showed individual mosquitoes had fed on humans and possums. Bacterial genomic analysis confirmed shared single-nucleotide-polymorphism profiles for M. ulcerans detected in mosquitoes, possum excreta and humans. These findings indicate Ae. notoscriptus probably transmit M. ulcerans in southeastern Australia and highlight mosquito control as a Buruli ulcer prevention measure.
Collapse
Affiliation(s)
- Peter T Mee
- Centre for AgriBioscience, AgriBio, Agriculture Victoria, Bundoora, Victoria, Australia.
| | - Andrew H Buultjens
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Jane Oliver
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Karen Brown
- Centre for AgriBioscience, AgriBio, Agriculture Victoria, Bundoora, Victoria, Australia
| | - Jodie C Crowder
- Centre for AgriBioscience, AgriBio, Agriculture Victoria, Bundoora, Victoria, Australia
| | - Jessica L Porter
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Emma C Hobbs
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Louise M Judd
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - George Taiaroa
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Natsuda Puttharak
- Centre for AgriBioscience, AgriBio, Agriculture Victoria, Bundoora, Victoria, Australia
| | - Deborah A Williamson
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory, Doherty Institute for Infection and Immunity, Melbourne Health, Melbourne, Victoria, Australia
| | - Kim R Blasdell
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| | - Ee Laine Tay
- Department of Health, Melbourne, Victoria, Australia
| | | | - Mutizwa Odwell Muzari
- Medical Entomology, Tropical Public Health Services Cairns, Cairns and Hinterland Hospital and Health Services, Cairns, Queensland, Australia
| | - Chris Sanders
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart Larsen
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Simon R Crouch
- South East Public Health Unit, Monash Health, Clayton, Victoria, Australia
| | - Paul D R Johnson
- North East Public Health Unit, Austin Health, Heidelberg, Victoria, Australia
| | - John R Wallace
- Department of Biology, Millersville University, Millersville, PA, USA
| | - David J Price
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Katherine B Gibney
- Department of Infectious Diseases, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
- WHO Collaborating Centre for Mycobacterium ulcerans, Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| | - Stacey E Lynch
- Centre for AgriBioscience, AgriBio, Agriculture Victoria, Bundoora, Victoria, Australia
- Australian Centre for Disease Preparedness, CSIRO, Geelong, Victoria, Australia
| |
Collapse
|
2
|
Osei-Owusu J, Aidoo OF, Eshun F, Gaikpa DS, Dofuor AK, Vigbedor BY, Turkson BK, Ochar K, Opata J, Opoku MJ, Ninsin KD, Borgemeister C. Buruli ulcer in Africa: Geographical distribution, ecology, risk factors, diagnosis, and indigenous plant treatment options - A comprehensive review. Heliyon 2023; 9:e22018. [PMID: 38034712 PMCID: PMC10686891 DOI: 10.1016/j.heliyon.2023.e22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Buruli ulcer (BU), a neglected tropical disease (NTD), is an infection of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. The disease has been documented in many South American, Asian, and Western Pacific countries and is widespread throughout much of Africa, especially in West and Central Africa. In rural areas with scarce medical care, BU is a devastating disease that can leave patients permanently disabled and socially stigmatized. Mycobacterium ulcerans is thought to produce a mycolactone toxin, which results in necrosis of the afflicted tissue and may be involved in the etiology of BU. Initially, patients may notice a painless nodule or plaque on their skin; as the disease progresses, however, it may spread to other parts of the body, including the muscles and bones. Clinical signs, microbial culture, and histological analysis of afflicted tissue all contribute to a diagnosis of BU. Though antibiotic treatment and surgical removal of infected tissue are necessary for BU management, plant-derived medicine could be an alternative in areas with limited access to conventional medicine. Herein we reviewed the geographical distribution, socioeconomic, risk factors, diagnosis, biology and ecology of the pathogen. Complex environmental, socioeconomic, and genetic factors that influence BU are discussed. Further, our review highlights future research areas needed to develop strategies to manage the disease through the use of indigenous African plants.
Collapse
Affiliation(s)
- Jonathan Osei-Owusu
- Department of Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Fatima Eshun
- Department of Geography and Earth Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - David Sewordor Gaikpa
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Aboagye Kwarteng Dofuor
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Bright Yaw Vigbedor
- Department of Basic Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Bernard Kofi Turkson
- Department of Herbal Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kingsley Ochar
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso, Ghana
| | - John Opata
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Maxwell Jnr. Opoku
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Kodwo Dadzie Ninsin
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Christian Borgemeister
- Centre for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113 Bonn, Germany
| |
Collapse
|
3
|
Receveur JP, Bauer A, Pechal JL, Picq S, Dogbe M, Jordan HR, Rakestraw AW, Fast K, Sandel M, Chevillon C, Guégan JF, Wallace JR, Benbow ME. A need for null models in understanding disease transmission: the example of Mycobacterium ulcerans (Buruli ulcer disease). FEMS Microbiol Rev 2022; 46:fuab045. [PMID: 34468735 PMCID: PMC8767449 DOI: 10.1093/femsre/fuab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023] Open
Abstract
Understanding the interactions of ecosystems, humans and pathogens is important for disease risk estimation. This is particularly true for neglected and newly emerging diseases where modes and efficiencies of transmission leading to epidemics are not well understood. Using a model for other emerging diseases, the neglected tropical skin disease Buruli ulcer (BU), we systematically review the literature on transmission of the etiologic agent, Mycobacterium ulcerans (MU), within a One Health/EcoHealth framework and against Hill's nine criteria and Koch's postulates for making strong inference in disease systems. Using this strong inference approach, we advocate a null hypothesis for MU transmission and other understudied disease systems. The null should be tested against alternative vector or host roles in pathogen transmission to better inform disease management. We propose a re-evaluation of what is necessary to identify and confirm hosts, reservoirs and vectors associated with environmental pathogen replication, dispersal and transmission; critically review alternative environmental sources of MU that may be important for transmission, including invertebrate and vertebrate species, plants and biofilms on aquatic substrates; and conclude with placing BU within the context of other neglected and emerging infectious diseases with intricate ecological relationships that lead to disease in humans, wildlife and domestic animals.
Collapse
Affiliation(s)
- Joseph P Receveur
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexandra Bauer
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Jennifer L Pechal
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Sophie Picq
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Magdalene Dogbe
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Heather R Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Alex W Rakestraw
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Kayla Fast
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Michael Sandel
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Christine Chevillon
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
| | - Jean-François Guégan
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
- UMR Animal, santé, territoires, risques et écosystèmes, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de coopération internationale en recherche agronomique pour le développement (Cirad), Université de Montpellier (UM), Montpellier, France
| | - John R Wallace
- Department of Biology, Millersville University, Millersville, PA, USA
| | - M Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
- AgBioResearch, Michigan State University, East Lansing, MI, USA
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Linking the Mycobacterium ulcerans environment to Buruli ulcer disease: Progress and challenges. One Health 2021; 13:100311. [PMID: 34485670 PMCID: PMC8403752 DOI: 10.1016/j.onehlt.2021.100311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022] Open
Abstract
Buruli ulcer (BU), the second most common mycobacterial disease in West Africa, is a necrotizing skin disease that can lead to high morbidity in affected patients. The disease is caused by Mycobacterium ulcerans (MU), whose major virulence factor is mycolactone. Although early infection can be treated with antibiotics, an effective preventative strategy is challenging due to unknown reservoir(s) and unresolved mode(s) of transmission. Further, disease occurrence in remote locations with limited access to health facilities further complicates disease burden and associated costs. We discuss here MU transmission hypotheses and investigations into environmental reservoirs and discuss successes and challenges of studying MU and Buruli ulcer across human, animal, and environmental interfaces. We argue that a One Health approach is needed to advance the understanding of MU transmission and designing management scenarios that prevent and respond to epidemics. Although previous work has provided significant insights into risk factors, epidemiology and clinical perspectives of disease, understanding the bacterial ecology, environmental niches and role of mycolactone in natural environments and during infection of the human host remains equally important to better understanding and preventing this mysterious disease.
Collapse
|
5
|
Muleta AJ, Lappan R, Stinear TP, Greening C. Understanding the transmission of Mycobacterium ulcerans: A step towards controlling Buruli ulcer. PLoS Negl Trop Dis 2021; 15:e0009678. [PMID: 34437549 PMCID: PMC8389476 DOI: 10.1371/journal.pntd.0009678] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a rare but chronic debilitating skin and soft tissue disease found predominantly in West Africa and Southeast Australia. While a moderate body of research has examined the distribution of M. ulcerans, the specific route(s) of transmission of this bacterium remain unknown, hindering control efforts. M. ulcerans is considered an environmental pathogen given it is associated with lentic ecosystems and human-to-human spread is negligible. However, the pathogen is also carried by various mammals and invertebrates, which may serve as key reservoirs and mechanical vectors, respectively. Here, we examine and review recent evidence from these endemic regions on potential transmission pathways, noting differences in findings between Africa and Australia, and summarising the risk and protective factors associated with Buruli ulcer transmission. We also discuss evidence suggesting that environmental disturbance and human population changes precede outbreaks. We note five key research priorities, including adoption of One Health frameworks, to resolve transmission pathways and inform control strategies to reduce the spread of Buruli ulcer. Buruli ulcer is a debilitating skin and soft tissue disease characterised by large ulcerative wounds that are treated with antibiotics or with adjunctive surgery for advanced cases. Found predominantly in West Africa and Southeast Australia, the causative agent is the environmental bacterial pathogen Mycobacterium ulcerans. Lack of understanding of transmission pathways, combined with the absence of a vaccine, has hindered efforts to control the spread of M. ulcerans. Here, in order to identify probable transmission pathways and inform future studies, we review literature linking M. ulcerans to environmental reservoirs, mammalian hosts, and potential invertebrate vectors. We also summarise factors and behaviours that reduce the risk of developing Buruli ulcer, to inform effective prevention strategies and further shed light on transmission pathways.
Collapse
Affiliation(s)
- Anthony J. Muleta
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rachael Lappan
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
6
|
Zeukeng F, Ablordey A, Kakou-Ngazoa SE, Ghogomu SM, N'golo Coulibaly D, Nsoga MTN, Mbacham WF, Bigoga JD, Djouaka R. Community-based geographical distribution of Mycobacterium ulcerans VNTR-genotypes from the environment and humans in the Nyong valley, Cameroon. Trop Med Health 2021; 49:41. [PMID: 34020717 PMCID: PMC8139057 DOI: 10.1186/s41182-021-00330-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
Background Genotyping is a powerful tool for investigating outbreaks of infectious diseases and it can provide useful information such as identifying the source and route of transmission, and circulating strains involved in the outbreak. Genotyping techniques based on variable number of tandem repeats (VNTR) are instrumental in detecting heterogeneity in Mycobacterium ulcerans (MU) and also for discriminating MU from other mycobacteria species. Here, we describe and map the distribution of MU genotypes in Buruli ulcer (BU) endemic communities of the Nyong valley in Cameroon. We also tested the hypothesis of whether the suspected animal reservoirs of BU that share the human microhabitat are shedding contaminated fecal matters and saliva into their surrounding environments. Methods Environmental samples from suspected MU-risk factors and lesion swabs from human patients were sampled in BU-endemic communities and tested for the presence of MU by qPCR targeting three independent sequences (IS2404, IS2606, KR-B). Positive samples to MU were further genotyped by VNTR with confirmation by sequencing of four loci (MIRU1, Locus 6, ST1, Locus 19). Results MU was detected in environmental samples including water bodies (23%), biofilms (14%), detritus (10%), and in human patients (73%). MU genotypes D, W, and C were found both in environmental and human samples. The micro geo-distribution of MU genotypes from communities showed that genotype D is found both in environmental and human samples, while genotypes W and C are specific to environmental samples and human lesions, respectively. No obvious focal grouping of MU genotypes was observed at the community scale. An additional survey in the human microhabitat suggests that domestic and wild animals do not shed MU in their saliva and feces in sampled communities. Conclusions VNTR typing uncovered different MU genotypes circulating in the endemic communities of the Akonolinga district. A MU environmental genotype was found in patients, yet the mechanism of contamination remains to be investigated; and recovering MU in culture from the environment remains key priority to enable a better understanding of the mode of transmission of BU. We also conclude that excretions from suspected animals are unlikely to be major sources of MU in the Nyong Valley in Cameroon. Supplementary Information The online version contains supplementary material available at 10.1186/s41182-021-00330-2.
Collapse
Affiliation(s)
- Francis Zeukeng
- The Biotechnology Centre (BTC), University of Yaoundé I, P.O. Box, 17673, Yaoundé, Cameroon. .,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box., 63, Buea, Cameroon.
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box., 581, Legon, Accra, Ghana.
| | - Solange E Kakou-Ngazoa
- Department of Technics and Technology, Platform of Molecular Biology, Pasteur Institute Abidjan, P.O. Box., 490, Abidjan 01, Abidjan, Côte d'Ivoire
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box., 63, Buea, Cameroon
| | - David N'golo Coulibaly
- Department of Technics and Technology, Platform of Molecular Biology, Pasteur Institute Abidjan, P.O. Box., 490, Abidjan 01, Abidjan, Côte d'Ivoire
| | | | - Wilfred Fon Mbacham
- The Biotechnology Centre (BTC), University of Yaoundé I, P.O. Box, 17673, Yaoundé, Cameroon
| | - Jude Daiga Bigoga
- The Biotechnology Centre (BTC), University of Yaoundé I, P.O. Box, 17673, Yaoundé, Cameroon
| | - Rousseau Djouaka
- The AgroEcoHealth Platform, International Institute of Tropical Agriculture (IITA), 08 P.O. Box. 0932, Tri-Postal Cotonou, Cotonou, Bénin
| |
Collapse
|
7
|
Yotsu RR, Suzuki K, Simmonds RE, Bedimo R, Ablordey A, Yeboah-Manu D, Phillips R, Asiedu K. Buruli Ulcer: a Review of the Current Knowledge. CURRENT TROPICAL MEDICINE REPORTS 2018; 5:247-256. [PMID: 30460172 PMCID: PMC6223704 DOI: 10.1007/s40475-018-0166-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF THE REVIEW Buruli ulcer (BU) is a necrotizing and disabling cutaneous disease caused by Mycobacterium ulcerans, one of the skin-related neglected tropical diseases (skin NTDs). This article aims to review the current knowledge of this disease and challenges ahead. RECENT FINDINGS Around 60,000 cases of BU have been reported from over 33 countries between 2002 and 2017. Encouraging findings for development of point-of-care tests for BU are being made, and its treatment is currently in the transition period from rifampicin plus streptomycin (injection) to all-oral regimen. A major recent advance in our understanding of its pathogenesis has been agreement on the mechanism of action of the major virulence toxin mycolactone in host cells, targeting the Sec61 translocon during a major step in protein biogenesis. SUMMARY BU is distributed mainly in West Africa, but cases are also found in other parts of the world. We may be underestimating its true disease burden, due to the limited awareness of this disease. More awareness and more understanding of BU will surely contribute in enhancing our fight against this skin NTD.
Collapse
Affiliation(s)
- Rie R. Yotsu
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Dermatology, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Dermatology, National Suruga Sanatorium, Shizuoka, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Rachel E. Simmonds
- Department of Microbial Sciences, School of Bioscience and Medicine, University of Surrey, Surrey, UK
| | - Roger Bedimo
- Department of Medicine, VA North Texas Healthcare System, Dallas, TX USA
- Division of Infectious Diseases, University of Texas Dallas Southwestern, Dallas, TX USA
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Dorothy Yeboah-Manu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Richard Phillips
- Kumansi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kingsley Asiedu
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|