1
|
Sharma K, Shah J, Singh S, Sengupta S. Development of Amphotericin B Decorated Gold Nanoparticles as a Promising Antileishmanial Nanoconjugate. ACS APPLIED BIO MATERIALS 2024; 7:6239-6248. [PMID: 39155492 DOI: 10.1021/acsabm.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Leishmaniasis, attributed to the protozoan parasite Leishmania, manifests in diverse clinical forms, including cutaneous, mucocutaneous, and visceral leishmaniasis; VL constitutes a significant global health menace. Prevalent in tropical and subtropical regions, this affliction disproportionately impacts individuals below the poverty threshold, transmitted through the bite of female sandflies. Existing treatments, such as pentavalent antimony, miltefosine, and Amphotericin B, exhibit limitations. Despite the emergence of liposomal Amphotericin B (AmBisome) as a promising antileishmanial agent, its utility is impeded by adverse effects, elevated production expenses, and cytotoxicity. To address these challenges, our investigation introduces a potential remedy─a citrate-coated gold Amphotericin B nanoparticle formulation. Characterized using dynamic light scattering and transmission electron microscopy, this pioneering formulation exhibited efficacy against L. donovani Ag83 promastigotes as demonstrated by MTT cell viability testing. Evaluating internal reactive oxygen species (ROS) levels and dual staining with acridine orange and ethidium bromide unveiled its consequential impact on cell death. Significantly, our study discloses this novel nanoformulation's unprecedented inhibition of the trypanothione reductase enzyme. The findings posit the citrate-coated gold Amphotericin B nanoformulation as a promising and targeted antileishmanial agent, representing potential advancements in leishmaniasis therapeutics.
Collapse
Affiliation(s)
- Kikku Sharma
- Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Juhi Shah
- Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad - 500032, Telangana, India
| | - Souvik Sengupta
- Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad, Gujarat 380009, India
| |
Collapse
|
2
|
Carmo A, Rocha M, Pereirinha P, Tomé R, Costa E. Antifungals: From Pharmacokinetics to Clinical Practice. Antibiotics (Basel) 2023; 12:884. [PMID: 37237787 PMCID: PMC10215229 DOI: 10.3390/antibiotics12050884] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The use of antifungal drugs started in the 1950s with polyenes nystatin, natamycin and amphotericin B-deoxycholate (AmB). Until the present day, AmB has been considered to be a hallmark in the treatment of invasive systemic fungal infections. Nevertheless, the success and the use of AmB were associated with severe adverse effects which stimulated the development of new antifungal drugs such as azoles, pyrimidine antimetabolite, mitotic inhibitors, allylamines and echinochandins. However, all of these drugs presented one or more limitations associated with adverse reactions, administration route and more recently the development of resistance. To worsen this scenario, there has been an increase in fungal infections, especially in invasive systemic fungal infections that are particularly difficult to diagnose and treat. In 2022, the World Health Organization (WHO) published the first fungal priority pathogens list, alerting people to the increased incidence of invasive systemic fungal infections and to the associated risk of mortality/morbidity. The report also emphasized the need to rationally use existing drugs and develop new drugs. In this review, we performed an overview of the history of antifungals and their classification, mechanism of action, pharmacokinetic/pharmacodynamic (PK/PD) characteristics and clinical applications. In parallel, we also addressed the contribution of fungi biology and genetics to the development of resistance to antifungal drugs. Considering that drug effectiveness also depends on the mammalian host, we provide an overview on the roles of therapeutic drug monitoring and pharmacogenomics as means to improve the outcome, prevent/reduce antifungal toxicity and prevent the emergence of antifungal resistance. Finally, we present the new antifungals and their main characteristics.
Collapse
Affiliation(s)
- Anália Carmo
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Marilia Rocha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Patricia Pereirinha
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Pharmacy Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal (P.P.)
| | - Rui Tomé
- Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal;
| | - Eulália Costa
- Advanced Unit for Pharmacokinetics and Personalized Therapeutics, Clinical Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| |
Collapse
|
3
|
Su Z, Liu G, Liu X, Li S, Lu X, Wang P, Zhao W, Zhang X, Dong L, Qu Y, Zhang J, Mo S, Guo Q, Ma P. Functional Analyses of the Bacillus velezensis HMB26553 Genome Provide Evidence That Its Genes Are Potentially Related to the Promotion of Plant Growth and Prevention of Cotton Rhizoctonia Damping-Off. Cells 2023; 12:cells12091301. [PMID: 37174701 PMCID: PMC10177454 DOI: 10.3390/cells12091301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Bacillus spp. is one kind of the important representative biocontrol agents against plant diseases and promoting plant growth. In this study, the whole genomic sequence of bacterial strain HMB26553 was obtained. A phylogenetic tree based on the genome and ANI (average nucleotide identity), as well as dDDH (digital DNA-DNA hybridization), was constructed, and strain HMB26553 was identified as Bacillus velezensis. Fourteen biosynthetic gene clusters responsible for secondary metabolite were predicted via anti-SMASH, and six secondary metabolites were identified by UHPLC-QTOF-MS/MS (ultra-high-performance liquid chromatography coupled to quadrupole-time-of-flight tandem mass spectrometry). When the phytopathogen Rhizoctonia solani was treated with B. velezensis HMB26553, the mycelial structure changed, ROS (reactive oxygen species) accumulated, and the mitochondrial membrane potential decreased. Characteristics of strain HMB26553 were predicted and confirmed by genomic information and experiments, such as producing IAA, siderophore, extracellular enzymes and biofilm, as well as moving and promoting cotton growth. All these results suggested the mechanisms by which B. velezensis HMB26553 inhibits pathogen growth and promotes cotton growth, which likely provided the potential biocontrol agent to control cotton Rhizoctonia damping-off.
Collapse
Affiliation(s)
- Zhenhe Su
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| | - Gaoge Liu
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| | - Xiaomeng Liu
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| | - Shezeng Li
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| | - Xiuyun Lu
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| | - Peipei Wang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| | - Weisong Zhao
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| | - Xiaoyun Zhang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| | - Lihong Dong
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| | - Yuanhang Qu
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| | - Jiaqi Zhang
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| | - Shaojing Mo
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| | - Qinggang Guo
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| | - Ping Ma
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Innovation Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding 071000, China
| |
Collapse
|
4
|
Shijo S, Tanaka D, Sekiguchi T, Ishihara JI, Takahashi H, Kobayashi M, Shoji S. Dielectrophoresis-Based Selective Droplet Extraction Microfluidic Device for Single-Cell Analysis. MICROMACHINES 2023; 14:706. [PMID: 36985113 PMCID: PMC10058699 DOI: 10.3390/mi14030706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
We developed a microfluidic device that enables selective droplet extraction from multiple droplet-trapping pockets based on dielectrophoresis. The device consists of a main microchannel, five droplet-trapping pockets with side channels, and drive electrode pairs appropriately located around the trapping pockets. Agarose droplets capable of encapsulating biological samples were successfully trapped in the trapping pockets due to the difference in flow resistance between the main and side channels. Target droplets were selectively extracted from the pockets by the dielectrophoretic force generated between the electrodes under an applied voltage of 500 V. During their extraction from the trapping pockets, the droplets and their contents were exposed to an electric field for 400-800 ms. To evaluate whether the applied voltage could potentially damage the biological samples, the growth rates of Escherichia coli cells in the droplets, with and without a voltage applied, were compared. No significant difference in the growth rate was observed. The developed device enables the screening of encapsulated single cells and the selective extraction of target droplets.
Collapse
Affiliation(s)
- Seito Shijo
- Major in Nanoscience and Nanoengineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 145-0065, Japan; (M.K.)
| | - Daiki Tanaka
- Research Organization for Nano & Life Innovation, Waseda University, 513 Tsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Tetsushi Sekiguchi
- Research Organization for Nano & Life Innovation, Waseda University, 513 Tsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Jun-ichi Ishihara
- Medical Mycology Research Center, Chiba University, 181 Inohana, Chuo, Chiba 260-8673, Japan
| | - Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, 181 Inohana, Chuo, Chiba 260-8673, Japan
- Molecular Chirality Research Center, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Plant Molecular Science Center, Chiba University, 181 Inohana, Chuo, Chiba 260-8673, Japan
| | - Masashi Kobayashi
- Major in Nanoscience and Nanoengineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 145-0065, Japan; (M.K.)
| | - Shuichi Shoji
- Major in Nanoscience and Nanoengineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 145-0065, Japan; (M.K.)
| |
Collapse
|
5
|
Breukers J, Ven K, Struyfs C, Ampofo L, Rutten I, Imbrechts M, Pollet F, Van Lent J, Kerstens W, Noppen S, Schols D, De Munter P, Thibaut HJ, Vanhoorelbeke K, Spasic D, Declerck P, Cammue BPA, Geukens N, Thevissen K, Lammertyn J. FLUIDOT: A Modular Microfluidic Platform for Single-Cell Study and Retrieval, with Applications in Drug Tolerance Screening and Antibody Mining. SMALL METHODS 2023; 7:e2201477. [PMID: 36642827 DOI: 10.1002/smtd.202201477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Advancements in lab-on-a-chip technologies have revolutionized the single-cell analysis field. However, an accessible platform for in-depth screening and specific retrieval of single cells, which moreover enables studying diverse cell types and performing various downstream analyses, is still lacking. As a solution, FLUIDOT is introduced, a versatile microfluidic platform incorporating customizable microwells, optical tweezers and an interchangeable cell-retrieval system. Thanks to its smart microfluidic design, FLUIDOT is straightforward to fabricate and operate, rendering the technology widely accessible. The performance of FLUIDOT is validated and its versatility is subsequently demonstrated in two applications. First, drug tolerance in yeast cells is studied, resulting in the discovery of two treatment-tolerant populations. Second, B cells from convalescent COVID-19 patients are screened, leading to the discovery of highly affine, in vitro neutralizing monoclonal antibodies against SARS-CoV-2. Owing to its performance, flexibility, and accessibility, it is foreseen that FLUIDOT will enable phenotypic and genotypic analysis of diverse cell samples and thus elucidate unexplored biological questions.
Collapse
Affiliation(s)
- Jolien Breukers
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- LISCO, KU Leuven Institute for Single Cell Omics, ON4 Herestraat 49, Leuven, 3000, Belgium
| | - Karen Ven
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- LISCO, KU Leuven Institute for Single Cell Omics, ON4 Herestraat 49, Leuven, 3000, Belgium
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
| | - Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Leuven, 3001, Belgium
| | - Louanne Ampofo
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, ON 2 Herestraat 49, Leuven, 3000, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, ON2 Herestraat 49, Leuven, 3000, Belgium
| | - Iene Rutten
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- LISCO, KU Leuven Institute for Single Cell Omics, ON4 Herestraat 49, Leuven, 3000, Belgium
| | - Maya Imbrechts
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, ON 2 Herestraat 49, Leuven, 3000, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, ON2 Herestraat 49, Leuven, 3000, Belgium
| | - Francesca Pollet
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
| | - Julie Van Lent
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
| | - Winnie Kerstens
- Translational Platform Virology and Chemotherapy, Rega Institute, KU Leuven, Rega - Herestraat 49, Leuven, 3000, Belgium
| | - Sam Noppen
- Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Rega - Herestraat 49, Leuven, 3000, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Rega - Herestraat 49, Leuven, 3000, Belgium
| | - Paul De Munter
- Department of Internal Medicine, University Hospitals Leuven, UZ Herestraat 49, Leuven, 3000, Belgium
- Laboratory for Clinical Infectious and Inflammatory Disorders, KU Leuven, UZ Herestraat 49, Leuven, 3000, Belgium
| | - Hendrik Jan Thibaut
- Translational Platform Virology and Chemotherapy, Rega Institute, KU Leuven, Rega - Herestraat 49, Leuven, 3000, Belgium
| | - Karen Vanhoorelbeke
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, ON 2 Herestraat 49, Leuven, 3000, Belgium
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium
| | - Dragana Spasic
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
| | - Paul Declerck
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, ON 2 Herestraat 49, Leuven, 3000, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, ON2 Herestraat 49, Leuven, 3000, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Leuven, 3001, Belgium
| | - Nick Geukens
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, ON 2 Herestraat 49, Leuven, 3000, Belgium
- Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven, ON2 Herestraat 49, Leuven, 3000, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Leuven, 3001, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors group, KU Leuven, Willem de Croylaan 42, Leuven, 3001, Belgium
- LISCO, KU Leuven Institute for Single Cell Omics, ON4 Herestraat 49, Leuven, 3000, Belgium
- MabMine: KU Leuven Single B Cell Mining Platform, KU Leuven, ON2 Herestraat 49, 3000, Leuven, Belgium
- LIMNI, KU Leuven Institute for Micro- and Nanoscale Integration, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
6
|
Frézard F, Aguiar MMG, Ferreira LAM, Ramos GS, Santos TT, Borges GSM, Vallejos VMR, De Morais HLO. Liposomal Amphotericin B for Treatment of Leishmaniasis: From the Identification of Critical Physicochemical Attributes to the Design of Effective Topical and Oral Formulations. Pharmaceutics 2022; 15:pharmaceutics15010099. [PMID: 36678729 PMCID: PMC9864876 DOI: 10.3390/pharmaceutics15010099] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
The liposomal amphotericin B (AmB) formulation, AmBisome®, still represents the best therapeutic option for cutaneous and visceral leishmaniasis. However, its clinical efficacy depends on the patient's immunological status, the clinical manifestation and the endemic region. Moreover, the need for parenteral administration, its side effects and high cost significantly limit its use in developing countries. This review reports the progress achieved thus far toward the understanding of the mechanism responsible for the reduced toxicity of liposomal AmB formulations and the factors that influence their efficacy against leishmaniasis. It also presents the recent advances in the development of more effective liposomal AmB formulations, including topical and oral liposome formulations. The critical role of the AmB aggregation state and release rate in the reduction of drug toxicity and in the drug efficacy by non-invasive routes is emphasized. This paper is expected to guide future research and development of innovative liposomal formulations of AmB.
Collapse
Affiliation(s)
- Frédéric Frézard
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: ; Tel.: +55-31-34092940
| | - Marta M. G. Aguiar
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucas A. M. Ferreira
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Guilherme S. Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Thais T. Santos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Gabriel S. M. Borges
- Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Virgínia M. R. Vallejos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Helane L. O. De Morais
- Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
7
|
|
8
|
Medhasi S, Chindamporn A, Worasilchai N. A Review: Antimicrobial Therapy for Human Pythiosis. Antibiotics (Basel) 2022; 11:antibiotics11040450. [PMID: 35453202 PMCID: PMC9029071 DOI: 10.3390/antibiotics11040450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 01/14/2023] Open
Abstract
Human pythiosis is associated with poor prognosis with significant mortality caused by Pythium insidiosum. Antimicrobials’ in vitro and in vivo results against P. insidiosum are inconsistent. Although antimicrobials are clinically useful, they are not likely to achieve therapeutic success alone without surgery and immunotherapy. New therapeutic options are therefore needed. This non-exhaustive review discusses the rationale antimicrobial therapy, minimum inhibitory concentrations, and efficacy of antibacterial and antifungal agents against P. insidiosum. This review further provides insight into the immunomodulating effects of antimicrobials that can enhance the immune response to infections. Current data support using antimicrobial combination therapy for the pharmacotherapeutic management of human pythiosis. Also, the success or failure of antimicrobial treatment in human pythiosis might depend on the immunomodulatory effects of drugs. The repurposing of existing drugs is a safe strategy for anti-P. insidiosum drug discovery. To improve patient outcomes in pythiosis, we suggest further research and a deeper understanding of P. insidiosum virulence factors, host immune response, and host immune system modification by antimicrobials.
Collapse
Affiliation(s)
- Sadeep Medhasi
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Ariya Chindamporn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Navaporn Worasilchai
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Immunomodulation of Natural Products Research Group, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2218-1065
| |
Collapse
|
9
|
Struyfs C, Breukers J, Spasic D, Lammertyn J, Cammue BPA, Thevissen K. Multiplex Analysis to Unravel the Mode of Antifungal Activity of the Plant Defensin HsAFP1 in Single Yeast Cells. Int J Mol Sci 2022; 23:ijms23031515. [PMID: 35163438 PMCID: PMC8836000 DOI: 10.3390/ijms23031515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Single cell analyses have gained increasing interest over bulk approaches because of considerable cell-to-cell variability within isogenic populations. Herein, flow cytometry remains golden standard due to its high-throughput efficiency and versatility, although it does not allow to investigate the interdependency of cellular events over time. Starting from our microfluidic platform that enables to trap and retain individual cells on a fixed location over time, here, we focused on unraveling kinetic responses of single Saccharomyces cerevisiae yeast cells upon treatment with the antifungal plant defensin HsAFP1. We monitored the time between production of reactive oxygen species (ROS) and membrane permeabilization (MP) in single yeast cells for different HsAFP1 doses using two fluorescent dyes with non-overlapping spectra. Within a time frame of 2 min, only <0.3% cells displayed time between the induction of ROS and MP. Reducing the time frame to 30 s did not result in increased numbers of cells with time between these events, pointing to ROS and MP induction as highly dynamic and correlated processes. In conclusion, using an in-house developed continuous microfluidic platform, we investigated the mode of action of HsAFP1 at single cell level, thereby uncovering the close interdependency between ROS induction and MP in yeast.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems (MS), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; (C.S.); (B.P.A.C.)
| | - Jolien Breukers
- Biosensors Group, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium; (J.B.); (D.S.); (J.L.)
| | - Dragana Spasic
- Biosensors Group, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium; (J.B.); (D.S.); (J.L.)
| | - Jeroen Lammertyn
- Biosensors Group, Department of Biosystems (BIOSYST), KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium; (J.B.); (D.S.); (J.L.)
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems (MS), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; (C.S.); (B.P.A.C.)
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems (MS), KU Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium; (C.S.); (B.P.A.C.)
- Correspondence: ; Tel.: +32-16-32-96-88
| |
Collapse
|
10
|
Renzi DF, de Almeida Campos L, Miranda EH, Mainardes RM, Abraham WR, Grigoletto DF, Khalil NM. Nanoparticles as a Tool for Broadening Antifungal Activities. Curr Med Chem 2021; 28:1841-1873. [PMID: 32223729 DOI: 10.2174/0929867327666200330143338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/22/2022]
Abstract
Fungal infections are diseases that are considered neglected although their infection rates have increased worldwide in the last decades. Thus, since the antifungal arsenal is restricted and many strains have shown resistance, new therapeutic alternatives are necessary. Nanoparticles are considered important alternatives to promote drug delivery. In this sense, the objective of the present study was to evaluate the contributions of newly developed nanoparticles to the treatment of fungal infections. Studies have shown that nanoparticles generally improve the biopharmaceutical and pharmacokinetic characteristics of antifungals, which is reflected in a greater pharmacodynamic potential and lower toxicity, as well as the possibility of prolonged action. It also offers the proposition of new routes of administration. Nanotechnology is known to contribute to a new drug delivery system, not only for the control of infectious diseases but for various other diseases as well. In recent years, several studies have emphasized its application in infectious diseases, presenting better alternatives for the treatment of fungal infections.
Collapse
Affiliation(s)
- Daniele Fernanda Renzi
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Eduardo Hösel Miranda
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Wolf-Rainer Abraham
- Helmholtz Center for Infection Research, Chemical Microbiology, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Diana Fortkamp Grigoletto
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia, 838 - CEP 85040-167, Guarapuava-PR, Brazil
| |
Collapse
|
11
|
Struyfs C, Cammue BPA, Thevissen K. Membrane-Interacting Antifungal Peptides. Front Cell Dev Biol 2021; 9:649875. [PMID: 33912564 PMCID: PMC8074791 DOI: 10.3389/fcell.2021.649875] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Breukers J, Horta S, Struyfs C, Spasic D, Feys HB, Geukens N, Thevissen K, Cammue BPA, Vanhoorelbeke K, Lammertyn J. Tuning the Surface Interactions between Single Cells and an OSTE+ Microwell Array for Enhanced Single Cell Manipulation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2316-2326. [PMID: 33411502 DOI: 10.1021/acsami.0c19657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Retrieving single cells of interest from an array of microwells for further off-chip analysis is crucial in numerous biological applications. To this end, several single cell manipulation strategies have been developed, including optical tweezers (OT). OT represent a unique approach for contactless cell retrieval, but their performance is often suboptimal due to nonspecific cell adhesion to the microwell surface. In this study, we focused on improving the surface chemistry of microwell arrays to ensure efficient single cell manipulation using OT. For this purpose, the surface of an off-stoichiometry thiol-ene-epoxy (OSTE+) microwell array was grafted with polyethylene glycol (PEG) molecules with different molecular weights: PEG 360, PEG 500, PEG 2000, and a PEG Mix (an equimolar ratio of PEG 500 and PEG 2000). Contact angle measurements showed that the PEG grafting process resulted in an increased surface energy, which was stable for at least 16 weeks. Next, cell adhesion of two cell types, baker's yeast (Saccharomyces cerevisiae) and human B cells, to surfaces treated with different PEGs was evaluated by registering the presence of cellular motion inside microwells and the efficiency of optical lifting of cells that display motion. Optimal results were obtained for surfaces grafted with PEG 2000 and PEG Mix, reaching an average fraction of cells with motion of over 93% and an average lifting efficiency of over 96% for both cell types. Upon the integration of this microwell array with a polydimethylsiloxane (PDMS) microfluidic channel, PEG Mix resulted in proper washing of non-seeded cells. We further demonstrated the wide applicability of the platform by manipulating non-responding yeast cells to antifungal treatment and B cells expressing surface IgG antibodies. The combination of the optimized microwell surface with continuous microfluidics results in a powerful and versatile platform, allowing high-throughput single cell studies and retrieval of target cells for off-chip analysis.
Collapse
Affiliation(s)
- Jolien Breukers
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Leuven 3001, Belgium
| | - Sara Horta
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Dragana Spasic
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Leuven 3001, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders Ottergemsesteenweg 413, Gent 9000, Belgium
- Diagnostic Sciences, Ghent University, C. Heymanslaan 10, Gent 9000, Belgium
| | - Nick Geukens
- PharmAbs, The KU Leuven Antibody Center, KU Leuven, Herestraat 49, Leuven 3000, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Leuven 3001, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium
| | - Jeroen Lammertyn
- Department of Biosystems, Biosensors Group, KU Leuven, Willem De Croylaan 42, Leuven 3001, Belgium
| |
Collapse
|
13
|
Struyfs C, Cools TL, De Cremer K, Sampaio-Marques B, Ludovico P, Wasko BM, Kaeberlein M, Cammue BPA, Thevissen K. The antifungal plant defensin HsAFP1 induces autophagy, vacuolar dysfunction and cell cycle impairment in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183255. [PMID: 32145284 DOI: 10.1016/j.bbamem.2020.183255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
The plant defensin HsAFP1 is characterized by broad-spectrum antifungal activity and induces apoptosis in Candida albicans. In this study, we performed a transcriptome analysis on C. albicans cultures treated with HsAFP1 to gain further insight in the antifungal mode of action of HsAFP1. Various genes coding for cell surface proteins, like glycosylphosphatidylinositol (GPI)-anchored proteins, and proteins involved in cation homeostasis, autophagy and in cell cycle were differentially expressed upon HsAFP1 treatment. The biological validation of these findings was performed in the model yeast Saccharomyces cerevisiae. To discriminate between events linked to HsAFP1's antifungal activity and those that are not, we additionally used an inactive HsAFP1 mutant. We demonstrated that (i) HsAFP1-resistent S. cerevisiae mutants that are characterized by a defect in processing GPI-anchors are unable to internalize HsAFP1, and (ii) moderate doses (FC50, fungicidal concentration resulting in 50% killing) of HsAFP1 induce autophagy in S. cerevisiae, while high HsAFP1 doses result in vacuolar dysfunction. Vacuolar function is an important determinant of replicative lifespan (RLS) under dietary restriction (DR). In line, HsAFP1 specifically reduces RLS under DR. Lastly, (iii) HsAFP1 affects S. cerevisiae cell cycle in the G2/M phase. However, the latter HsAFP1-induced event is not linked to its antifungal activity, as the inactive HsAFP1 mutant also impairs the G2/M phase. In conclusion, we demonstrated that GPI-anchored proteins are involved in HsAFP1's internalization, and that HsAFP1 induces autophagy, vacuolar dysfunction and impairment of the cell cycle. Collectively, all these data provide novel insights in the mode of action of HsAFP1 as well as in S. cerevisiae tolerance mechanisms against this peptide.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Tanne L Cools
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4700 Braga/Guimarães, Portugal
| | - Paula Ludovico
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4700 Braga/Guimarães, Portugal
| | - Brian M Wasko
- Department of Pathology, University of Washington, 98195 Seattle, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, 98195 Seattle, USA
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium.
| |
Collapse
|
14
|
Ribeiro NQ, Santos APN, Emídio ECP, Costa MC, Freitas GJC, Carmo PHF, Silva MF, de Brito CB, de Souza DG, Paixão TA, Santos DA. Pioglitazone as an adjuvant of amphotericin B for the treatment of cryptococcosis. Int J Antimicrob Agents 2019; 54:301-308. [PMID: 31279153 DOI: 10.1016/j.ijantimicag.2019.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/12/2023]
Abstract
Approximately 180,000 people worldwide die from cryptococcosis each year, probably due to the ineffectiveness and toxicity of drugs currently available to treat the disease. Amphotericin B (AMB) is effective for killing the fungus, but has serious adverse effects linked to excessive production of reactive oxygen species which compromise renal function. Pioglitazone (PIO) is a peroxisome proliferator-activated receptor-γ agonist widely repositioned as an adjuvant of various drugs that have toxic effects due to its antioxidant and anti-inflammatory effects. This study evaluated PIO in combination with AMB for the treatment of cryptococcosis. PIO was found to reduce serum creatinine and glutamic-oxalacetic transaminase levels in mice treated with PIO+AMB. In vitro, PIO was able to control harmful oxidative bursts induced by AMB without compromising the antifungal effect. In vivo, PIO+AMB increased the survival rate compared with AMB alone, and improved the morbidity of the animals. PIO+AMB was more efficient than AMB alone for inhibiting fungal transmigration from the lungs to the brain, and killing yeasts that reached the central nervous system, avoiding the establishment of meningoencephalitis. In a phagocytosis assay, PIO did not influence the engulfment and fungicidal activity of macrophages induced by AMB, but reduced the oxidative bursts after the reduction of fungal burden, pointing to control of the pathogen without leading to excessive stress which can be damaging to the host. In conclusion, PIO+AMB was found to ameliorate cryptococcosis in a murine model, indicating that it is a promising therapeutic adjuvant for combating and controlling this fungal infection.
Collapse
Affiliation(s)
- Noelly Queiroz Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Philip Nonato Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elúzia Castro Peres Emídio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marliete Carvalho Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo José Cotta Freitas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Henrique Fonseca Carmo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Monique Ferreira Silva
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Bernardo de Brito
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniele Glória de Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane Alves Paixão
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|