1
|
Zhang ML, Zhao X, Li WX, Wang XY, Niu M, Zhang H, Chen YL, Kong DX, Gao Y, Guo YM, Bai ZF, Zhao YL, Tang JF, Xiao XH. Yin/Yang associated differential responses to Psoralea corylifolia Linn. In rat models: an integrated metabolomics and transcriptomics study. Chin Med 2023; 18:102. [PMID: 37592331 PMCID: PMC10433582 DOI: 10.1186/s13020-023-00793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/28/2023] [Indexed: 08/19/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia Linn. (BGZ) is a commonly used traditional Chinese medicine (TCM) for the treatment of kidney-yang deficiency syndrome (Yangsyn) with good curative effect and security. However, BGZ was also reported to induce liver injury in recent years. According to TCM theory, taking BGZ may induce a series of adverse reactions in patients with kidney-yin deficiency syndrome (Yinsyn), which suggests that BGZ-induced liver damage may be related to its unreasonable clinical use. AIM OF THE STUDY Liver injury caused by TCM is a rare but potentially serious adverse drug reaction, and the identification of predisposed individuals for drug-induced liver injury (DILI) remains challenging. The study aimed to investigate the differential responses to BGZ in Yangsyn and Yinsyn rat models and identify the corresponding characteristic biomarkers. MATERIALS AND METHODS The corresponding animal models of Yangsyn and Yinsyn were induced by hydrocortisone and thyroxine + reserpine respectively. Body weight, organ index, serum biochemistry, and Hematoxylin and Eosin (HE) staining were used to evaluate the liver toxicity effect of BGZ on rats with Yangsyn and Yinsyn. Transcriptomics and metabonomics were used to screen the representative biomarkers (including metabolites and differentially expressed genes (DEGs)) changed by BGZ in Yangsyn and Yinsyn rats, respectively. RESULTS The level changes of liver organ index, alanine aminotransferase (ALT), and aspartate aminotransferase (AST), suggested that BGZ has liver-protective and liver-damaging effects on Yangsyn and Yinsyn rats, respectively, and the results also were confirmed by the pathological changes of liver tissue. The results showed that 102 DEGs and 27 metabolites were significantly regulated related to BGZ's protective effect on Yangsyn, which is mainly associated with the glycerophospholipid metabolism, arachidonic acid metabolism, pantothenate, and coenzyme A (CoA) biosynthesis pathways. While 28 DEGs and 31 metabolites, related to the pathway of pantothenate and CoA biosynthesis, were significantly regulated for the BGZ-induced liver injury in Yinsyn. Furthermore, 4 DEGs (aldehyde dehydrogenase 1 family member B1 (Aldh1b1), solute carrier family 25 member 25 (Slc25a25), Pim-3 proto-oncogene, serine/threonine kinase (Pim3), out at first homolog (Oaf)) and 4 metabolites (phosphatidate, phosphatidylcholine, N-Acetylleucine, biliverdin) in the Yangsyn group and 1 DEG [galectin 5 (Lgals5)] and 1 metabolite (5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate) in Yinsyn group were significantly correlated to the ALT and AST levels of BGZ treated and untreated groups (receiver operating characteristic (ROC) ≥ 0.9). CONCLUSIONS Yinsyn and Yangsyn are the predisposed syndromes for BGZ to exert liver damage and liver protection respectively, which are mainly related to the regulation of amino acid metabolism, lipid metabolism, energy metabolism, and metabolism of cofactors and vitamins. The results further suggest that attention should be paid to the selection of predisposed populations when using drugs related to the regulation of energy metabolism, and the Yinsyn/Yangsyn animal models based on the theory of TCM syndromes may be a feasible method for identifying the susceptible population to receive TCM.
Collapse
Affiliation(s)
- Ming-Liang Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xu Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wei-Xia Li
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Yan Wang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ming Niu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hui Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - De-Xin Kong
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yu-Ming Guo
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhao-Fang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yan-Ling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Jin-Fa Tang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Xiao-He Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
2
|
Yu X, Dai C, Zhao X, Huang Q, He X, Zhang R, Lin Z, Shen Y. Ruthenium red attenuates acute pancreatitis by inhibiting MCU and improving mitochondrial function. Biochem Biophys Res Commun 2022; 635:236-243. [DOI: 10.1016/j.bbrc.2022.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022]
|
3
|
Guo Z, Li P, Wang C, Kang Q, Tu C, Jiang B, Zhang J, Wang W, Wang T. Five Constituents Contributed to the Psoraleae Fructus-Induced Hepatotoxicity via Mitochondrial Dysfunction and Apoptosis. Front Pharmacol 2021; 12:682823. [PMID: 34950022 PMCID: PMC8688997 DOI: 10.3389/fphar.2021.682823] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/08/2021] [Indexed: 01/22/2023] Open
Abstract
Backgrounds: Psoraleae Fructus (PF)-induced hepatotoxicity has been reported in clinical and animal experiments. However, the hepatotoxic constituents and mechanisms underlying PF-induced toxicity have remained unclear. Therefore, this study explored the potentially toxic PF components and revealed their relative mechanisms. Methods: The hepatotoxicity of PF water (PFW) and ethanol (PFE) extracts was compared using Kunming mice. The different compositions between PFW and PFE, which were considered toxic compositions, were identified using the UHPLC-Q-Exactive MS method. Then, L02 and HepG2 cell lines were used to evaluate the toxicity of these compositions. Cell viability and apoptosis were determined through the Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. An automatic biochemical analyzer detected the aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). Lastly, we used high-content screening (HCS) to determine the levels of reactive oxygen species (ROS), lipid, and mitochondrial membrane potential (MMP). Results: The ethanol extraction process aggravated the hepatotoxicity of PF, causing more severe injuries. The content of psoralen, isopsoralen, bavachin, psoralidin, bavachinin, neobavaisoflavone, and bakuchiol was higher in the PFE than PFW. Bavachin, psoralidin, bavachinin, neobavaisoflavone, and bakuchiol induced cell apoptosis and the AST, ALT, and ALP leakages. Furthermore, these five constituents increased intracellular lipid accumulation and ROS levels but decreased the MMP level. Conclusion: The ethanol extraction process could induce severe PF hepatotoxicity. Bavachin, psoralidin, bavachinin, neobavaisoflavone, and bakuchiol are the main hepatotoxic ingredients. This mechanism could be associated with oxidative stress and mitochondrial damage-mediated apoptosis. Taken together, this study provides a basis for the clinical application of PF that formulates and improves its herbal standards.
Collapse
Affiliation(s)
- Zhaojuan Guo
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Pin Li
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qianjun Kang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Can Tu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bingqian Jiang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingxuan Zhang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weiling Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,NMPA Key Laboratory for Research and Evaluation of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Zhang C, Qian DD, Yu T, Yang H, Li P, Li HJ. Multi-parametric cellular imaging coupled with multi-component quantitative profiling for screening of hepatotoxic equivalent markers from Psoraleae Fructus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153518. [PMID: 34735910 DOI: 10.1016/j.phymed.2021.153518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/07/2021] [Accepted: 02/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The hepatotoxicity of Chinese herbal medicine (CHM) is an important reason for its restrictive application. Psoraleae Fructus (PF), a commonly used CHM for treatment of osteoporosis and vitiligo etc., has caused serious concern due to the frequent occurrence of liver injury incidents. To date, its hepatotoxic equivalent markers (HEMs) and potential mechanisms are still unclear. PURPOSE To discover and validate the HEMs of PF and further explore the potential mechanisms of hepatotoxicity. METHODS Multi-parametric cellular imaging was performed by high content screening, and multi-component quantitative profiling was conducted by ultra-high performance liquid chromatography coupled with triple-quadrupole mass spectrometry. The correlations between hepatotoxic features and component contents were modeled by chemometrics including partial least square regression, back propagation-artificial neural network, and hierarchical cluster analysis. Then the candidate HEMs of PF were screened out and subjected to hepatotoxic equivalence assessment in primary hepatocytes, zebrafish, and mice, and the hepatotoxic mechanisms of PF were investigated. RESULTS The chemical combination of psoralen and isopsoralen was discovered as the HEMs of PF through pre-screening and verifying process. PF was demonstrated to induce oxidative stress, mitochondrial dysfunction and cellular apoptosis. CONCLUSIONS This study not only provides a rational strategy for screening HEMs from CHMs like PF, but also contributes to understanding the underlying mechanisms of PF hepatotoxicity.
Collapse
Affiliation(s)
- Cai Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Duo-Duo Qian
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ting Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| |
Collapse
|
5
|
Wang Y, Xu G, Wang Z, Li R, Zhan X, Liu H, Qin Q, Li W, Wang X, Zhang M, Tang J, Bai Z, Xiao X. Psoralidin, a major component of Psoraleae Fructus, induces inflammasome activation and idiosyncratic liver injury. Int Immunopharmacol 2021; 92:107352. [PMID: 33422760 DOI: 10.1016/j.intimp.2020.107352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022]
Abstract
Idiosyncratic drug-induced liver injury (IDILI) is a rare but potentially fatal disease that is unpredictable and independent of the dose of the drug. Increasing evidence suggests that the majority of IDILI cases are immune-mediated, and the aberrant activation of inflammasome plays a vital role in progression. Psoraleae Fructus (PF), a tonic Chinese medicine, has been able to cause IDILI, but the precise mechanism of hepatotoxicity remains unclear. In this study, eight bioactive compounds involved in PF-induced inflammasome activation were investigated. The results demonstrated that psoralidin activated the inflammasomes followed by secreting caspase-1 and interleukin 1β (IL-1β) in a dose-dependent manner. Interestingly, MCC950, a potent inhibitor of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, could not entirely suppress the psoralidin-induced inflammasome activation. Moreover, psoralidin significantly induced IL-1β maturation and caspase-1 activation in NLRP3-knockout bone marrow-derived macrophages (BMDMs), suggesting that psoralidin not only activates the NLRP3 inflammasome but also activates other types of inflammasomes. The results also demonstrated that psoralidin activated the inflammasomes by promoting the C-terminal caspase recruitment domain (ASC) oligomerization, and the production of mitochondrial reactive oxygen species (mtROS) is a decisive factor in psoralidin-induced inflammasome activation. Importantly, in vivo data revealed that psoralidin induced hepatic inflammation, increased aminotransferase activity and increased the production of IL-1β and tumor necrosis factor(TNF-α) in a susceptible mouse model of lipopolysaccharide (LPS)-mediated IDILI. In summary, these results confirmed that psoralidin causes IDILI by inducing inflammasome activation. The study suggests that psoralidin is a possible risk factor and is responsible for PF-induced IDILI.
Collapse
Affiliation(s)
- Yan Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China; China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Guang Xu
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Zhilei Wang
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100500, China
| | - Xiaoyan Zhan
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Hongbin Liu
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qin Qin
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China
| | - Weixia Li
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Xiaoyan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Mingliang Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China
| | - Jinfa Tang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, China.
| | - Zhaofang Bai
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China.
| | - Xiaohe Xiao
- China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China; Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
6
|
Long-Term Exposure of Psoralen and Isopsoralen Induced Hepatotoxicity and Serum Metabolites Profiles Changes in Female Rats. Metabolites 2019; 9:metabo9110263. [PMID: 31684074 PMCID: PMC6918323 DOI: 10.3390/metabo9110263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022] Open
Abstract
Pre-clinical safety evaluation of traditional medicines is imperative because of the universality of drug-induced adverse reactions. Psoralen and isopsoralen are the major active molecules and quality-control components of a traditional herbal medicine which is popularly used in Asia, Fructus Psoraleae. The purpose of this study is to assess the long-term effects of psoralen and isopsoralen with low levels on the biochemical parameters and metabolic profiles of rats. Three doses (14, 28, and 56 mg/kg) of psoralen and one dose (28 mg/kg) of isopsoralen were administered to rats over 12 weeks. Blood and selected tissue samples were collected and analyzed for hematology, serum biochemistry, and histopathology. Metabolic changes in serum samples were detected via proton nuclear magnetic resonance (1H-NMR) spectroscopy. We found that psoralen significantly changed the visceral coefficients, blood biochemical parameters, and histopathology, and isopsoralen extra influenced the hematological index. Moreover, psoralen induced remarkable elevations of forvaline, isoleucine, isobutyrate, alanine, acetone, pyruvate, glutamine, citrate, unsaturated lipids, choline, creatine, phenylalanine, and 4-hydroxybenzoate, and significant reductions of ethanol and dimethyl sulfone. Isopsoralen only induced a few remarkable changes of metabolites. These results suggest that chronic exposure to low-level of psoralen causes a disturbance in alanine metabolism, glutamate metabolism, urea cycle, glucose-alanine cycle, ammonia recycling, glycine, and serine metabolism pathways. Psoralen and isopsoralen showed different toxicity characteristics to the rats.
Collapse
|
7
|
Cui Y, Wang R, Zhang Y, Liu T, Han F, Li R, Zhang N, Zhao Y, Yu Z. Investigation of the mechanism of incompatible herb pair gansui-gancao-induced hepatotoxicity and nephrotoxicity and the attenuated effect of gansuibanxia decoction by UHPLC-FT-ICR-MS-based plasma metabonomic analysis. J Pharm Biomed Anal 2019; 173:176-182. [PMID: 31146173 DOI: 10.1016/j.jpba.2019.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 10/26/2022]
Abstract
Gansui-Gancao is one of the "eighteen incompatible herb pairs" which was recorded 2000 years ago according to TCM (Traditional Chinese Medicine) theory for their toxicity when using together. Nevertheless, Gansuibanxia decoction contained the herb pair have satisfactory effect on the treatment of cancerous ascites, pericardial effusion, etc. The present study aimed to investigate the mechanism of the incompatibility of Gansui-Gancao and the compatibility of Gansuibanxia decoction using UHPLC-FT-ICR-MS in a metabonomic perspective. Rats were divided into four groups administrated with different herb combination extracts for successive 14 days. Orthogonal partial least squares-discriminant analysis (OPLS-DA) was used to plot the metabolic state and screen the potential biomarkers in plasma. A total of 20 biomarkers contributed to the separation of Gansui-Gancao group and control group were tentatively identified mainly involved in 7 metabolic pathways related to hepatotoxicity and nephrotoxicity. The contents of these biomarkers were adjusted to normal levels in Gansuibanxia decoction group. Thus, the results of our study reveled the mechanism of the incompatibility of Gansui-Gancao and the compatibility of Gansuibanxia decoction in a metabonomic perspective and it's valuable for better understanding the "eighteen incompatible madicaments" of TCM theory.
Collapse
Affiliation(s)
- Yue Cui
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Roujia Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ye Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ting Liu
- The Precise Medicine Center, Key Laboratory of Environmental Pollution and Microecology, Liaoning Province, College of Basic Medical Sciences, Shenyang Medical College, No. 146, North Huanghe Street, Huanggu District, Shenyang 110034, China
| | - Fei Han
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Ruiyun Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Nan Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yunli Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| | - Zhiguo Yu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
8
|
Li A, Gao M, Zhao N, Li P, Zhu J, Li W. Acute liver failure associated with Fructus Psoraleae: a case report and literature review. Altern Ther Health Med 2019; 19:84. [PMID: 30975110 PMCID: PMC6458792 DOI: 10.1186/s12906-019-2493-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 03/27/2019] [Indexed: 12/21/2022]
Abstract
Background Fructus Psoraleae is the seed of Psoralea corylifolia Linn. Fructus Psoraleae has been shown to be effective in treating some skin diseases, such as vitiligo. As a main ingredient in five types of herbs in the Qubaibabuqi tablet formula, Fructus Psoraleae plays an important role in the treatment of vitiligo. Fructus Psoraleae has potential hepatotoxicity, thus Qubaibabuqi tablets also have potential liver toxicity. Case presentation A 53-year-old woman who was diagnosed with vitiligo in September 2017 was treated with Qubaibabuqi tablets. After approximately 7 months of treatment, the patient developed a severe, diffuse yellow staining of the skin and sclera in March 2018. On admission, she was diagnosed with acute cholestatic hepatitis associated with Fructus Psoraleae. Despite receiving active treatment, her condition rapidly deteriorated and she died 5 days later due to acute liver failure and multiple organ dysfunction. To the best of our knowledge, there are only six reported cases of liver injury associated with Fructus Psoraleae described in the English language literature; however, cases of acute liver failure associated with the use of Fructus Psoraleae have not been described. Conclusion As a main ingredient in the Qubaibabuqi tablet formula, Fructus Psoraleae has potential hepatotoxicity. This potentially fatal adverse effect should be considered when physicians prescribe Qubaibabuqi tablets.
Collapse
|