1
|
Tseng CEJ, Guma E, McDougle CJ, Hooker JM, Zürcher NR. Regional skull translocator protein elevation in autistic adults detected by PET-MRI. Brain Behav Immun 2025; 126:70-79. [PMID: 39904469 DOI: 10.1016/j.bbi.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025] Open
Abstract
Immune processes have been implicated in the pathophysiology of autism spectrum disorder (ASD). Brain borders, such as the skull, have recently been highlighted as sites where neuro-immune interactions occur with key consequences for brain immunity. Translocator protein (TSPO), a mitochondrial protein involved in immune functions, was measured in the skull using [11C]PBR28 positron emission tomography-magnetic resonance imaging (PET-MRI) in 38 autistic adults (26 males, 12 females) and 29 age-and sex-matched healthy controls (19 males, 10 females). [11C]PBR28 uptake relative to a pseudo-reference region assessed using standardized uptake value ratio (SUVR) revealed elevated TSPO in autistic adults in frontal and temporal skull. We did not observe an association between [11C]PBR28 uptake in total or regional skull areas and autism symptom severity. C-reactive protein levels were positively associated with [11C]PBR28 uptake in the total skull across participants. Lastly, [11C]PBR28 uptake in the total skull was stable across a 4-month period. This work indicates regional TSPO elevations in the skull in autistic adults, which may suggest immune involvement.
Collapse
Affiliation(s)
- Chieh-En Jane Tseng
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA
| | - Elisa Guma
- Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Christopher J McDougle
- Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Jacob M Hooker
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA
| | - Nicole R Zürcher
- Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging Charlestown MA USA; Harvard Medical School Boston MA USA; Lurie Center for Autism, Massachusetts General Hospital Lexington MA USA.
| |
Collapse
|
2
|
Kumari N, Adhikari A, Bhagat S, Mishra AK, Tiwari AK. Benzoxazolone-based FITC-conjugated fluorescent probe for locating in-vivo expression level of translocator protein (TSPO) during lung inflammation. Mol Divers 2025:10.1007/s11030-025-11192-9. [PMID: 40259117 DOI: 10.1007/s11030-025-11192-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/07/2025] [Indexed: 04/23/2025]
Abstract
Translocator protein 18 kDa (TSPO) has been a salient target for probing and monitoring inflammation in the central nervous system (CNS) and peripheral systems. Leveraging our previously developed, TSPO specific, modified acetamidobenzoxazolone derivative, the present work describes the synthesis and development of an optical probe for lung inflammation imaging: 2-(3,6-dihydroxy-9H-xanthen-9-yl)-5-(3-(3-(2-(methyl(phenyl)amino)-2-oxoethyl)-2-oxo-2,3-dihydrobenzo[d]oxazol-5-yl)thioureido)benzoic acid (FITC-MBP). The FITC-MBP is prepared through facile methodology by conjugating MBP to fluorophore dye FITC. Spectral properties remained equivalent to FITC dye with absorption and emission wavelength at 486 and 520 nm, respectively. Cellular uptake studies established overexpression of TSPO in lipopolysaccharide (LPS)-induced inflammation in H1299 lung cells. Reduced mean fluorescence intensity (MFI) during blocking experiments with PK11195 in flow cytometry suggests the specificity of the fluorescent probe towards TSPO. In-vivo optical imaging analysis on LPS-induced lung-inflamed balb/c mice revealed major sequestration of FITC-MBP in the lungs compared to control at 25 min post-injection that significantly decreased on pretreatment with PK11195 due to competitive binding to TSPO. On ground of these findings, we believe the novel fluorescent probe (FITC-MBP) might be utilized to visualize the overexpressed TSPO.
Collapse
Affiliation(s)
- Neelam Kumari
- Division of Cyclotron and Radiopharmaceutical Sciences (DCRS), Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi, 110054, India
- Department of Chemistry, Sri Venkateswara College, University of Delhi, Delhi, India
| | - Anupriya Adhikari
- Department of Chemistry, Graphic Era Hill University, Dehradun, Uttarakhand, India
| | - Sunita Bhagat
- Organic Synthesis Research Laboratory, Department of Chemistry, A.R.S.D. College, University of Delhi, New Delhi, India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences (DCRS), Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi, 110054, India
| | - Anjani K Tiwari
- Division of Cyclotron and Radiopharmaceutical Sciences (DCRS), Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research & Development Organization, Brig S K Mazumdar Road, Delhi, 110054, India.
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
3
|
Kelly B, Boudreau JE, Beyea S, Brewer K. Molecular imaging of viral pathogenesis and opportunities for the future. NPJ IMAGING 2025; 3:3. [PMID: 39872292 PMCID: PMC11761071 DOI: 10.1038/s44303-024-00056-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/24/2024] [Indexed: 01/30/2025]
Abstract
Molecular imaging is used in clinical and research settings. Since tools to study viral pathogenesis longitudinally and systemically are limited, molecular imaging is an attractive and largely unexplored tool. This review discusses molecular imaging probes and techniques for studying viruses, particularly those currently used in oncology that are applicable to virology. Expanding the repertoire of probes to better detect viral disease may make imaging even more valuable in (pre-)clinical settings.
Collapse
Affiliation(s)
- Brianna Kelly
- Biomedical MRI Research Laboratory (BMRL), IWK Health Centre, Halifax, NS Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
| | - Jeanette E. Boudreau
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
- Department of Pathology, Dalhousie University, Halifax, NS Canada
- Beatrice Hunter Cancer Research Institute (BHCRI), Halifax, NS Canada
| | - Steven Beyea
- IWK Health Centre, Halifax, NS Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS Canada
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, NS Canada
| | - Kimberly Brewer
- Biomedical MRI Research Laboratory (BMRL), IWK Health Centre, Halifax, NS Canada
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS Canada
- IWK Health Centre, Halifax, NS Canada
- Department of Diagnostic Radiology, Dalhousie University, Halifax, NS Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS Canada
- Department of Physics & Atmospheric Science, Dalhousie University, Halifax, NS Canada
| |
Collapse
|
4
|
Salerno S, Viviano M, Baglini E, Poggetti V, Giorgini D, Castagnoli J, Barresi E, Castellano S, Da Settimo F, Taliani S. TSPO Radioligands for Neuroinflammation: An Overview. Molecules 2024; 29:4212. [PMID: 39275061 PMCID: PMC11397380 DOI: 10.3390/molecules29174212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
The translocator protein (TSPO) is predominately localized on the outer mitochondrial membrane in steroidogenic cells. In the brain, TSPO expression, low under normal conditions, results upregulated in response to glial cell activation, that occurs in neuroinflammation. As a consequence, TSPO has been extensively studied as a biomarker of such conditions by means of TSPO-targeted radiotracers. Although [11C]-PK11195, the prototypical TSPO radioligand, is still widely used for in vivo studies, it is endowed with severe limitations, mainly low sensitivity and poor amenability to quantification. Consequently, several efforts have been focused on the design of new radiotracers for the in vivo imaging of TSPO. The present review will provide an outlook on the latest advances in TSPO radioligands for neuroinflammation imaging. The final goal is to pave the way for (radio)chemists in the future design and development of novel effective and sensitive radiopharmaceuticals targeting TSPO.
Collapse
Affiliation(s)
- Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Monica Viviano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Valeria Poggetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Doralice Giorgini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Jacopo Castagnoli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.V.); (D.G.); (S.C.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (S.S.); (E.B.); (V.P.); (J.C.); (S.T.)
| |
Collapse
|
5
|
Tan LY, Cunliffe G, Hogan MP, Yeo XY, Oh C, Jin B, Kang J, Park J, Kwon MS, Kim M, Jung S. Emergence of the brain-border immune niches and their contribution to the development of neurodegenerative diseases. Front Immunol 2024; 15:1380063. [PMID: 38863704 PMCID: PMC11165048 DOI: 10.3389/fimmu.2024.1380063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Historically, the central nervous system (CNS) was regarded as 'immune-privileged', possessing its own distinct immune cell population. This immune privilege was thought to be established by a tight blood-brain barrier (BBB) and blood-cerebrospinal-fluid barrier (BCSFB), which prevented the crossing of peripheral immune cells and their secreted factors into the CNS parenchyma. However, recent studies have revealed the presence of peripheral immune cells in proximity to various brain-border niches such as the choroid plexus, cranial bone marrow (CBM), meninges, and perivascular spaces. Furthermore, emerging evidence suggests that peripheral immune cells may be able to infiltrate the brain through these sites and play significant roles in driving neuronal cell death and pathology progression in neurodegenerative disease. Thus, in this review, we explore how the brain-border immune niches may contribute to the pathogenesis of neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). We then discuss several emerging options for harnessing the neuroimmune potential of these niches to improve the prognosis and treatment of these debilitative disorders using novel insights from recent studies.
Collapse
Affiliation(s)
- Li Yang Tan
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace Cunliffe
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Michael Patrick Hogan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chansik Oh
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Bohwan Jin
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junmo Kang
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| | - Junho Park
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Biomedical Science, CHA University School of Medicine, Seongnam, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
6
|
Markousis-Mavrogenis G, Baumhove L, Al-Mubarak AA, Aboumsallem JP, Bomer N, Voors AA, van der Meer P. Immunomodulation and immunopharmacology in heart failure. Nat Rev Cardiol 2024; 21:119-149. [PMID: 37709934 DOI: 10.1038/s41569-023-00919-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/16/2023]
Abstract
The immune system is intimately involved in the pathophysiology of heart failure. However, it is currently underused as a therapeutic target in the clinical setting. Moreover, the development of novel immunomodulatory therapies and their investigation for the treatment of patients with heart failure are hampered by the fact that currently used, evidence-based treatments for heart failure exert multiple immunomodulatory effects. In this Review, we discuss current knowledge on how evidence-based treatments for heart failure affect the immune system in addition to their primary mechanism of action, both to inform practising physicians about these pleiotropic actions and to create a framework for the development and application of future immunomodulatory therapies. We also delineate which subpopulations of patients with heart failure might benefit from immunomodulatory treatments. Furthermore, we summarize completed and ongoing clinical trials that assess immunomodulatory treatments in heart failure and present several therapeutic targets that could be investigated in the future. Lastly, we provide future directions to leverage the immunomodulatory potential of existing treatments and to foster the investigation of novel immunomodulatory therapeutics.
Collapse
Affiliation(s)
- George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lukas Baumhove
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ali A Al-Mubarak
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Cardiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
7
|
Uzuegbunam BC, Rummel C, Librizzi D, Culmsee C, Hooshyar Yousefi B. Radiotracers for Imaging of Inflammatory Biomarkers TSPO and COX-2 in the Brain and in the Periphery. Int J Mol Sci 2023; 24:17419. [PMID: 38139248 PMCID: PMC10743508 DOI: 10.3390/ijms242417419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Inflammation involves the activation of innate immune cells and is believed to play an important role in the development and progression of both infectious and non-infectious diseases such as neurodegeneration, autoimmune diseases, pulmonary and cancer. Inflammation in the brain is marked by the upregulation of translocator protein (TSPO) in microglia. High TSPO levels are also found, for example, in macrophages in cases of rheumatoid arthritis and in malignant tumor cells compared to their relatively low physiological expression. The same applies for cyclooxgenase-2 (COX-2), which is constitutively expressed in the kidney, brain, thymus and gastrointestinal tract, but induced in microglia, macrophages and synoviocytes during inflammation. This puts TSPO and COX-2 in the spotlight as important targets for the diagnosis of inflammation. Imaging modalities, such as positron emission tomography and single-photon emission tomography, can be used to localize inflammatory processes and to track their progression over time. They could also enable the monitoring of the efficacy of therapy and predict its outcome. This review focuses on the current development of PET and SPECT tracers, not only for the detection of neuroinflammation, but also for emerging diagnostic measures in infectious and other non-infectious diseases such as rheumatic arthritis, cancer, cardiac inflammation and in lung diseases.
Collapse
Affiliation(s)
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, 35392 Gießen, Germany;
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
| | - Damiano Librizzi
- Department of Nuclear Medicine, Philipps University of Marburg, 35043 Marburg, Germany;
| | - Carsten Culmsee
- Center for Mind Brain and Behavior, Universities Giessen and Marburg, 35043 Marburg, Germany;
- Institute of Pharmacology and Clinical Pharmacy, Philipps University of Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
8
|
Kolabas ZI, Kuemmerle LB, Perneczky R, Förstera B, Ulukaya S, Ali M, Kapoor S, Bartos LM, Büttner M, Caliskan OS, Rong Z, Mai H, Höher L, Jeridi D, Molbay M, Khalin I, Deligiannis IK, Negwer M, Roberts K, Simats A, Carofiglio O, Todorov MI, Horvath I, Ozturk F, Hummel S, Biechele G, Zatcepin A, Unterrainer M, Gnörich J, Roodselaar J, Shrouder J, Khosravani P, Tast B, Richter L, Díaz-Marugán L, Kaltenecker D, Lux L, Chen Y, Zhao S, Rauchmann BS, Sterr M, Kunze I, Stanic K, Kan VWY, Besson-Girard S, Katzdobler S, Palleis C, Schädler J, Paetzold JC, Liebscher S, Hauser AE, Gokce O, Lickert H, Steinke H, Benakis C, Braun C, Martinez-Jimenez CP, Buerger K, Albert NL, Höglinger G, Levin J, Haass C, Kopczak A, Dichgans M, Havla J, Kümpfel T, Kerschensteiner M, Schifferer M, Simons M, Liesz A, Krahmer N, Bayraktar OA, Franzmeier N, Plesnila N, Erener S, Puelles VG, Delbridge C, Bhatia HS, Hellal F, Elsner M, Bechmann I, Ondruschka B, Brendel M, Theis FJ, Erturk A. Distinct molecular profiles of skull bone marrow in health and neurological disorders. Cell 2023; 186:3706-3725.e29. [PMID: 37562402 PMCID: PMC10443631 DOI: 10.1016/j.cell.2023.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/24/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
The bone marrow in the skull is important for shaping immune responses in the brain and meninges, but its molecular makeup among bones and relevance in human diseases remain unclear. Here, we show that the mouse skull has the most distinct transcriptomic profile compared with other bones in states of health and injury, characterized by a late-stage neutrophil phenotype. In humans, proteome analysis reveals that the skull marrow is the most distinct, with differentially expressed neutrophil-related pathways and a unique synaptic protein signature. 3D imaging demonstrates the structural and cellular details of human skull-meninges connections (SMCs) compared with veins. Last, using translocator protein positron emission tomography (TSPO-PET) imaging, we show that the skull bone marrow reflects inflammatory brain responses with a disease-specific spatial distribution in patients with various neurological disorders. The unique molecular profile and anatomical and functional connections of the skull show its potential as a site for diagnosing, monitoring, and treating brain diseases.
Collapse
Affiliation(s)
- Zeynep Ilgin Kolabas
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Louis B Kuemmerle
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Robert Perneczky
- Division of Mental Health in Older Adults and Alzheimer Therapy and Research Center, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, 80336 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Benjamin Förstera
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Selin Ulukaya
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Mayar Ali
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Saketh Kapoor
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Laura M Bartos
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maren Büttner
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ozum Sehnaz Caliskan
- Institute for Diabetes and Obesity, Helmholtz Center Munich and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Zhouyi Rong
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Munich Medical Research School (MMRS), 80336 Munich, Germany
| | - Hongcheng Mai
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Munich Medical Research School (MMRS), 80336 Munich, Germany
| | - Luciano Höher
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Denise Jeridi
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Muge Molbay
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Igor Khalin
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | | | - Moritz Negwer
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | | | - Alba Simats
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Olga Carofiglio
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Mihail I Todorov
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Izabela Horvath
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; School of Computation, Information and Technology (CIT), TUM, Boltzmannstr. 3, 85748 Garching, Germany
| | - Furkan Ozturk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Selina Hummel
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Artem Zatcepin
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jay Roodselaar
- Charité - Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Joshua Shrouder
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Pardis Khosravani
- Biomedical Center (BMC), Core Facility Flow Cytometry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Benjamin Tast
- Biomedical Center (BMC), Core Facility Flow Cytometry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Lisa Richter
- Biomedical Center (BMC), Core Facility Flow Cytometry, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Laura Díaz-Marugán
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Doris Kaltenecker
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Diabetes and Cancer, Helmholtz Munich, Munich, Germany
| | - Laurin Lux
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Ying Chen
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Shan Zhao
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Division of Mental Health in Older Adults and Alzheimer Therapy and Research Center, Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University Munich, 80336 Munich, Germany; Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK; Institute of Neuroradiology, University Hospital LMU, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ines Kunze
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karen Stanic
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Vanessa W Y Kan
- Institute of Clinical Neuroimmunology, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany
| | - Simon Besson-Girard
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Munich, Germany
| | - Sabrina Katzdobler
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Carla Palleis
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Schädler
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes C Paetzold
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Department of Computing, Imperial College London, London, UK
| | - Sabine Liebscher
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Clinical Neuroimmunology, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany; Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians Universität Munich, Munich, Germany
| | - Anja E Hauser
- Charité - Universitätsmedizin Berlin, Department of Rheumatology and Clinical Immunology, Berlin, Germany; Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Ozgun Gokce
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, Neuherberg, Germany; TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Hanno Steinke
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany
| | - Corinne Benakis
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Christian Braun
- Institute of Legal Medicine, Faculty of Medicine, LMU Munich, Germany
| | - Celia P Martinez-Jimenez
- Helmholtz Pioneer Campus (HPC), Helmholtz Munich, Neuherberg, Germany; TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Kopczak
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany; Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians Universität Munich, Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany; Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians Universität Munich, Munich, Germany
| | - Martin Kerschensteiner
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Clinical Neuroimmunology, University Hospital Munich, Ludwig-Maximilians University Munich, Munich, Germany; Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians Universität Munich, Munich, Germany
| | - Martina Schifferer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Arthur Liesz
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Natalie Krahmer
- Institute for Diabetes and Obesity, Helmholtz Center Munich and German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | | | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Suheda Erener
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Claire Delbridge
- Institute of Pathology, Department of Neuropathology, Technical University Munich, TUM School of Medicine, Munich, Germany
| | - Harsharan Singh Bhatia
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Farida Hellal
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Elsner
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, 04109 Leipzig, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Brendel
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Mathematics, Technische Universität München, Garching bei München, Germany
| | - Ali Erturk
- Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Center, Neuherberg, Munich, Germany; Institute for Stroke and Dementia Research, LMU University Hospital, Ludwig-Maximilians University Munich, Munich, Germany; Graduate School of Systemic Neurosciences (GSN), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
9
|
Tang JM, McClennan A, Liu L, Hadway J, Ronald JA, Hicks JW, Hoffman L, Anazodo UC. A Protocol for Simultaneous In Vivo Imaging of Cardiac and Neuroinflammation in Dystrophin-Deficient MDX Mice Using [ 18F]FEPPA PET. Int J Mol Sci 2023; 24:ijms24087522. [PMID: 37108685 PMCID: PMC10144317 DOI: 10.3390/ijms24087522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder caused by dystrophin loss-notably within muscles and the central neurons system. DMD presents as cognitive weakness, progressive skeletal and cardiac muscle degeneration until pre-mature death from cardiac or respiratory failure. Innovative therapies have improved life expectancy; however, this is accompanied by increased late-onset heart failure and emergent cognitive degeneration. Thus, better assessment of dystrophic heart and brain pathophysiology is needed. Chronic inflammation is strongly associated with skeletal and cardiac muscle degeneration; however, neuroinflammation's role is largely unknown in DMD despite being prevalent in other neurodegenerative diseases. Here, we present an inflammatory marker translocator protein (TSPO) positron emission tomography (PET) protocol for in vivo concomitant assessment of immune cell response in hearts and brains of a dystrophin-deficient mouse model [mdx:utrn(+/-)]. Preliminary analysis of whole-body PET imaging using the TSPO radiotracer, [18F]FEPPA in four mdx:utrn(+/-) and six wildtype mice are presented with ex vivo TSPO-immunofluorescence tissue staining. The mdx:utrn(+/-) mice showed significant elevations in heart and brain [18F]FEPPA activity, which correlated with increased ex vivo fluorescence intensity, highlighting the potential of TSPO-PET to simultaneously assess presence of cardiac and neuroinflammation in dystrophic heart and brain, as well as in several organs within a DMD model.
Collapse
Affiliation(s)
- Joanne M Tang
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Andrew McClennan
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Linshan Liu
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Jennifer Hadway
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - John A Ronald
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Robarts Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Justin W Hicks
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
| | - Lisa Hoffman
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Department of Anatomy and Cell Biology, Western University, London, ON N6A 3K7, Canada
| | - Udunna C Anazodo
- Department of Medical Biophysics, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, London, ON N6A 4V2, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
10
|
Martinez-Orengo N, Tahmazian S, Lai J, Wang Z, Sinharay S, Schreiber-Stainthorp W, Basuli F, Maric D, Reid W, Shah S, Hammoud DA. Assessing organ-level immunoreactivity in a rat model of sepsis using TSPO PET imaging. Front Immunol 2022; 13:1010263. [PMID: 36439175 PMCID: PMC9685400 DOI: 10.3389/fimmu.2022.1010263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
There is current need for new approaches to assess/measure organ-level immunoreactivity and ensuing dysfunction in systemic inflammatory response syndrome (SIRS) and sepsis, in order to protect or recover organ function. Using a rat model of systemic sterile inflammatory shock (intravenous LPS administration), we performed PET imaging with a translocator protein (TSPO) tracer, [18F]DPA-714, as a biomarker for reactive immunoreactive changes in the brain and peripheral organs. In vivo dynamic PET/CT scans showed increased [18F]DPA-714 binding in the brain, lungs, liver and bone marrow, 4 hours after LPS injection. Post-LPS mean standard uptake values (SUVmean) at equilibrium were significantly higher in those organs compared to baseline. Changes in spleen [18F]DPA-714 binding were variable but generally decreased after LPS. SUVmean values in all organs, except the spleen, positively correlated with several serum cytokines/chemokines. In vitro measures of TSPO expression and immunofluorescent staining validated the imaging results. Noninvasive molecular imaging with [18F]DPA-714 PET in a rat model of systemic sterile inflammatory shock, along with in vitro measures of TSPO expression, showed brain, liver and lung inflammation, spleen monocytic efflux/lymphocytic activation and suggested increased bone marrow hematopoiesis. TSPO PET imaging can potentially be used to quantify SIRS and sepsis-associated organ-level immunoreactivity and assess the effectiveness of therapeutic and preventative approaches for associated organ failures, in vivo.
Collapse
Affiliation(s)
- Neysha Martinez-Orengo
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sarine Tahmazian
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Jianhao Lai
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Zeping Wang
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - William Schreiber-Stainthorp
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - William Reid
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Dima A. Hammoud,
| |
Collapse
|
11
|
Singh P, Adhikari A, Singh D, Gond C, Tiwari AK. The 18-kDa Translocator Protein PET Tracers as a Diagnostic Marker for Neuroinflammation: Development and Current Standing. ACS OMEGA 2022; 7:14412-14429. [PMID: 35557664 PMCID: PMC9089361 DOI: 10.1021/acsomega.2c00588] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 05/13/2023]
Abstract
Translocator protein (TSPO, 18 kDa) is an evolutionary, well-preserved, and tryptophan-rich 169-amino-acid protein which localizes on the contact sites between the outer and inner mitochondrial membranes of steroid-synthesizing cells. This mitochondrial protein is implicated in an extensive range of cellular activities, including steroid synthesis, cholesterol transport, apoptosis, mitochondrial respiration, and cell proliferation. The upregulation of TSPO is well documented in diverse disease conditions including neuroinflammation, cancer, brain injury, and inflammation in peripheral organs. On the basis of these outcomes, TSPO has been assumed to be a fascinating subcellular target for early stage imaging of the diseased state and for therapeutic purposes. The main outline of this Review is to give an update on dealing with the advances made in TSPO PET tracers for neuroinflammation, synchronously emphasizing the approaches applied for the design and advancement of new tracers with reference to their structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Priya Singh
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Anupriya Adhikari
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Deepika Singh
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Chandraprakash Gond
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
| | - Anjani Kumar Tiwari
- Department
of Chemistry, Babasaheb Bhimrao Ambedkar
University (A Central University), Lucknow, 226025, Uttar Pradesh, India
- Address:
Department of Chemistry,
Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh. Tel.: +91-7503381343. Fax: +91-522-2440821. E-mail:
| |
Collapse
|
12
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Shah S, Sinharay S, Patel R, Solomon J, Lee JH, Schreiber-Stainthorp W, Basuli F, Zhang X, Hagen KR, Reeder R, Wakim P, Huzella LM, Maric D, Johnson RF, Hammoud DA. PET imaging of TSPO expression in immune cells can assess organ-level pathophysiology in high-consequence viral infections. Proc Natl Acad Sci U S A 2022; 119:e2110846119. [PMID: 35385353 PMCID: PMC9169664 DOI: 10.1073/pnas.2110846119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/10/2022] [Indexed: 01/08/2023] Open
Abstract
Ebola virus (EBOV) disease is characterized by lymphopenia, breach in vascular integrity, cytokine storm, and multiorgan failure. The pathophysiology of organ involvement, however, is incompletely understood. Using [18F]-DPA-714 positron emission tomography (PET) imaging targeting the translocator protein (TSPO), an immune cell marker, we sought to characterize the progression of EBOV-associated organ-level pathophysiology in the EBOV Rhesus macaque model. Dynamic [18F]-DPA-714 PET/computed tomography imaging was performed longitudinally at baseline and at multiple time points after EBOV inoculation, and distribution volumes (Vt) were calculated as a measure of peripheral TSPO binding. Using a mixed-effect linear regression model, spleen and lung Vt decreased, while the bone marrow Vt increased over time after infection. No clear trend was found for liver Vt. Multiple plasma cytokines correlated negatively with lung/spleen Vt and positively with bone marrow Vt. Multiplex immunofluorescence staining in spleen and lung sections confirmed organ-level lymphoid and monocytic loss/apoptosis, thus validating the imaging results. Our findings are consistent with EBOV-induced progressive monocytic and lymphocytic depletion in the spleen, rather than immune activation, as well as depletion of alveolar macrophages in the lungs, with inefficient reactive neutrophilic activation. Increased bone marrow Vt, on the other hand, suggests hematopoietic activation in response to systemic immune cell depletion and leukocytosis and could have prognostic relevance. In vivo PET imaging provided better understanding of organ-level pathophysiology during EBOV infection. A similar approach can be used to delineate the pathophysiology of other systemic infections and to evaluate the effectiveness of newly developed treatment and vaccine strategies.
Collapse
Affiliation(s)
- Swati Shah
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| | - Sanhita Sinharay
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| | - Reema Patel
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| | - Jeffrey Solomon
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Ji Hyun Lee
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | | | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20824
| | - Xiang Zhang
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20824
| | - Katie R. Hagen
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Rebecca Reeder
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Paul Wakim
- Biostatistics and Clinical Epidemiology Service, Clinical Center, NIH, Bethesda, MD 20892
| | - Louis M. Huzella
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892
| | - Reed F. Johnson
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, NIH, Frederick, MD 21702
| | - Dima A. Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, MD 20892
| |
Collapse
|
14
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
15
|
Tournier BB, Tsartsalis S, Ceyzériat K, Fraser BH, Grégoire MC, Kövari E, Millet P. Astrocytic TSPO Upregulation Appears Before Microglial TSPO in Alzheimer's Disease. J Alzheimers Dis 2021; 77:1043-1056. [PMID: 32804124 PMCID: PMC7683091 DOI: 10.3233/jad-200136] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background: In vivo PET/SPECT imaging of neuroinflammation is primarily based on the estimation of the 18 kDa-translocator-protein (TSPO). However, TSPO is expressed by different cell types which complicates the interpretation. Objective: The present study evaluates the cellular origin of TSPO alterations in Alzheimer’s disease (AD). Methods: The TSPO cell origin was evaluated by combining radioactive imaging approaches using the TSPO radiotracer [125I]CLINDE and fluorescence-activated cell sorting, in a rat model of AD (TgF344-AD) and in AD subjects. Results: In the hippocampus of TgF344-AD rats, TSPO overexpression not only concerns glial cells but the increase is visible at 12 and 24 months in astrocytes and only at 24 months in microglia. In the temporal cortex of AD subjects, TSPO upregulation involved only glial cells. However, the mechanism of this upregulation appears different with an increase in the number of TSPO binding sites per cell without cell proliferation in the rat, and a microglial cell population expansion with a constant number of binding sites per cell in human AD. Conclusion: These data indicate an earlier astrocyte intervention than microglia and that TSPO in AD probably is an exclusive marker of glial activity without interference from other TSPO-expressing cells. This observation indicates that the interpretation of TSPO imaging depends on the stage of the pathology, and highlights the particular role of astrocytes.
Collapse
Affiliation(s)
- Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Stergios Tsartsalis
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland
| | - Kelly Ceyzériat
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland.,Division of Nuclear medicine, University Hospitals of Geneva, Switzerland
| | - Ben H Fraser
- ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Sydney, NSW, Australia
| | - Marie-Claude Grégoire
- ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Sydney, NSW, Australia
| | - Enikö Kövari
- Division of Geriatric Psychiatry, Department of Mental Health and Psychiatry, University Hospitals of Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Switzerland
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Switzerland.,Department of Psychiatry, University of Geneva, Switzerland
| |
Collapse
|
16
|
Proteomics of Multiple Sclerosis: Inherent Issues in Defining the Pathoetiology and Identifying (Early) Biomarkers. Int J Mol Sci 2021; 22:ijms22147377. [PMID: 34298997 PMCID: PMC8306353 DOI: 10.3390/ijms22147377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple Sclerosis (MS) is a demyelinating disease of the human central nervous system having an unconfirmed pathoetiology. Although animal models are used to mimic the pathology and clinical symptoms, no single model successfully replicates the full complexity of MS from its initial clinical identification through disease progression. Most importantly, a lack of preclinical biomarkers is hampering the earliest possible diagnosis and treatment. Notably, the development of rationally targeted therapeutics enabling pre-emptive treatment to halt the disease is also delayed without such biomarkers. Using literature mining and bioinformatic analyses, this review assessed the available proteomic studies of MS patients and animal models to discern (1) whether the models effectively mimic MS; and (2) whether reasonable biomarker candidates have been identified. The implication and necessity of assessing proteoforms and the critical importance of this to identifying rational biomarkers are discussed. Moreover, the challenges of using different proteomic analytical approaches and biological samples are also addressed.
Collapse
|
17
|
Prabhakaran J, Molotkov A, Mintz A, Mann JJ. Progress in PET Imaging of Neuroinflammation Targeting COX-2 Enzyme. Molecules 2021; 26:molecules26113208. [PMID: 34071951 PMCID: PMC8198977 DOI: 10.3390/molecules26113208] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Neuroinflammation and cyclooxygenase-2 (COX-2) upregulation are associated with the pathogenesis of degenerative brain diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), epilepsy, and a response to traumatic brain injury (TBI) or stroke. COX-2 is also induced in acute pain, depression, schizophrenia, various cancers, arthritis and in acute allograft rejection. Positron emission tomography (PET) imaging allows for the direct measurement of in vivo COX-2 upregulation and thereby enables disease staging, therapy evaluation and aid quantifying target occupancy of novel nonsteroidal anti-inflammatory drugs or NSAIDs. Thus far, no clinically useful radioligand is established for monitoring COX-2 induction in brain diseases due to the delay in identifying qualified COX-2-selective inhibitors entering the brain. This review examines radiolabeled COX-2 inhibitors reported in the past decade and identifies the most promising radioligands for development as clinically useful PET radioligands. Among the radioligands reported so far, the three tracers that show potential for clinical translation are, [11CTMI], [11C]MC1 and [18F]MTP. These radioligands demonstrated BBB permeablity and in vivo binding to constitutive COX-2 in the brain or induced COX-2 during neuroinflammation.
Collapse
Affiliation(s)
- Jaya Prabhakaran
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA;
- Correspondence:
| | - Andrei Molotkov
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA; (A.M.); (A.M.)
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA; (A.M.); (A.M.)
- Area Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY 10032, USA
| | - J. John Mann
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, USA;
- Area Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
18
|
Wongso H, Yamasaki T, Kumata K, Ono M, Higuchi M, Zhang MR, Fulham MJ, Katsifis A, Keller PA. Design, Synthesis, and Biological Evaluation of Novel Fluorescent Probes Targeting the 18-kDa Translocator Protein. ChemMedChem 2021; 16:1902-1916. [PMID: 33631047 DOI: 10.1002/cmdc.202000984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/22/2021] [Indexed: 12/20/2022]
Abstract
A series of fluorescent probes from the 6-chloro-2-phenylimidazo[1,2-a]pyridine-3-yl acetamides ligands featuring the 7-nitro-2-oxa-1,3-diazol-4-yl (NBD) moiety has been synthesized and biologically evaluated for their fluorescence properties and for their binding affinity to the 18-kDa translocator protein (TSPO). Spectroscopic studies including UV/Vis absorption and fluorescence measurements showed that the synthesized fluorescent probes exhibit favorable spectroscopic properties, especially in nonpolar environments. In vitro fluorescence staining in brain sections from lipopolysaccharide (LPS)-injected mice revealed partial colocalization of the probes with the TSPO. The TSPO binding affinity of the probes was measured on crude mitochondrial fractions separated from rat brain homogenates in a [11 C]PK11195 radioligand binding assay. All the new fluorescent probes demonstrated moderate to high binding affinity to the TSPO, with affinity (Ki ) values ranging from 0.58 nM to 3.28 μM. Taking these data together, we propose that the new fluorescent probes could be used to visualize the TSPO.
Collapse
Affiliation(s)
- Hendris Wongso
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia.,Center for Applied Nuclear Science and Technology, National Nuclear Energy Agency, Bandung, 40132, Indonesia
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Katsushi Kumata
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging Research, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, 263-8555, Japan
| | - Michael J Fulham
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Andrew Katsifis
- Department of PET and Nuclear Medicine, Royal Prince Alfred Hospital, Camperdown, NSW, 2050, Australia
| | - Paul A Keller
- School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
19
|
Chang CW, Chiu CH, Lin MH, Wu HM, Yu TH, Wang PY, Kuo YY, Huang YY, Shiue CY, Huang WS, Yeh SHH. GMP-compliant fully automated radiosynthesis of [ 18F]FEPPA for PET/MRI imaging of regional brain TSPO expression. EJNMMI Res 2021; 11:26. [PMID: 33725191 PMCID: PMC7966678 DOI: 10.1186/s13550-021-00768-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/03/2021] [Indexed: 12/02/2022] Open
Abstract
Background Expression of translocator protein (TSPO) on the outer mitochondrial membrane of activated microglia is strongly associated with neuroinflammation. The second-generation PET ligand [18F]FEPPA specifically binds TSPO to enable in vivo visualization and quantification of neuroinflammation. We optimized a fully automated radiosynthesis method and evaluated the utility of [18F]FEPPA, the second-generation PET ligand specifically binds TSPO, in a mouse model of systemic LPS challenge to detect TSPO-associated signals of central and peripheral inflammation. In vivo dynamic PET/MR imaging was performed in LPS-induced and control mice after [18F]FEPPA administration. The relationship between the [18F]FEPPA signal and the dose of LPS was assessed. The cytokine levels (i.e., TNF-α, Il-1β, Il-6) in LPS-induced mice were measured by RT-PCR. Standard uptake value (SUV), total volume of distribution (VT) and area under the curve (AUC) were determined based on the metabolite-uncorrected plasma input function. Western blotting and immunostaining were used to measure TSPO expression in the brain. Results The fully automated [18F]FEPPA radiosynthesis produced an uncorrected radiochemical yield of 30 ± 2% within 80 min, with a radiochemical purity greater than 99% and specific activity of 148.9‒216.8 GBq/µmol. Significant differences were observed in the brain after [18F]FEPPA administration: SUV, VT and AUC were 1.61 ± 0.1, 1.25 ± 0.12 and 1.58 ± 0.09-fold higher in LPS-injected mice than controls. TNF-α, Il-1β and Il-6 mRNA levels were also elevated in the brains of LPS-injected mice. Western blotting revealed TSPO (p < 0.05) and Iba-1 (p < 0.01) were upregulated in the brain after LPS administration. In LPS-injected mice, TSPO immunoactivity colocalized with Iba-1 in the cerebrum and TSPO was significantly overexpressed in the hippocampus and cerebellum. The peripheral organs (heart, lung) of LPS-injected mice had higher [18F]FEPPA signal-to-noise ratios than control mice. Conclusions Based on the current data on ligand specificity and selectivity in central tissues using 7 T PET/MR imaging, we demonstrate that [18F]FEPPA accumulations significant increased in the specific brain regions of systemic LPS-induced neuroinflammation (5 mg/kg). Future investigations are needed to determine the sensitivity of [18F]FEPPA as a biomarker of neuroinflammation as well as the correlation between the PET signal intensity and the expression levels of TSPO. Supplementary Information The online version contains supplementary material available at 10.1186/s13550-021-00768-9.
Collapse
Affiliation(s)
- Chi-Wei Chang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Imaging and Radiological Technology, The Institute of Radiological Sciences, Tzu Chi University of Science and Technology, Hualien City, Taiwan.,Department of Biomedical Engineering and Environmental Sciences, National Tsinghua University, Hsinchu, Taiwan
| | - Chuang-Hsin Chiu
- Department of Nuclear Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Ming-Hsien Lin
- Department of Nuclear Medicine, Cheng Hsin General Hospital, Taipei, Taiwan.,Department of Nuclear Medicine, Camillian Saint Mary's Hospital Luodong, Yilan, Taiwan
| | - Hung-Ming Wu
- Department of Neurology, Changhua Christian Hospital, Changhua, Taiwan
| | - Tsung-Hsun Yu
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Pao-Yeh Wang
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Yu-Yeh Kuo
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Ya-Yao Huang
- PET Center, Department of Nuclear Medicine, National Taiwan University Hospital, Taipei, 100, Taiwan.,Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
| | - Chyng-Yann Shiue
- Molecular Imaging Center, National Taiwan University, Taipei, Taiwan.,PET Center, Department of Nuclear Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Wen-Sheng Huang
- Department of Nuclear Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Nuclear Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Skye Hsin-Hsien Yeh
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
20
|
Mou T, Tian J, Tian Y, Yun M, Li J, Dong W, Lu X, Zhu Z, Mi H, Zhang X, Li X. Automated synthesis and preliminary evaluation of [ 18F]FDPA for cardiac inflammation imaging in rats after myocardial infarction. Sci Rep 2020; 10:18685. [PMID: 33122775 PMCID: PMC7596090 DOI: 10.1038/s41598-020-75705-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/19/2020] [Indexed: 11/26/2022] Open
Abstract
A translocator protein 18 kDa targeted radiotracer, N,N-diethyl-2-(2-(4-[18F]fluorophenyl)-5,7-dimethylpyrazolo[1,5-a] pyrimidin-3-yl) acetamide ([18F]FDPA), was automated synthetized and evaluated for cardiac inflammation imaging. Various reaction conditions for an automated synthesis were systematically optimized. MicroPET/CT imaging were performed on normal rats and rats with myocardial infarction (MI). Normalized SUV ratios of [18F]FDPA to [13N]NH3 (NSRs) in different regions were calculated to normalize the uptake of [18F]FDPA to perfusion. The amount of TBAOMs and the volume/proportion of water were crucial for synthesis. After optimization, the total synthesis time was 68 min. The non-decay corrected radiochemical yields (RCYs) and molar activities were 19.9 ± 1.7% and 169.7 ± 46.5 GBq/μmol, respectively. In normal rats, [18F]FDPA showed a high and stable cardiac uptake and fast clearance from other organs. In MI rats, NSRs in the peri-infarct and infarct regions, which were infiltrated with massive inflammatory cells revealed by pathology, were higher than that in the remote region (1.20 ± 0.01 and 1.08 ± 0.10 vs. 0.89 ± 0.05, respectively). [18F]FDPA was automated synthesized with high RCYs and molar activities. It showed a high uptake in inflammation regions and offered a wide time window for cardiac imaging, indicating it could be a potential cardiac inflammation imaging agent.
Collapse
Affiliation(s)
- Tiantian Mou
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Jing Tian
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Yi Tian
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Mingkai Yun
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Junqi Li
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Wei Dong
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xia Lu
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Ziwei Zhu
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Hongzhi Mi
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| | - Xiaoli Zhang
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| | - Xiang Li
- Department of Nuclear Medicine, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Raman F, Grandhi S, Murchison CF, Kennedy RE, Landau S, Roberson ED, McConathy J. Biomarker Localization, Analysis, Visualization, Extraction, and Registration (BLAzER) Methodology for Research and Clinical Brain PET Applications. J Alzheimers Dis 2020; 70:1241-1257. [PMID: 31322571 DOI: 10.3233/jad-190329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Tools for efficient evaluation of amyloid- and tau-PET images are needed in both clinical and research settings. OBJECTIVE This study was designed to validate a semi-automated image analysis methodology, called Biomarker Localization, Analysis, Visualization, Extraction, and Registration (BLAzER). We tested BLAzER using two different segmentation platforms, FreeSurfer (FS) and Neuroreader (NR), for regional brain PET quantification in participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. METHODS 127 amyloid-PET and 55 tau-PET studies with volumetric MRIs were obtained from ADNI. The BLAzER methodology utilizes segmentation of MR images by FS or NR, then visualizes and quantifies regional brain PET data using FDA-cleared software (MIM), enabling quality control to ensure optimal registration and to detect segmentation errors. RESULTS BLAzER analysis required ∼5 min plus segmentation time. BLAzER using FS segmentation showed strong agreement with ADNI for global amyloid-PET standardized uptake value ratios (SUVRs) (r = 0.9922, p < 0.001) and regional tau-PET SUVRs across all Braak staging regions (r > 0.97, p < 0.001) with high inter-operator reproducibility (ICC > 0.97) and nearly identical dichotomization as amyloid-positive or -negative (2 discrepant cases out of 127). Comparing FS versus NR segmentation with BLAzER, global SUVRs were strongly correlated for amyloid-PET (r = 0.9841, p < 0.001), but were systematically higher (4% on average) with NR, likely due to more inclusion of white matter with NR-defined regions. CONCLUSIONS BLAzER provides an efficient methodology for regional brain PET quantification. FDA-cleared components and visualization of registration reduce barriers between research and clinical applications.
Collapse
Affiliation(s)
- Fabio Raman
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sameera Grandhi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles F Murchison
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard E Kennedy
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan Landau
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
22
|
Ho IHT, Chan MTV, Wu WKK, Liu X. Spinal microglia-neuron interactions in chronic pain. J Leukoc Biol 2020; 108:1575-1592. [PMID: 32573822 DOI: 10.1002/jlb.3mr0520-695r] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/23/2020] [Indexed: 12/15/2022] Open
Abstract
Current deficiency in our understanding of acute-to-chronic pain transition remains a hurdle for developing effective treatments against chronic pain. Whereas neurocentric mechanisms alone are insufficient to provide satisfactory explanation for such transition, neuro-immune crosstalk has attracted attention in recent pain research. In contrast to brain microglia, spinal microglia are activated immediately in various pain states. The fast-responsive enrichment and activation of spinal microglia among different pain conditions have highlighted the crucial role of neuroinflammation caused by microglia-neuron crosstalk in pain initiation. Recent studies have revealed spinal microglia-neuron interactions are also involved in chronic pain maintenance, albeit, with different anatomic distribution, cellular and molecular mechanisms, and biologic functions. Delineating the exact temporal discrepancies of spinal microglia distribution and functions along acute-to-chronic pain transition may provide additional mechanistic insights for drug development to prevent deterioration of acute pain into the chronic state. This narrative review summerizes the longitudinal alterations of spinal microglia-neuron interactions in the initiation of pain hypersensitivity, acute-to-chronic pain progression, and chronic pain maintenance, followed by an overview of current clinical translation of preclinical studies on spinal microglia. This review highlights the crucial role of the interaction between spinal microglia and neighboring neurons in the initiation and maintenance of pain hypersensitivity, in relation to the release of cytokines, chemokines, and neuroactive substances, as well as the modulation of synaptic plasticity. Further exploration of the uncharted functions of spinal microglia-neuron crosstalk may lead to the design of novel drugs for preventing acute-to-chronic pain transition.
Collapse
Affiliation(s)
- Idy H T Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong SAR.,Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
23
|
Heo GS, Sultan D, Liu Y. Current and novel radiopharmaceuticals for imaging cardiovascular inflammation. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:4-20. [PMID: 32077667 DOI: 10.23736/s1824-4785.20.03230-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide despite advances in diagnostic technologies and treatment strategies. The underlying cause of most CVD is atherosclerosis, a chronic disease driven by inflammatory reactions. Atherosclerotic plaque rupture could cause arterial occlusion leading to ischemic tissue injuries such as myocardial infarction (MI) and stroke. Clinically, most imaging modalities are based on anatomy and provide limited information about the on-going molecular activities affecting the vulnerability of atherosclerotic lesion for risk stratification of patients. Thus, the ability to differentiate stable plaques from those that are vulnerable is an unmet clinical need. Of various imaging techniques, the radionuclide-based molecular imaging modalities including positron emission tomography and single-photon emission computerized tomography provide superior ability to noninvasively visualize molecular activities in vivo and may serve as a useful tool in tackling this challenge. Moreover, the well-established translational pathway of radiopharmaceuticals may also facilitate the translation of discoveries from benchtop to clinical investigation in contrast to other imaging modalities to fulfill the goal of precision medicine. The relationship between inflammation occurring within the plaque and its proneness to rupture has been well documented. Therefore, an active effort has been significantly devoted to develop radiopharmaceuticals specifically to measure CVD inflammatory status, and potentially elucidate those plaques which are prone to rupture. In the following review, molecular imaging of inflammatory biomarkers will be briefly discussed.
Collapse
Affiliation(s)
- Gyu S Heo
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Deborah Sultan
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA -
| |
Collapse
|
24
|
Lacapere JJ, Duma L, Finet S, Kassiou M, Papadopoulos V. Insight into the Structural Features of TSPO: Implications for Drug Development. Trends Pharmacol Sci 2020; 41:110-122. [PMID: 31864680 PMCID: PMC7021566 DOI: 10.1016/j.tips.2019.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 01/01/2023]
Abstract
The translocator protein (TSPO), an 18-kDa transmembrane protein primarily found in the outer mitochondrial membrane, is evolutionarily conserved and widely distributed across species. In mammals, TSPO has been described as a key member of a multiprotein complex involved in many putative functions and, over the years, several classes of ligand have been developed to modulate these functions. In this review, we consider the currently available atomic structures of mouse and bacterial TSPO and propose a rationale for the development of new ligands for the protein. We provide a review of TSPO monomeric and oligomeric states and their conformational flexibility, together with ligand-binding site and interaction mechanisms. These data are expected to help considerably the development of high-affinity ligands for TSPO-based therapies or diagnostics.
Collapse
Affiliation(s)
- Jean-Jacques Lacapere
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules (LBM), 4 Place Jussieu, F-75005 Paris, France.
| | - Luminita Duma
- CNRS Enzyme and Cell Engineering Laboratory, Sorbonne Université, Université de Technologie de Compiègne, 60203 Compiègne Cedex, France
| | - Stephanie Finet
- IMPMC, UMR 7590 CNRS Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, The University of Sydney, F11, Eastern Ave, Sydney, NSW 2006, Australia
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
25
|
Schniering J, Benešová M, Brunner M, Haller S, Cohrs S, Frauenfelder T, Vrugt B, Feghali-Bostwick C, Schibli R, Distler O, Müller C, Maurer B. 18F-AzaFol for Detection of Folate Receptor-β Positive Macrophages in Experimental Interstitial Lung Disease-A Proof-of-Concept Study. Front Immunol 2019; 10:2724. [PMID: 31824505 PMCID: PMC6883947 DOI: 10.3389/fimmu.2019.02724] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Interstitial lung disease (ILD) is a common and severe complication in rheumatic diseases. Folate receptor-β is expressed on activated, but not resting macrophages which play a key role in dysregulated tissue repair including ILD. We therefore aimed to pre-clinically evaluate the potential of 18F-AzaFol-based PET/CT (positron emission computed tomography/computed tomography) for the specific detection of macrophage-driven pathophysiologic processes in experimental ILD. Methods: The pulmonary expression of folate receptor-β was analyzed in patients with different subtypes of ILD as well as in bleomycin (BLM)-treated mice and respective controls using immunohistochemistry. PET/CT was performed at days 3, 7, and 14 after BLM instillation using the 18F-based folate radiotracer 18F-AzaFol. The specific pulmonary accumulation of the radiotracer was assessed by ex vivo PET/CT scans and quantified by ex vivo biodistribution studies. Results: Folate receptor-β expression was 3- to 4-fold increased in patients with fibrotic ILD, including idiopathic pulmonary fibrosis and connective tissue disease-related ILD, and significantly correlated with the degree of lung remodeling. A similar increase in the expression of folate receptor-β was observed in experimental lung fibrosis, where it also correlated with disease extent. In the mouse model of BLM-induced ILD, pulmonary accumulation of 18F-AzaFol reflected macrophage-related disease development with good correlation of folate receptor-β positivity with radiotracer uptake. In the ex vivo imaging and biodistribution studies, the maximum lung accumulation was observed at day 7 with a mean accumulation of 1.01 ± 0.30% injected activity/lung in BLM-treated vs. control animals (0.31 ± 0.06% % injected activity/lung; p < 0.01). Conclusion: Our preclinical proof-of-concept study demonstrated the potential of 18F-AzaFol as a novel imaging tool for the visualization of macrophage-driven fibrotic lung diseases.
Collapse
Affiliation(s)
- Janine Schniering
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Matthias Brunner
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Stephanie Haller
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Susan Cohrs
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Thomas Frauenfelder
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Bart Vrugt
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Carol Feghali-Bostwick
- Division of Rheumatology & Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Britta Maurer
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Da Pozzo E, Tremolanti C, Costa B, Giacomelli C, Milenkovic VM, Bader S, Wetzel CH, Rupprecht R, Taliani S, Da Settimo F, Martini C. Microglial Pro-Inflammatory and Anti-Inflammatory Phenotypes Are Modulated by Translocator Protein Activation. Int J Mol Sci 2019; 20:ijms20184467. [PMID: 31510070 PMCID: PMC6770267 DOI: 10.3390/ijms20184467] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
A key role of the mitochondrial Translocator Protein 18 KDa (TSPO) in neuroinflammation has been recently proposed. However, little is known about TSPO-activated pathways underlying the modulation of reactive microglia. In the present work, the TSPO activation was explored in an in vitro human primary microglia model (immortalized C20 cells) under inflammatory stimulus. Two different approaches were used with the aim to (i) pharmacologically amplify or (ii) silence, by the lentiviral short hairpin RNA, the TSPO physiological function. In the TSPO pharmacological stimulation model, the synthetic steroidogenic selective ligand XBD-173 attenuated the activation of microglia. Indeed, it reduces and increases the release of pro-inflammatory and anti-inflammatory cytokines, respectively. Such ligand-induced effects were abolished when C20 cells were treated with the steroidogenesis inhibitor aminoglutethimide. This suggests a role for neurosteroids in modulating the interleukin production. The highly steroidogenic ligand XBD-173 attenuated the neuroinflammatory response more effectively than the poorly steroidogenic ones, which suggests that the observed modulation on the cytokine release may be influenced by the levels of produced neurosteroids. In the TSPO silencing model, the reduction of TSPO caused a more inflamed phenotype with respect to scrambled cells. Similarly, during the inflammatory response, the TSPO silencing increased and reduced the release of pro-inflammatory and anti-inflammatory cytokines, respectively. In conclusion, the obtained results are in favor of a homeostatic role for TSPO in the context of dynamic balance between anti-inflammatory and pro-inflammatory mediators in the human microglia-mediated inflammatory response. Interestingly, our preliminary results propose that the TSPO expression could be stimulated by NF-κB during activation of the inflammatory response.
Collapse
Affiliation(s)
- Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
- Correspondence:
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Vladimir M. Milenkovic
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany; (V.M.M.); (S.B.); (C.H.W.); (R.R.)
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.D.P.); (C.T.); (C.G.); (S.T.); (F.D.S.); (C.M.)
| |
Collapse
|
27
|
Qiao L, Fisher E, McMurray L, Milicevic Sephton S, Hird M, Kuzhuppilly-Ramakrishnan N, Williamson DJ, Zhou X, Werry E, Kassiou M, Luthra S, Trigg W, Aigbirhio FI. Radiosynthesis of (R,S)-[ 18 F]GE387: A Potential PET Radiotracer for Imaging Translocator Protein 18 kDa (TSPO) with Low Binding Sensitivity to the Human Gene Polymorphism rs6971. ChemMedChem 2019; 14:982-993. [PMID: 30900397 PMCID: PMC6563049 DOI: 10.1002/cmdc.201900023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/26/2019] [Indexed: 12/14/2022]
Abstract
Translocator protein (TSPO) is a biomarker of neuroinflammation, which is a hallmark of many neurodegenerative diseases and has been exploited as a positron emission tomography (PET) target. Carbon-11-labelled PK11195 remains the most applied agent for imaging TSPO, despite its short-lived isotope and low brain permeability. Second-generation radiotracers show variance in affinity amongst subjects (low-, mixed-, and high-affinity binders) caused by the genetic polymorphism (rs6971) of the TSPO gene. To overcome these limitations, a new structural scaffold was explored based on the TSPO pharmacophore, and the analogue with a low-affinity binder/high-affinity binder (LAB/HAB) ratio similar (1.2 vs. 1.3) to that of (R)-[11 C]PK11195 was investigated. The synthesis of the reference compound was accomplished in six steps and 9 % overall yield, and the precursor was prepared in eight steps and 8 % overall yield. The chiral separation of the reference and precursor compounds was performed using supercritical fluid chromatography with >95 % ee. The absolute configuration was determined by circular dichroism. Optimisation of reaction conditions for manual radiolabelling revealed acetonitrile as a preferred solvent at 100 °C. Automation of this radiolabelling method provided R and S enantiomers in respective 21.3±16.7 and 25.6±7.1 % decay-corrected yields and molar activities of 55.8±35.6 and 63.5±39.5 GBq μmol-1 (n=3). Injection of the racemic analogue into a healthy rat confirmed passage through the blood-brain barrier.
Collapse
Affiliation(s)
- Luxi Qiao
- Molecular Imaging Chemical Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Emily Fisher
- Molecular Imaging Chemical Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Lindsay McMurray
- Molecular Imaging Chemical Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Selena Milicevic Sephton
- Molecular Imaging Chemical Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Matthew Hird
- Molecular Imaging Chemical Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Nisha Kuzhuppilly-Ramakrishnan
- Molecular Imaging Chemical Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - David J Williamson
- Molecular Imaging Chemical Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Xiouyun Zhou
- Molecular Imaging Chemical Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| | - Eryn Werry
- School of Chemistry, The University of Sydney, Building F11, Eastern Avenue, Sydney, NSW, 2006, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Building F11, Eastern Avenue, Sydney, NSW, 2006, Australia
| | | | | | - Franklin I Aigbirhio
- Molecular Imaging Chemical Laboratory, Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Biomedical Campus, Cambridge, CB2 0SZ, UK
| |
Collapse
|
28
|
Berroterán-Infante N, Tadić M, Hacker M, Wadsak W, Mitterhauser M. Binding Affinity of Some Endogenous and Synthetic TSPO Ligands Regarding the rs6971 Polymorphism. Int J Mol Sci 2019; 20:E563. [PMID: 30699908 PMCID: PMC6387295 DOI: 10.3390/ijms20030563] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/15/2022] Open
Abstract
An intriguing target involved in several pathophysiological processes is the 18 kDa translocator protein (TSPO), of which exact functions remained elusive until now. A single nucleotide polymorphism in the TSPO gene influences the binding affinity of endogenous and synthetic TSPO ligands by facilitating a lower-affinity conformation, which modifies a potential ligand binding site, ultimately leading to a binding profile classification according to each genotype. For instance, some clinical effects of the distinctive binding affinity profile of cholesterol toward the TSPO of individuals with different genotypes have been extensively discussed. Therefore, we conducted an investigation based on a radioligand binding assay, to determine the inhibition constants of some reported endogenous TSPO ligands (diazepam binding inhibitor and protoporphyrin IX), as well as synthetic ligands (disulfiram and derivatives). We observed no dependency of the polymorphism on the binding affinity of the evaluated endogenous ligands, whereas a high dependency on the binding affinity of the tested synthetic ligands was evident.
Collapse
Affiliation(s)
- Neydher Berroterán-Infante
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria.
- Department of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria.
| | - Monika Tadić
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria.
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria.
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria.
- Department of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria.
- Center for Biomarker Research, CBmed, 8010 Graz, Austria.
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria.
- LBI Applied Diagnostics, 1090 Vienna, Austria.
| |
Collapse
|
29
|
Kapanadze T, Bankstahl JP, Wittneben A, Koestner W, Ballmaier M, Gamrekelashvili J, Krishnasamy K, Limbourg A, Ross TL, Meyer GJ, Haller H, Bengel FM, Limbourg FP. Multimodal and Multiscale Analysis Reveals Distinct Vascular, Metabolic and Inflammatory Components of the Tissue Response to Limb Ischemia. Am J Cancer Res 2019; 9:152-166. [PMID: 30662559 PMCID: PMC6332799 DOI: 10.7150/thno.27175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/12/2018] [Indexed: 12/12/2022] Open
Abstract
Ischemia triggers a complex tissue response involving vascular, metabolic and inflammatory changes. Methods: We combined hybrid SPECT/CT or PET/CT nuclear imaging studies of perfusion, metabolism and inflammation with multicolor flow cytometry-based cell population analysis to comprehensively analyze the ischemic tissue response and to elucidate the cellular substrate of noninvasive molecular imaging techniques in a mouse model of hind limb ischemia. Results: Comparative analysis of tissue perfusion with [99mTc]-Sestamibi and arterial influx with [99mTc]-labeled albumin microspheres by SPECT/CT revealed a distinct pattern of response to vascular occlusion: an early ischemic period of matched suppression of tissue perfusion and arterial influx, a subacute ischemic period of normalized arterial influx but impaired tissue perfusion, and a protracted post-ischemic period of hyperdynamic arterial and normalized tissue perfusion, indicating coordination of macrovascular and microvascular responses. In addition, the subacute period showed increased glucose uptake by [18F]-FDG PET/CT scanning as the metabolic response of viable tissue to hypoperfusion. This was associated with robust macrophage infiltration by flow cytometry, and glucose uptake studies identified macrophages as major contributors to glucose utilization in ischemic tissue. Furthermore, imaging with the TSPO ligand [18F]-GE180 showed a peaked response during the subacute phase due to preferential labeling of monocytes and macrophages, while imaging with [68Ga]-RGD, an integrin ligand, showed prolonged post-ischemic upregulation, which was attributed to labeling of macrophages and endothelial cells by flow cytometry. Conclusion: Combined nuclear imaging and cell population analysis reveals distinct components of the ischemic tissue response and associated cell subsets, which could be targeted for therapeutic interventions.
Collapse
|
30
|
Tang D, Fujinaga M, Hatori A, Zhang Y, Yamasaki T, Xie L, Mori W, Kumata K, Liu J, Manning HC, Huang G, Zhang MR. Evaluation of the novel TSPO radiotracer 2-(7-butyl-2-(4-(2-([ 18F]fluoroethoxy)phenyl)-5-methylpyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide in a preclinical model of neuroinflammation. Eur J Med Chem 2018; 150:1-8. [PMID: 29505933 DOI: 10.1016/j.ejmech.2018.02.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022]
Abstract
Translocator Protein (18 kDa, TSPO) is regarded as a useful biomarker for neuroinflammation imaging. TSPO PET imaging could be used to understand the role of neuroinflammation in brain diseases and as a tool for evaluating novel therapeutic effects. As a promising TSPO probe, [18F]DPA-714 is highly specific and offers reliable quantification of TSPO in vivo. In this study, we further radiosynthesized and evaluated another novel TSPO probe, 2-(7-butyl-2-(4-(2-[18F]fluoroethoxy)phenyl)-5-methylpyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide ([18F]VUIIS1018A), which features a 700-fold higher binding affinity for TSPO than that of [18F]DPA-714. We evaluated the performance of [18F]VUIIS1018A using dynamic in vivo PET imaging, radiometabolite analysis, in vitro autoradiography assays, biodistribution analysis, and blocking assays. In vivo study using this probe demonstrated high signal-to-noise ratio, binding potential (BPND), and binding specificity in preclinical neuroinflammation studies. Taken together, these findings indicate that [18F]VUIIS1018A may serve as a novel TSPO PET probe for neuroinflammation imaging.
Collapse
Affiliation(s)
- Dewei Tang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Masayuki Fujinaga
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Akiko Hatori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yiding Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tomoteru Yamasaki
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Lin Xie
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Wakana Mori
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Katsushi Kumata
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Jianjun Liu
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pu Jian Road, Shanghai 200127, China; Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - H Charles Manning
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Gang Huang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Institute of Clinical Nuclear Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China; Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institute for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China.
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan.
| |
Collapse
|