1
|
Cui Z, Hu H, Li X, Liu X, Zhang Q, Hong Z, Zhang N, Lin W, Xu D. Physiological and biochemical mechanisms of drought regulating the size and color of heartwood in Dalbergia odorifera. TREE PHYSIOLOGY 2025; 45:tpae157. [PMID: 39658202 DOI: 10.1093/treephys/tpae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Drought has been found to affect the size and color of precious heartwood of Dalbergia odorifera, but the mechanism remains unclear. For this purpose, we performed the measurement of heartwood size, color and flavonoid content and composition in a 15-year-old mixed plantation of D. odorifera and Santalum album that had been subjected to two levels of rainfall exclusion and control treatments for 7 years, and carbon isotope labeling and anatomical observation in 2-year-old potted D. odorifera seedlings exposed to two levels of drought and control treatments. The field experiment showed that drought had significant effects on heartwood size and color of D. odorifera. More starch was depleted in the transition zone (TZ) in drought than in control. Drought significantly decreased the values of color parameters and increased the contents of total flavonoids, glycitein, fisetin, chrysin and claussequinone, and total flavonoids, glycitein, fisetin, chrysin and claussequinone were significantly negatively correlated with L* and b*. The pot experiment showed that during longitudinal transport of nonstructural carbohydrate (NSC), the dilution factor of 13C abundance in the inner bark sap in severe drought (SD) was twice as much as that in control. The inner bark thickness and transverse area of sieve tubes in SD were significantly lower than those in control. Our findings further confirm that drought promotes the heartwood formation of D. odorifera, and discuss interspecific variations in the response of heartwood formation to drought. Drought enhances the exchange transport of NSC between phloem and xylem by reducing the transverse area of sieve tubes, thus causing more NSC to be transported into xylem, and drought also promotes the depletion of starch in the TZ to produce more heartwood. Drought darkens the heartwood color by increasing the contents of total flavonoids, glycitein, fisetin, chrysin and claussequinone in heartwood. To our knowledge, this is the first study addressing the physiological and biochemical mechanism of drought regulating heartwood formation.
Collapse
Affiliation(s)
- Zhiyi Cui
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Houzhen Hu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Xiaofei Li
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Xiaojin Liu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Qilei Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Zhou Hong
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Ningnan Zhang
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| | - Wei Lin
- Foshan Institute of Forestry (Foshan Botanical Garden), Foshan 528012, Guangdong, China
| | - Daping Xu
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, Guangdong, China
| |
Collapse
|
2
|
Gong G, Ganesan K, Wan Y, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Unveiling the neuroprotective properties of isoflavones: current evidence, molecular mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38794836 DOI: 10.1080/10408398.2024.2357701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, China
| | - Yukai Wan
- Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
- Guangdong East Drug and Food and Health Branch, Chaozhou, China
| |
Collapse
|
3
|
Jiao N, Xu J, Wang Y, Li D, Chen F, Chen Y, Chen J. Genome-wide characterization of post-transcriptional processes related to wood formation in Dalbergia odorifera. BMC Genomics 2024; 25:372. [PMID: 38627613 PMCID: PMC11022335 DOI: 10.1186/s12864-024-10300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Alternative polyadenylation (APA), alternative splicing (AS), and long non-coding RNAs (lncRNAs) play regulatory roles in post-transcriptional processes in plants. However, little is known about their involvement in xylem development in Dalbergia odorifera, a valuable rosewood species with medicinal and commercial significance. We addressed this by conducting Isoform Sequencing (Iso-Seq) using PacBio's SMRT technology and combined it with RNA-seq analysis (RNA sequencing on Illumina platform) after collecting xylem samples from the transition zone and the sapwood of D. odorifera. RESULTS We identified 14,938 full-length transcripts, including 9,830 novel isoforms, which has updated the D. odorifera genome annotation. Our analysis has revealed that 4,164 genes undergo APA, whereas 3,084 genes encounter AS. We have also annotated 118 lncRNAs. Furthermore, RNA-seq analysis identified 170 differential alternative splicing (DAS) events, 344 genes with differential APA site usage (DE-APA), and 6 differentially expressed lncRNAs in the transition zone when compared to the sapwood. AS, APA, and lncRNAs are differentially regulated during xylem development. Differentially expressed APA genes were enriched for terpenoid and flavonoid metabolism, indicating their role in the heartwood formation. Additionally, DE-APA genes were associated with cell wall biosynthesis and terpenoid metabolism, implying an APA's role in wood formation. A DAS gene (involved in chalcone accumulation) with a significantly greater inclusion of the last exon in the transition zone than in the sapwood was identified. We also found that differentially expressed lncRNAs targeted the genes related to terpene synthesis. CONCLUSIONS This study enhances our understanding of the molecular regulatory mechanisms underlying wood formation in D. odorifera, and provides valuable genetic resources and insights for its molecular-assisted breeding.
Collapse
Affiliation(s)
- Nanbo Jiao
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572019, China
| | - Jieru Xu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572019, China
| | - Yue Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572019, China
| | - Dunxi Li
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Feifei Chen
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Yu Chen
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China
| | - Jinhui Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572019, China.
- Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, 571100, China.
| |
Collapse
|
4
|
Ma R, Luo J, Wang W, Fu Y. Changes in the physiological activity of parenchyma cells in Dalbergia odorifera xylem and its relationship with heartwood formation. BMC PLANT BIOLOGY 2023; 23:559. [PMID: 37957552 PMCID: PMC10644609 DOI: 10.1186/s12870-023-04592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND The formation of a tree's heartwood gives the wood properties such as natural decay resistance and aesthetic color, and often directly determines the value of wood products. Regulating the quantity and quality of heartwood is of great importance to the use of wood. However, the mechanism of heartwood formation has been poorly understood. RESULTS Using Dalbergia odorifera as the study species, the number of starch grains, the morphology of the nuclei, the changes in the content of water and secondary metabolites were observed continuously in the radial direction of the xylem. The results show that from the outer toward inner sapwood, the starch grains are abundant, the length to diameter ratio of the nuclei is decreasing, and the morphology changes from elongated elliptical and then to round. In the outer transition zone, the starch grains begin to decrease abruptly and the nuclei shrink at a slower rate, with a radial width of approximately 2 mm. In the inner transition zone, the heartwood color begins to appear, the starch grains disappear and a few nuclei with reduced fluorescence are present, with a radial width of approximately 1 mm. Heartwood formation after complete disappearance of the nuclei. The moisture content of the heartwood is higher than that of the sapwood, and the inner transition zone is where the content rises. The secondary metabolites of the heartwood begin to accumulate in large quantities in the inner transition zone. CONCLUSION Based on the physiological changes of parenchyma cells in the xylem, the radial width of the transition zone of Dalbergia odorifera is clearly defined as approximately 3 mm. Both the water and secondary metabolite abrupt changes occur at the final stage of programmed cell death, and neither is a direct cause of programmed cell death in parenchyma cells.
Collapse
Affiliation(s)
- Ruoke Ma
- Key Laboratory of National Forestry and Grassland Administration for Fast‑Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Jia Luo
- Key Laboratory of National Forestry and Grassland Administration for Fast‑Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Weijie Wang
- Key Laboratory of National Forestry and Grassland Administration for Fast‑Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Yunlin Fu
- Key Laboratory of National Forestry and Grassland Administration for Fast‑Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
5
|
Wu L, Fan Z, Gu L, Liu J, Cui Z, Yu B, Kou J, Li F. QiShenYiQi dripping pill alleviates myocardial ischemia-induced ferroptosis via improving mitochondrial dynamical homeostasis and biogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116282. [PMID: 36806343 DOI: 10.1016/j.jep.2023.116282] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/05/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE QiShenYiQi is a Chinese herbal formula composed of Astragalus membranaceus Fisch. ex Bunge, root; Slauia miltiorrhiza Bunge, root and rhizome; Panax notoginseng (Burkill) F.H.Chen, root; and Dalbergia odorifera T.C.Chen, heartwood of trunk and root with a proportion of 10:5:1:0.067. Its dripping pills were approved by the National Medical Products Administration (NMPA) in 2003 and could be used in the clinical treatment of ischemic heart diseases. Ferroptosis is an important pathological mechanism in the process of myocardial ischemia (MI). Whether QSYQ can improve ferroptosis induced by myocardial ischemia is still unclear. AIM OF THE STUDY In this study, the potential mechanisms of QSYQ against ferroptosis in MI-induced injury were investigated. MATERIALS AND METHODS The main components of QSYQ were analyzed by HPLC-Q-TOF-MS/MS. MI model was established by ligation of the left anterior descending coronary artery and then treated with QSYQ dropping pills for 14 days. The cardiac function of mice was evaluated by echocardiography. Hematoxylin and eosin (H&E) staining and Masson's trichrome staining were used to detect the pathological changes in heart tissue. Serum biochemical indexes were analyzed by biochemical kit. Transmission electron microscope (TEM) was used to observe the mitochondria ultrastructure and mitochondrial ROS was detected by immunofluorescence. Then, photoacoustic imaging was used to observe the redox status of the mice' hearts. Finally, the mitochondrial dynamics and biogenesis related proteins and the proteins of ferroptosis were analyzed by western blotting. RT-PCR was used to detect the mRNA expression changes of ferroptosis. RESULTS A total of 20 principal components of QSYQ were characterized by HPLC-Q-TOF-MS/MS. QSYQ significantly improved cardiac function and myocardial injury in MI mice. Furthermore, the lipid peroxidation change levels (MDA, 4-HNE, and GSH) in serum were attenuated and myocardial iron content was reduced after QSYQ treatment. On this basis, QSYQ also improved the expression changes of ferroptosis related mRNA and proteins. In addition, QSYQ promoted mitochondrial biogenesis (PGC-1α, Nrf1, and TFAM) and mitochondrial fusion (MFN-2 and OPA1) and inhibited mitochondrial excessive fission (Phosphorylation of Drp1 at ser616) in vitro and in vivo, indicating that the cardioprotection of QSYQ might be related to promoting mitochondrial biogenesis and dynamic homeostasis. CONCLUSION In summary, QSYQ could alleviate MI-induced ferroptosis by improving mitochondrial biogenesis and dynamic homeostasis.
Collapse
Affiliation(s)
- Lingling Wu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zhaoyang Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Lifei Gu
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Chinese Medicine, Shenzhen Institute for Drug Control, Shenzhen, China.
| | - Jincheng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Zekun Cui
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
6
|
Wu S, Sun Z, Guo Z, Li P, Mao Q, Tang Y, Chen H, Peng H, Wang S, Cao Y. The effectiveness of blood-activating and stasis-transforming traditional Chinese medicines (BAST) in lung cancer progression-a comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116565. [PMID: 37172918 DOI: 10.1016/j.jep.2023.116565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Blood-activating and stasis-transforming traditional Chinese medicines (BAST) are a class of herbs that have the effect of dilating blood vessels and dispersing stagnation. Modern pharmaceutical research has demonstrated that they are capable of improving hemodynamics and micro-flow, resist thrombosis and promote blood flow. BAST contain numerous active ingredients, which can theoretically regulate multiple targets at the same time and have a wide range of pharmacological effects in the treatment of diseases including human cancers. Clinically, BAST have minimal side effects and can be used in combination with Western medicine to improve patients' quality of life, lessen adverse effects and minimize the risk of recurrence and metastasis of cancers. AIM OF THE REVIEW We aimed to summarize the research progression of BAST on lung cancer in the past five years and present a prospect for the future. Particularly, this review further analyzes the effects and molecular mechanisms that BAST inhibit the invasion and metastasis of lung cancer. MATERIALS AND METHODS Relevant studies about BSAT were collected from PubMed and Web of science. RESULTS Lung cancer is one of the malignant tumors with the highest mortality rate. Most patients with lung cancer are diagnosed at an advanced stage and are highly susceptible to metastasis. Recent studies have shown that BAST, a class of traditional Chinese medicine (TCM) with the function of opening veins and dispersing blood stasis, significantly improve hemodynamics and microcirculation, prevent thrombosis and promote blood flow, and thereby inhibiting the invasion and metastasis of lung cancer. In the current review, we analyzed 51 active ingredients extracted from BAST. It was found that BAST and their active ingredients contribute to the prevention of invasion and metastasis of lung cancer through multiple mechanisms, such as regulation of EMT process, specific signaling pathway and metastasis-related genes, tumor blood vessel formation, immune microenvironment and inflammatory response of tumors. CONCLUSIONS BSAT and its active ingredients have showed promising anticancer activity and significantly inhibit the invasion and metastasis of lung cancer. A growing number of studies have realized their potential clinical significance in the therapy of lung cancer, which will provide substantial evidences for the development of new TCM for lung cancer therapy.
Collapse
Affiliation(s)
- Siqi Wu
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhe Sun
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zehuai Guo
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Peiqin Li
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Qianqian Mao
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Tang
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Hongyu Chen
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Huiting Peng
- The First Clinical School of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Sisi Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Cao
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
7
|
Yun HM, Park JE, Lee JY, Park KR. Latifolin, a Natural Flavonoid, Isolated from the Heartwood of Dalbergia odorifera Induces Bioactivities through Apoptosis, Autophagy, and Necroptosis in Human Oral Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:13629. [PMID: 36362414 PMCID: PMC9655104 DOI: 10.3390/ijms232113629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 08/13/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant neoplasm with frequent metastasis and high mortality in the oral cavity. Plant-derived natural compounds are actively progressing as a trend for cancer treatment. Latifolin (Latif), is a natural flavonoid isolated from the heartwood of Dalbergia odorifera T. Chen (D. odorifera) has been known to have beneficial effects on anti-aging, anti-carcinogenic, anti-inflammatory, and cardio-protective activities. However, the anti-cancer effects of Latif are unknown in OSCC. Herein, as a result of analysis in terms of the aggressive features of OSCCs, we found that Latif significantly inhibited the cell proliferation of human YD-8 and YD-10B OSCCs, and caused the anti-metastatic activities by effectively blocking cell migration, invasion, and adhesion via the inactivation of focal adhesion kinase (FAK)/non-receptor tyrosine kinase (Src). Moreover, we found that Latif induced apoptotic cell death to suppress the cell survival and proliferation of YD-10B OSCCs by targeting PI3K/AKT/mTOR/p70S6K signaling. Finally, we analyzed in terms of autophagy and necroptosis, which are other mechanisms of programmed cell death and survival compared to apoptosis in YD-10B OSCCs. We found that Latif suppressed autophagic-related proteins and autophagosome formation, and also Latif inhibited necroptosis by dephosphorylating necroptosis-regulatory proteins (RIP1, RIP3, and MLKL). Given these findings, our results provided new evidence for Latif's biological effect and mechanism in YD-10B OSCCs, suggesting that Latif may be a new candidate for patients with OSCCs.
Collapse
Affiliation(s)
- Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University, Seoul 02447, Korea
| | - Ji Eun Park
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Joon Yeop Lee
- National Development Institute for Korean Medicine, Gyeongsan 38540, Korea
| | - Kyung-Ran Park
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Korea
| |
Collapse
|
8
|
Zhang J, Ding W, Tang Z, Kong Y, Liu J, Cao X. Identification of the effective α-amylase inhibitors from Dalbergia odorifera: Virtual screening, spectroscopy, molecular docking, and molecular dynamic simulation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121448. [PMID: 35717927 DOI: 10.1016/j.saa.2022.121448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Inhibiting the activity of α-amylase has been considered as one efficient way to prevent and treat type 2 diabetes recently. Dalbergia odorifera, a kind of Leguminosae plant, has a positive therapeutic effect on type 2 diabetes, possibly contributing by some constituents that can inhibit the activity of α-amylase. In this study, we found that eriodictyol was one potential constituent through virtual screening. The interaction mode between eriodictyol and α-amylase was elucidated by molecular docking, multi-spectroscopic analysis, and molecular dynamic simulation. The results revealed that eriodictyol quenched the intrinsic fluorescence of α-amylase, and the quenching mode was static quenching. Eriodictyol could spontaneously interact with α-amylase, mostly stabilized and influenced by the hydrophobic interaction, while the binding sites (n) was 1.13 ± 0.07 and binding constant (Kb) was (1.43 ± 0.14) × 105 at 310 K, respectively. In addition, FT-IR and CD had been applied to identify that eriodictyol can trigger the conformational change of α-amylase. Taken together, the results provided some experimental data for developing new α-amylase inhibitors from Dalbergia odorifera, which may further prevent and treat diabetes and diabetes complications.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Weizhe Ding
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Zhipeng Tang
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Yuchi Kong
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China
| | - Jianli Liu
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China.
| | - Xiangyu Cao
- School of Life Science, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, China.
| |
Collapse
|
9
|
Alpinetin: a Dietary Flavonoid with Diverse Anticancer Effects. Appl Biochem Biotechnol 2022; 194:4220-4243. [PMID: 35567708 DOI: 10.1007/s12010-022-03960-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/02/2022] [Indexed: 11/02/2022]
Abstract
Cancer is a global burden and mechanistically complex disease with a plethora of genetic, physiological, metabolic, and environmental alterations. The development of dietary nutraceuticals into cancer chemotherapeutics has emerged as a new paradigm in cancer treatment. Alpinetin (ALPI) is a novel flavonoid component of multiple edible and medicinal plants and possesses a wide range of biological and pharmacological activities including antibacterial, anti-hemostatic, anti-oxidative, anti-hepatotoxic, stomachic, immunosuppressive, and anti-inflammatory. Recently, ALPI has been reported as a bioactive dietary nutraceutical with promising anticancer activity in various human cancers through multiple mechanisms. The purpose of this review is to compile the data on natural sources of ALPI, and its anticancer activity including cellular targets and anticancer mechanism in various human cancers. Moreover, this review will set the stage for further design and conduct pre-clinical and clinical trials to develop ALPI into a lead structure for oncological therapy.
Collapse
|
10
|
Zhao W, Meng X, Xu J, Liu Z, Hu Y, Li B, Chen J, Cao B. Integrated mRNA and Small RNA Sequencing Reveals microRNAs Associated With Xylem Development in Dalbergia odorifera. Front Genet 2022; 13:883422. [PMID: 35547261 PMCID: PMC9081728 DOI: 10.3389/fgene.2022.883422] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Dalbergia odorifera is a rare and precious rosewood specie, whose wood is a very high-quality material for valuable furniture and carving crafts. However, limited information is available about the process of wood formation in D. odorifera. To determine genes that might be closely associated with the xylem differentiation process, we analyzed the differentially expressed genes (DEGs) and microRNAs (miRNAs) from specific xylem tissues of D. odorifera by RNA sequencing (RNA-seq) and small RNA sequencing (small RNA-seq). In total, we obtained 134,221,955 clean reads from RNA-seq and 90,940,761 clean reads from small RNA-seq. By comparing the transition zone (Dotz) and sapwood (Dosw) samples, a total of 395 DEGs were identified. Further analysis revealed that DEGs encoded for WRKY transcription factors (eight genes), lignin synthesis (PER47, COMT, CCR2), cell wall composition (UXS2), gibberellin synthesis (KAO2, GA20OX1), jasmonic acid synthesis (OPR2, CYP74A), and synthesis of flavonoids (PAL2) and terpenoids (CYP71A1). Subsequently, a preliminary analysis by small RNA-seq showed that the expressions of 14 miRNAs (such as miR168a-5p, miR167f-5p, miR167h-5p, miR167e, miR390a, miR156g, novel_52, and novel_9) were significantly different between Dotz and Dosw. Further analysis revealed that the target genes of these differentially expressed miRNAs were enriched in the GO terms "amino acid binding," "cellulase activity," and "DNA beta-glucosyltransferase activity". Further, KEGG pathway annotation showed significant enrichment in "fatty acid elongation" and "biosynthesis of unsaturated fatty acids". These processes might be participating in the xylem differentiation of D. odorifera. Next, expression correlation analysis showed that nine differentially expressed miRNAs were significantly negatively associated with 21 target genes, which encoded for proteins such as pyrH, SPL6, SPL12, GCS1, and ARF8. Overall, this is the first study on miRNAs and their potential functions in the xylem development of D. odorifera, which provides a stepping stone for a detailed functional investigation of D. odorifera miRNAs.
Collapse
Affiliation(s)
- Wenxiu Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Xiangxu Meng
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jiahong Xu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Zijia Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Yangyang Hu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Bingyu Li
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jinhui Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education/Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Bing Cao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, China
| |
Collapse
|
11
|
Shao F, Panahipour L, Sordi MB, Tang F, Liu R, Gruber R. Heartwood of Dalbergia cochinchinensis: 4,7,2'-Trihydroxy-4'-methoxyisoflavanol and 6,4'-Dihydroxy-7-methoxyflavane Reduce Cytokine and Chemokine Expression In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041321. [PMID: 35209110 PMCID: PMC8879141 DOI: 10.3390/molecules27041321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 02/11/2022] [Indexed: 02/02/2023]
Abstract
Dalbergia cochinchinensis has been widely used in traditional medicine because of its flavonoids; however, the impact of the flavonoids to modulate the inflammatory response to oral cells remains to be described. For this aim, we isolated 4,7,2'-trihydroxy-4'-methoxyisoflavanol (472T4MIF) and 6,4'-dihydroxy-7-methoxyflavane (64D7MF) from the heartwood of D. cochinchinensis and confirmed the chemical structure by nuclear magnetic resonance. We show here that both flavonoids are inhibitors of an inflammatory response of murine RAW 264.7 inflammatory macrophages stimulated by LPS. This is indicated by interleukin (IL)1, IL6, and chemokine CCL2 production besides the phosphorylation of p65. Consistently, in primary murine macrophages, both flavonoids decreased the inflammatory response by lowering LPS-induced IL1 and IL6 expression. To introduce oral cells, we have used human gingival fibroblasts and provoked the inflammatory response by exposing them to IL1β and TNFα. Under these conditions, 472T4MIF, but not 64D7MF, reduced the expression of chemokines CXCL1 and CXCL2. Taken together, we identified two flavonoids that can reduce the expression of cytokines and chemokines in macrophages and fibroblastic cells.
Collapse
Affiliation(s)
- Feng Shao
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (M.B.S.)
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.T.); (R.L.)
- Key Laboratory of Innovation Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence: (F.S.); (R.G.)
| | - Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (M.B.S.)
| | - Mariane Beatriz Sordi
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (M.B.S.)
- Department of Dentistry, Federal University of Santa Catarina, Florianopolis 88040-900, Brazil
| | - Fangrui Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.T.); (R.L.)
| | - Ronghua Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (F.T.); (R.L.)
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (L.P.); (M.B.S.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence: (F.S.); (R.G.)
| |
Collapse
|
12
|
Arbab AH, Zaroug EE, Mudawi MME. Review on Plants with Traditional Uses and Bio-Activity Against Hair Graying. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220208105012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Hair graying occurs worldwide, and it has a high impact on the self-esteem of an individual. Hair graying is a melanogenesis disorder that can be attributed to many factors, including age, oxidative stress, psychological stress, and malnutrition. Though there are effective p-phenylenediamine based hair dyes, they often cause allergy and systematic toxicity. Plants are popular a traditional remedy for the management of hair disorders. Due to their high chemical diversity, phytoproducts offer great promises to develop an effective and safe product to manage hair graying and melanogenesis disorders. The aim of the present article is to review plants with traditional uses and bio-activity against hair graying. An extensive literature search was conducted on PubMed, Science Direct, and Google Scholar databases using many combinations of the following keywords: plants used to treat gray hair, natural products, hair graying, melanogenesis, pigmentation, and tyrosinase activity. This review documented about sixty-one plants, including a summary of 47 plants frequently used in traditional medicine, and a brief review of fourteen plants showing promising activity against hair graying. The active constituents and the mechanisms by which active constituents exert anti-hair graying effects were also reviewed.
Collapse
Affiliation(s)
- Ahmed H. Arbab
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Elwaleed E. Zaroug
- Department of Phytochemistry and Natural Products, Northern Border University, Kingdom of Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Omdurman Islamic University, Sudan
| | - Mahmoud M. E. Mudawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Kingdom of Saudi Arabia
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Sudan
| |
Collapse
|
13
|
Linh NTT, Son NT, Ha NTT, Tra NT, Tu Anh LT, Chen S, Van Tuyen N. Biologically Active Constituents from Plants of the Genus Xanthium. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 116:135-209. [PMID: 34698947 DOI: 10.1007/978-3-030-80560-9_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herbaceous annual plants of the genus Xanthium are widely distributed throughout the world and have been employed medicinally for millennia. This contribution aims to provide a systematic overview of the diverse structural classes of Xanthium secondary metabolites, as well as their pharmacological potential. On searching in various reference databases with a combination of three keywords "Xanthium", "Phytochemistry", and "Pharmacology", relevant publications have been obtained subsequently. From the 1950s to the present, phytochemical investigations have focused mainly on 15 Xanthium species, from which 300 compounds have been isolated and structurally resolved, primarily using NMR spectroscopic methodology. Xanthium constituents represent several secondary metabolite types, including simple phenols, sulfur and nitrogen-containing compounds, lignans, sterols, flavonoids, quinones, coumarins, and fatty acids, with terpenoids being the most common of these. Among the 174 terpenoids characterized, xanthanolide sesquiterpenoids are abundant, and most of the compounds isolated containing sulfur were found to be new in Nature. The ethnomedical uses of Xanthium crude extracts are supported by the in vitro and in vivo effects of their constituents, such as cytotoxicity, antioxidant, antibacterial, antifungal, antidiabetes, and hepatoprotective activities. Toxicological results suggest that Xanthium plant extracts are generally safe for use. In the future, additional phytochemical investigations, along with further assessments of the biological profiles and mechanism of action studies of the components of Xanthium species, are to be expected.
Collapse
Affiliation(s)
- Nguyen Thi Thuy Linh
- Department of Applied Biochemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Ninh The Son
- Department of Applied Biochemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam.
| | - Nguyen Thi Thu Ha
- Department of Applied Biochemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Nguyen Thanh Tra
- Department of Applied Biochemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Le Thi Tu Anh
- Department of Applied Biochemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Sibao Chen
- Department of Applied Biochemistry and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Nguyen Van Tuyen
- Department of Medicinal Chemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| |
Collapse
|
14
|
Linh NTT, Son NT. Biologically Active Constituents from Plants of the Genus Desmos. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 116:211-261. [PMID: 34698948 DOI: 10.1007/978-3-030-80560-9_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The combination of traditional knowledge of medicinal plants with scientific rationale has yielded positive results in recent years. Bioactive compounds isolated from herbaceous plants have long been used as drugs that benefit human health, as well as providing useful compounds for drug development lead compound optimization. This chapter aims to provide a systematic overview of the structural types of Desmos secondary metabolites, along with their biological potential. Various chromatographic and spectroscopic methods have been utilized for isolating, purifying, and elucidating the structures of compounds from Desmos species. From 1982 to the present time, more than 200 metabolites have been isolated from members of this genus. Desmos spp. constituents include terpenoids, phytosterols, polyoxygenated cyclohexanes and cyclohexenes, oxepinones, fatty acids, with flavonoids, alkaloids, and miscellaneous phenols being the predominant compounds. The essential oils of Desmos species have also been investigated. Both crude plant extracts and isolated compounds from this genus have been evaluated for their biological activities. Desmos constituents have been found to exhibit cytotoxic, antimicrobial, antioxidative, anti-inflammatory, and aromatase and NFAT transcriptive inhibition effects.
Collapse
Affiliation(s)
- Nguyen Thi Thuy Linh
- Department of Chemistry, Institute of Chemistry, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Ninh The Son
- Department of Applied Biochemistry, Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam.
| |
Collapse
|
15
|
Linh NTT, Ha NTT, Tra NT, Anh LTT, Tuyen NV, Son NT. Medicinal Plant Centipeda Minima: A Resource of Bioactive Compounds. Mini Rev Med Chem 2021; 21:273-287. [PMID: 33087028 DOI: 10.2174/1389557520666201021143257] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/27/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Centipeda minima (the family Asteraceae) is an annual herbaceous plant native to the tropical regions, especially in eastern tropical Asia. C. minima is well-known in the list of medicinal plants with capacities in treatment of whooping cough, nasal allergy, malaria, and asthma. More than sixty reports on phytochemical and pharmacological aspects of this plant are now available, but a supportive review is insufficient. OBJECTIVE The current review aims to make a compilation of almost all of the isolated compounds from the title plant, together with their pharmacological activities. METHODOLOGY Centipeda minima is a meaningful keyword to search for previous references, while the reliable databases, such as Sci-Finder, Google Scholar, Pub Med, Science Direct, the Web of Science, Scopus, Bentham science, Taylor Francis, Springer, IOP Science were utilized at most. CONCLUSION More than one hundred secondary metabolites, classifying as terpenoids, flavonoids, mono-phenols, fatty acids, amides, and other types, were isolated from this plant. Among them, sesquiterpene lactones are dominant in either C. minima species or numerous plants of genus Centipeda. These phytochemical groups also possessed various biological results like anti-cancer, anti-bacteria, anti-allergy, anti-virus, anti-inflammation, and hepatoprotective activities. With many kinds of bioactive results such as anti-cancer and anti-inflammation, the use of C. minima plant extracts and isolated compounds for drug development seems to be a futuristic strategy.
Collapse
Affiliation(s)
- Nguyen Thi Thuy Linh
- Department of Applied Biotech, Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Nguyen Thi Thu Ha
- Department of Applied Biotech, Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Nguyen Thanh Tra
- Department of Applied Biotech, Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Le Thi Tu Anh
- Department of Applied Biotech, Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Nguyen Van Tuyen
- Department of Applied Biotech, Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| | - Ninh The Son
- Department of Applied Biotech, Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| |
Collapse
|
16
|
Abstract
Valorising green waste will greatly enhance and promote the sustainable management of this large volume resource. One potential way to achieve this is the extraction of high value human health promoting chemicals (e.g., polyphenols) from this material. Our primary aim was to identify the main polyphenols present in four contrasting green waste feedstocks, namely Smyrnium olusatrum, Urtica dioica, Allium ursinum and Ulex europaeus, using UPLC-HDMSE. Polyphenol-rich Camellia sinensis (green tea) was used as a reference material. Samples were extracted and analysed by UPLC-HDMSE, which was followed by data processing using Progenesis QI and EZ Info. A total of 77 high scoring polyphenolic compounds with reported benefits to human health were tentatively identified in the samples, with abundances varying across the plant types; A. ursinum was seen to be the least abundant in respect to the polyphenols identified, whereas U. europaeus was the most abundant. Important components with a diverse range of bioactivity, such as procyanidins, (−)-epigallocatechin, naringenin, eriodictyol and iso-liquiritigenin, were observed, plus a number of phytoestrogens such as daidzein, glycitin and genistein. This research provides a route to valorise green waste through the creation of nutritional supplements which may aid in the prevention of disease.
Collapse
|
17
|
Amrati FEZ, Bourhia M, Saghrouchni H, Slighoua M, Grafov A, Ullah R, Ezzeldin E, Mostafa GA, Bari A, Ibenmoussa S, Bousta D. Caralluma europaea (Guss.) N.E.Br.: Anti-Inflammatory, Antifungal, and Antibacterial Activities against Nosocomial Antibiotic-Resistant Microbes of Chemically Characterized Fractions. Molecules 2021; 26:molecules26030636. [PMID: 33530597 PMCID: PMC7865290 DOI: 10.3390/molecules26030636] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/04/2023] Open
Abstract
Caralluma europaea (Guss.) N.E.Br.: (C. europaea) is a wild medicinal plant belonging to the family Apocynaceae. It is commonly used in traditional medicines for treating several diseases. The present work aims to evaluate the anti-inflammatory, antibacterial, and antifungal potentials of C. europaea fractions including hydro ethanol (ET CE), n-butanol (But CE), and polyphenol (Poly CE). The chemical composition of hydroethanol, n-butanol, and polyphenol-rich fractions from C. europaea were determined using GC-MS after silylation. The anti-inflammatory effect of hydroethanol, n-butanol, and polyphenol-rich fractions was studied by carrageenan-induced paw edema. Antibacterial and antifungal activities of hydroethanol, n-butanol, and polyphenol-rich fractions against Gram-positive bacteria, Gram-negative bacteria, and yeasts were assessed using the disc diffusion and micro-dilution assays. The findings of the chemical characterization affirmed the presence of interesting bioactive compounds in C. europaea fractions. The polyphenol-rich fraction was the best inhibitor of edema by75.68% after 6 h of treatment. The hydroethanol fraction was the most active against both bacteria and yeasts. This study contributes to society as it provides potential bioactive compounds in C. europaea extract, which may help in fighting nosocomial antibiotic-resistant microbes.
Collapse
Affiliation(s)
- Fatima Ez-Zahra Amrati
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (M.S.); (D.B.)
- Correspondence: (F.E.-Z.A.); (M.B.); (R.U.)
| | - Mohammed Bourhia
- Laboratory of Chemistry, Biochemistry, Nutrition, and Environment, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco;
- Correspondence: (F.E.-Z.A.); (M.B.); (R.U.)
| | - Hamza Saghrouchni
- Department of Biotechnology, Institute of Natural and Applied Sciences, Çukurova University, Adana 01170, Turkey;
| | - Meryem Slighoua
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (M.S.); (D.B.)
| | - Andriy Grafov
- Department of Chemistry, Faculty of Sciences, Helsinki University, 00100 Helsinki, Finland;
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Correspondence: (F.E.-Z.A.); (M.B.); (R.U.)
| | - Essam Ezzeldin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (E.E.); (G.A.M.); (A.B.)
| | - Gamal A. Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (E.E.); (G.A.M.); (A.B.)
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (E.E.); (G.A.M.); (A.B.)
| | - Samir Ibenmoussa
- Laboratory of Chemistry, Biochemistry, Nutrition, and Environment, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco;
| | - Dalila Bousta
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco; (M.S.); (D.B.)
| |
Collapse
|
18
|
Cui Z, Li X, Xu D, Yang Z. Changes in Non-Structural Carbohydrates, Wood Properties and Essential Oil During Chemically-Induced Heartwood Formation in Dalbergia odorifera. FRONTIERS IN PLANT SCIENCE 2020; 11:1161. [PMID: 32903589 PMCID: PMC7438546 DOI: 10.3389/fpls.2020.01161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
The highly valuable heartwood of Dalbergia odorifera T. Chen, known as Jiang Xiang in traditional Chinese medicine, is formed very slowly, and there is a need to better understand the process and promote heartwood formation. Chemical induction is considered to be one of the promising methods to induce heartwood formation. However, to date no method has been proved effective for D. odorifera as little is known about biochemical and physiological changes during heartwood development. Three potential heartwood induction substances viz. acetic acid, sodium chloride, and hydrogen peroxide solutions were injected into the trunk of D. odorifera to determine the effect on heartwood formation and physiological activity. Non-structural carbohydrates, lipids, wood properties, and essential oil were assessed in the post-treatment period. As also observed in the formation of natural heartwood, chemical-induced Jiang Xiang production was accompanied by sapwood dehydration, non-structural carbohydrates consumption, and synthesis of heartwood substances. As the heartwood substances accumulated, basic density and essential oil content increased gradually, thereby Jiang Xiang was finally produced. In this process, physiological parameters of discolored sapwood gradually evolved to resemble those of natural heartwood. Hydrogen peroxide-induced Jiang Xiang was closest to natural heartwood, and the essential oil components met the standards for high-quality Jiang Xiang, while the induction effects of acetic acid and sodium chloride were unsatisfactory. Thus, this study indicates that hydrogen peroxide has the potential to induce Jiang Xiang production in Dalbergia odorifera.
Collapse
|
19
|
Quinolone and isoquinolone alkaloids: the structural-electronic effects and the antioxidant mechanisms. Struct Chem 2020. [DOI: 10.1007/s11224-020-01602-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Lessons from Exploring Chemical Space and Chemical Diversity of Propolis Components. Int J Mol Sci 2020; 21:ijms21144988. [PMID: 32679731 PMCID: PMC7404124 DOI: 10.3390/ijms21144988] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Propolis is a natural resinous material produced by bees and has been used in folk medicines since ancient times. Due to it possessing a broad spectrum of biological activities, it has gained significant scientific and commercial interest over the last two decades. As a result of searching 122 publications reported up to the end of 2019, we assembled a unique compound database consisting of 578 components isolated from both honey bee propolis and stingless bee propolis, and analyzed the chemical space and chemical diversity of these compounds. The results demonstrated that both honey bee propolis and stingless bee propolis are valuable sources for pharmaceutical and nutraceutical development.
Collapse
|
21
|
Son NT, Elshamy AI. Flavonoids and other Non-alkaloidal Constituents of Genus Erythrina: Phytochemical Review. Comb Chem High Throughput Screen 2020; 24:20-58. [PMID: 32516097 DOI: 10.2174/1386207323666200609141517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Genus Erythrina belongs to family Fabaceae, which is widely distributed in tropical and subtropical areas. It has been used in both traditional herbal medicines and pharmacological applications. Original research articles and publications on the overview of alkaloids related to this genus are available, but a supportive systematic review account which highlighted phytochemical aspects of other types of secondary metabolites is currently insufficient. OBJECTIVE With the utilization of data and information from SCI-Finder, Google Scholar, the Web of Science, Scopus, Science Direct, PubMed, Chemical Abstracts, ACS journals, Springer, Taylor Francis, Bentham Science and IOP Science, the reliable material sources of this systematic review paper were obtained from the literature published from the 1980s to now. CONCLUSION A vast amount of data showed that the non-alkaloidal secondary metabolites were obtained from genus Erythrina with various classes of chemical structures. Herein, approximately five hundred constituents were isolated, comprising flavonoids, terpenoids, saponins, phytosterols, phenols, arylbenzofurans, coumarins, alcohols, ceramides, mono-sugars and fatty acid derivatives. In agreement with the previous phytochemical reports on the plants of the family Fabaceae, flavonoids reached a high amount in the plants of genus Erythrina. Numerous biological activity investigations such as anti-bacteria, anti-cancer, anti-virus using isolated compounds from Erythrina species suggested that secondary metabolites of Erythrina plants are now becoming the promising agents for drug developments.
Collapse
Affiliation(s)
- Ninh T Son
- Department of Bioactive Products, Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Cau giay, Hanoi, Vietnam
| | - Abdelsamed I Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| |
Collapse
|
22
|
Yue XH, Miao LF, Yang F, Nawaz M. Morphological and physiological responses of Dalbergia odorifera T. Chen seedlings to different culture substances. PLoS One 2020; 15:e0232051. [PMID: 32433697 PMCID: PMC7239436 DOI: 10.1371/journal.pone.0232051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/06/2020] [Indexed: 12/03/2022] Open
Abstract
Dalbergia odorifera T. Chen seedlings do not grow well in the typical red soils of tropical regions. Eighteen culture substances filled with different substrate combinations and proportions of red soil, coconut coir powder, deciduous leaf powder, and sand were used as to determine their effects on the growth, root system development, dry matter accumulation and allocation, leaf relative electrolyte leakage, chlorophyll content, root superoxide dismutase activity, root malondialdehyde content, and total soluble sugar content of D. odorifera. Results demonstrated that different substrate combinations and proportions had different effects on the performance of D. odorifera. All mixed substrates were better than any single substrate. The suitable substrate combinations and proportions of sand, coconut coir powder, and deciduous leaf powder mixed with red soil improved the growth, root architecture, and physiological characteristics of D. odorifera seedling. For example, groups C1-2 (coconut coir/red soil = 2/2, v/v, the same below) and C3-2 (red soil/sand = 2/2) exerted the best effects on plant growth and biomass accumulation. Groups C1-2, C2-2 (deciduous leaf powder/red soil = 2/2), and C3-2 remarkably enhanced root system development. Group C6 (coconut coir/red soil/sand = 1/1/1) substantially promoted root nodule development. Group C3-1 (red soil/sand = 3/1) exhibited the best effects on physiological characteristics. On the basis of the comprehensive evaluation of Euclid's multidimensional space mathematical model, we found that the suitable substrate combinations followed the order of C1-2 > C3-1 > C2-2. This research provides scientific guidance for the proper seedling culture of D. odorifera and the rational utilization of solid wastes such as coconut coir and deciduous leaves of Ficus elastica.
Collapse
Affiliation(s)
- Xiao-Hui Yue
- College of Ecology and Environment, Center for Eco-Environmental Restoration Engineering of Hainan Province, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ling-Feng Miao
- College of Ecology and Environment, Center for Eco-Environmental Restoration Engineering of Hainan Province, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan, China
- College of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Fan Yang
- College of Ecology and Environment, Center for Eco-Environmental Restoration Engineering of Hainan Province, Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, Hainan, China
| | - Mohsin Nawaz
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
23
|
A Review on Worldwide Ephedra History and Story: From Fossils to Natural Products Mass Spectroscopy Characterization and Biopharmacotherapy Potential. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1540638. [PMID: 32419789 PMCID: PMC7210547 DOI: 10.1155/2020/1540638] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Growing worldwide, the genus Ephedra (family Ephedraceae) had a medicinal, ecological, and economic value. The extraordinary morphological diversity suggests that Ephedra was survivor of an ancient group, and its antiquity is also supported by fossil data. It has recently been suggested that Ephedra appeared 8–32 million years ago, and a few megafossils document its presence in the Early Cretaceous. Recently, the high analytical power provided by the new mass spectrometry (MS) instruments is making the characterization of Ephedra metabolites more feasible, such as ephedrine series. In this regard, the chemical compounds isolated from crude extracts, fractions, and few isolated compounds of Ephedra species were characterized by MS-based techniques (LC-MS, LC-ESI-MS, HPLC-PDA-ESI/MS, LC-DAD-ESI/MSn, LC/Orbitrap MS, etc.). Moreover, we carry out an exhaustive review of the scientific literature on biomedicine and pharmacotherapy (anticancer, antiproliferative, anti-inflammatory, antidiabetic, antihyperlipidemic, antiarthritic, and anti-influenza activities; proapoptotic and cytotoxic potential; and so on). Equally, antimicrobial and antioxidant activities were discussed. This review is focused on all these topics, along with current studies published in the last 5 years (2015–2019) providing in-depth information for readers.
Collapse
|
24
|
Son NT. A Mini-review of the Tropical Plant Cratoxylum fomosum ssp. pruniflorum: Phytochemical and Pharmacological Aspects. LETT ORG CHEM 2020. [DOI: 10.2174/1570178616666190902111630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tropical plant C. formosum ssp. pruniflorum belongs to family Clusiaceae, which is
native to Southeast Asia countries. Phytochemical investigations on this plant showed interesting secondary
metabolites, comprising the main classes of xanthones, anthraquinones, flavonoids, phenolics,
and triterpenoids. Biological assessments established the wide spectrum of properties, either the extracts
or isolated compounds have been becoming valuable resources, constituents from C. formosum
ssp. pruniflorum were used for anti-bacteria, anti-inflammation, anti-cancer, or neuroprotective and
vascular protective activities. The long history of traditional application has confirmed the prospect in
use, this herbal plant was consumed as a combination tea or to treat skin wound healing, fever, cough,
ulcer, diarrhea, internal bleeding, stomachic and diuretic effects, and food poisoning.
Collapse
Affiliation(s)
- Ninh The Son
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam
| |
Collapse
|
25
|
Kim EN, Kim YG, Lee JH, Min BS, Jeong GS. 6,7,4'-Trihydroxyflavone inhibits osteoclast formation and bone resorption in vitro and in vivo. Phytother Res 2019; 33:2948-2959. [PMID: 31478281 DOI: 10.1002/ptr.6468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/30/2022]
Abstract
The balance between the osteoblasts and the osteoclasts is important for the maintenance of the skeleton of the human body. The osteoclasts absorb bone after differentiated into polymorphonuclear cells by the fusion of monocytes/macrophages. We have found that 6,7,4'-Trihydroxyflavone (THF), a compound from the heartwood of Dalbergia Odorifera inhibits receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation, actin ring formation, and bone resorption in RAW 264.7 cells and bone marrow macrophage. THF significantly inhibited the c-Jun-N-terminal kinase signaling pathway without affecting extracellular signal-regulated kinase, p38, and AKT signaling. Moreover, THF inhibited the expression of c-Fos, nuclear factor-activated T cells cytoplasm 1, cathepsin K, and c-src by RANKL. We used a lipopolysaccharide (LPS)-induced bone loss model in mice. Consequently, bone volume per tissue volume, trabecular number's reduction was recovered in THF-treated mice, and trabecular separation's augmentation was also attenuated by THF administration. In summary, THF inhibits RANKL-induced osteoclast differentiation by MAPK signaling pathway and inhibits bone resorption by destroying the actin ring in mature osteoclasts. THF also prevented LPS-induced bone loss in a mice model. Thus, THF may be useful in the treatment of bone diseases associated with excessive osteoclast differentiation and bone resorption.
Collapse
Affiliation(s)
- Eun-Nam Kim
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Yu Gyeong Kim
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea
| | - Byung Sun Min
- College of Pharmacy, Catholic University of Daegu, Gyeongsan, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
26
|
Genus Miliusa: A Review of Phytochemistry and Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:8314693. [PMID: 31485249 PMCID: PMC6710790 DOI: 10.1155/2019/8314693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022]
Abstract
Background Genus Miliusa (family Annonaceae), widely distributed in mainland Asia and Australia to New Guinea, has been employed in both traditional herbal uses and pharmacological medicines. Original research articles related to this genus are now available, but supportive reviews highlighting phytochemical and pharmacological aspects are now insufficient. Objective This account is an overview of most of the compounds isolated from this genus, along with their pharmacological evaluations. Conclusion A vast amount of data showed that genus Miliusa contained various classes of secondary metabolites. Herein, more than two hundred constituents were isolated, comprising alkaloids, geranylated homogentisic acids, flavonoids, lignans, neolignans, terpenoids, acetogenins, styryls, lactones, phenolics, amides, alcohols, and furfural derivatives. Novel miliusanes and bicyclic lactones have been remarkable characteristics of Miliusa plants. Essential oils from these plants were also detected, with a high amount of β-caryophyllene. Numerous in vitro biological researches on, for example, anticancer, antifungal, antimycobacterial, anti-inflammation, and cardiac activity, especially in terms of cytotoxicity, using either isolated compounds or plant extracts, implied that Miliusa phytochemical components now set out to have a key role in pharmacological development. M. smithiae ethyl acetate extract and its flavonoid ayanin (75) inhibited the growth of MCF-7 cell line comparable with positive control ellipticine. (+)-Miliusol (72) stimulated in vivo anticancer experiment against HCT116 xenograft mouse tumor following the p21-dependent induction of cellular senescence mechanism.
Collapse
|
27
|
Isoflavones and Isoflavone Glycosides: Structural-Electronic Properties and Antioxidant Relations—A Case of DFT Study. J CHEM-NY 2019. [DOI: 10.1155/2019/4360175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Isoflavonoids and isoflavonoid glycosides have drawn much attention because of their antioxidant radical-scavenging capacity. Based on computational methods, we now present the antioxidant potential results of genistein (1), biochanin A (2), ambocin (3), and tectorigenin 7-O-[β-D-apiofuranosyl-(1-6)-β-D-glucopyranoside] (4). The optimized structures of the neutral and radical forms have been determined by the DFT-B3LYP method with the 6-311G(d) basis set. From the findings and thermodynamic point of view, the ring B system of isoflavones is considered as an active center in facilitating antioxidant reactions. Antioxidant activities are mostly driven by O-H bond dissociation enthalpy (BDE) following hydrogen atom transfer (HAT) mechanism. Antioxidant ability can be arranged in the following order: compounds (4) > (3) > (2) > (1). Of comprehensive structural analysis, flavonoids with 4′-methylation and 6-methoxylation, especially 7-glycosylation would claim responsibility for antioxidant enhancement.
Collapse
|
28
|
Genetic Diversity and Population Structure Analysis of Dalbergia Odorifera Germplasm and Development of a Core Collection Using Microsatellite Markers. Genes (Basel) 2019; 10:genes10040281. [PMID: 30959931 PMCID: PMC6523640 DOI: 10.3390/genes10040281] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022] Open
Abstract
Dalbergia odorifera T. Chen (Fabaceae) is a woody tree species indigenous to Hainan Island in China. Due to its high medicinal and commercial value, this tree species has been planted over 3500 ha2 in southern China. There is an urgent need for improvement of the D. odorifera germplasm, however, limited information on germplasm collection, conservation, and assessment of genetic resources is available. Therefore, we have built a database of 251 individuals collected across the whole of southern China, which included 42 wild trees and 210 cultivated trees, with the following objectives. (1) Evaluate genetic diversity and population structure of the database using 19 microsatellite markers and (2) develop a core collection for improvement and breeding programs. Totally, the 19 microsatellite markers harbored 77 alleles across the database with the polymorphic information content (PIC) ranging from 0.03 to 0.66. Medium genetic diversity level was inferred by Nei’s gene diversity (0.38), Shannon’s information index (0.65), and observed (0.33) and expected heterozygosity (0.38). Structure analysis showed that four was the optimum cluster size using the model-based Bayesian procedure, and the 251 D. odorifera individuals were grouped into five populations including four pure ones (RP1-4) and one mixed one (MIX) based on their maximum membership coefficients. Among these populations, the expected heterozygosity varied from 0.30 (RP3) to 0.38 (RP4). Analysis of molecular variance (AMOVA) showed 11% genetic variation existed among populations, and moderate population differentiation was inferred by the matrix of pairwise Fst (genetic differentiation among populations), which was in the range of 0.031 to 0.095. Moreover, a core collection of 31 D. odorifera individuals including six wild and 25 cultivated trees was developed, which was only 12.4% of the database but conserved the whole genetic diversity. The results of this study provided additional insight into the genetic structure of the large D. odorifera germplasm, and the core collection will be useful for the efficient and sustainable utilization of genetic resources, as well as efficient improvement in breeding programs.
Collapse
|
29
|
Genetic Diversity of the Endangered Dalbergia odorifera Revealed by SSR Markers. FORESTS 2019. [DOI: 10.3390/f10030225] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dalbergia odorifera T. Chen (Fabaceae) is a semi-deciduous tree species indigenous to Hainan Island in China. Due to its precious heartwood “Hualimu (Chinese)” and Chinese medicinal components “Jiangxiang”, D. odorifera is seriously threatened of long-term overexploitation and has been listed on the IUCN (International Union for Conservation of Nature’s) red list since 1998. Therefore, the elucidation of its genetic diversity is imperative for conservation and breeding purposes. In this study, we evaluated the genetic diversity of 42 wild D. odorifera trees from seven populations covering its whole native distribution. In total, 19 SSR (simple sequence repeat) markers harbored 54 alleles across the 42 samples, and the medium genetic diversity level was inferred by Nei’s gene diversity (0.36), observed (0.28) and expected heterozygosity (0.37). Among the seven wild populations, the expected heterozygosity (He) varied from 0.31 (HNQS) to 0.40 (HNCJ). The analysis of molecular variance (AMOVA) showed that only 3% genetic variation existed among populations. Moderate population differentiations among the investigated populations were indicated by pairwise Fst (0.042–0.115). Structure analysis suggested two clusters for the 42 samples. Moreover, the seven populations were clearly distinguished into two clusters from both the principal coordinate analysis (PCoA) and neighbor-joining (NJ) analysis. Populations from Haikou city (HNHK), Baisha autonomous county (HNBS), Ledong autonomous county (HNLD), and Dongfang city (HNDF) comprised cluster I, while cluster II comprised the populations from Wenchang city and Sansha city (HNQS), Changjiang autonomous county (HNCJ), and Wuzhisan city (HNWZS). The findings of this study provide a preliminary genetic basis for the conservation, management, and restoration of this endemic species.
Collapse
|
30
|
Nguyen VB, Wang SL, Nhan NT, Nguyen TH, Nguyen NPD, Nghi DH, Cuong NM. New Records of Potent In-Vitro Antidiabetic Properties of Dalbergia tonkinensis Heartwood and the Bioactivity-Guided Isolation of Active Compounds. Molecules 2018; 23:molecules23071589. [PMID: 29966279 PMCID: PMC6099635 DOI: 10.3390/molecules23071589] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/21/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
Alpha-glucosidase inhibitory activity has been commonly used for the evaluation of antidiabetic property in vitro. The aim of this study is to investigate and characterize Dalbergia tonkinensis as a potential source of antidiabetic compounds. The screening of the active parts used, such as trunk bark, heartwood, and the leaves of Dalbergia tonkinensis indicated that all these extracted parts used with methanol demonstrated potent α-glucosidase inhibitory activity. The in vitro antidiabetic property of Dalbergia tonkinensis was notably recorded for the first time and showed activity (EC50 = 0.17–0.78 mg/mL) comparable to those of reported potent herbal extracts (EC50 = 0.25–4.0 mg/mL) and higher activity than that of acarbose, a commercial antidiabetic drug (EC50 = 1.21 mg/mL). The stability tests revealed that the heartwood of Dalbergia tonkinensis extract (HDT) possesses high pH stability with relative activity in the range of 80–98%. Further bioassay-guided purification led to the isolation of 2 active compounds identified as sativanone and formononetin from the ethyl acetate fraction and water fraction of HDT, respectively. These α-glucosidase inhibitors (aGIs) show promising inhibition against various types of α-glucosidases. Remarkably, these inhibitors were determined as new mammalian aGIs, showing good effect on rat α-glucosidase. The results suggest that Dalbergia tonkinensis is a potent source of aGIs and suggest promise in being developed as functional food with antidiabetic efficacy. The results of this study also enrich our knowledge concerning current biological activity and constituents of Dalbergia tonkinensis species.
Collapse
Affiliation(s)
- Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan.
| | - Ngu Truong Nhan
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 122100, Vietnam.
| | - Thi Hanh Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
| | - Nguyen Phuong Dai Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot City 630000, Vietnam.
| | - Do Huu Nghi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 122100, Vietnam.
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 122100, Vietnam.
| | - Nguyen Manh Cuong
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), Hanoi 122100, Vietnam.
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology (VAST), Hanoi 122100, Vietnam.
| |
Collapse
|