1
|
Martins AC, Oliveira-Paula GH, Tinkov AA, Skalny AV, Tizabi Y, Bowman AB, Aschner M. Role of manganese in brain health and disease: Focus on oxidative stress. Free Radic Biol Med 2025; 232:306-318. [PMID: 40086492 PMCID: PMC11985276 DOI: 10.1016/j.freeradbiomed.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Manganese (Mn) is an essential trace element crucial for various physiological processes, but excessive exposure can lead to significant health concerns, particularly neurotoxicity. This review synthesizes current knowledge on Mn-induced oxidative stress and its role in cellular dysfunction and disease. We discuss how Mn promotes toxicity through multiple mechanisms, primarily through reactive oxygen species (ROS) generation, which leads to oxidative stress and disruption of cellular processes. The review examines key pathways affected by Mn toxicity, including mitochondrial dysfunction, endoplasmic reticulum stress, inflammasome activation, and epigenetic modifications. Recent studies have identified promising therapeutic compounds, including both synthetic and natural substances such as probucol, metformin, curcumin, resveratrol, and daidzein, which demonstrate protective effects through various mechanisms, including antioxidant enhancement, mitochondrial function preservation, and epigenetic pathway modulation. Understanding these mechanisms provides new insights into potential therapeutic strategies for Mn-induced disorders. This review also highlights future research directions, emphasizing the need for developing targeted therapies and investigating combination approaches to address multiple aspects of Mn toxicity simultaneously.
Collapse
Affiliation(s)
- Airton C Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gustavo H Oliveira-Paula
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alexey A Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, 460000, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Anatoly V Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, 460000, Russia; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, 20059, USA
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
2
|
Ebner BA, Erdahl SA, Lundgreen CS, Vassilaki M, Kremers WK, Knopman DS, Petersen RC, Berry DJ, Lewallen DG, Jannetto PJ, Murray ME, Reichard RR, Maradit Kremers H. Brain tissue metal concentrations and Alzheimer's disease neuropathology in total joint arthroplasty patients versus controls. Acta Neuropathol 2025; 149:18. [PMID: 39954128 DOI: 10.1007/s00401-025-02856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
We examined whether total joint arthroplasty (TJA) is associated with increased metal accumulation in the brain and histopathologic changes of Alzheimer's disease. We measured ultra-trace metal concentrations (aluminum, chromium, cobalt, manganese, molybdenum, nickel, titanium, and vanadium) on postmortem frozen tissues of the occipital lobe of 177 subjects (89 non-TJA and 88 TJA) using a triple-quadrupole inductively coupled plasma mass spectrometry and correlated elemental concentrations to the degree of Alzheimer's disease neuropathic change (ADNC). To effectively assess the relationship between TJA and brain metal concentrations, subjects with and without TJA were matched for baseline clinical characteristics and showed no difference in postmortem Alzheimer's disease neuropathic change. TJA subjects had increased concentrations of cobalt and titanium and both metals were associated with increased amyloid plaques. In both the TJA and non-TJA subjects, increased concentrations of cobalt, titanium, manganese, and molybdenum were associated with increased odds of neuritic and diffuse plaques. Lastly, the brain's inter-metal correlations were altered in the presence of increased neuritic plaques and/or implantable artificial joints. These findings suggest that metal concentrations and homeostasis vary in presence of TJA.
Collapse
Affiliation(s)
- Blake A Ebner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Sarah A Erdahl
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Carly S Lundgreen
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Maria Vassilaki
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Walter K Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Daniel J Berry
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - David G Lewallen
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Paul J Jannetto
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Melissa E Murray
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Hilal Maradit Kremers
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
3
|
Ścibior A, Llopis J, Dobrakowski PP, Męcik-Kronenberg T. Magnesium (Mg) and Neurodegeneration: A Comprehensive Overview of Studies on Mg Levels in Biological Specimens in Humans Affected Some Neurodegenerative Disorders with an Update on Therapy and Clinical Trials Supplemented with Selected Animal Studies. Int J Mol Sci 2024; 25:12595. [PMID: 39684308 DOI: 10.3390/ijms252312595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases, characterized by neuron loss, are a group of neurological disorders that adversely affect the lives of millions of people worldwide. Although several medicines have been approved for managing neurodegenerative diseases, new therapies allowing for a significant slowdown in the progression of neurodegenerative syndromes are constantly being sought. Magnesium (Mg), a crucial mineral necessary for the functioning of organisms, is important to normal central nervous system (CNS) activity. Although the effects of this bioelement on the CNS are relatively well recognized, its role in the pathophysiology of neurological disorders in humans is not yet well characterized. Therefore, the main goal of this review is to collect data about a possible association between Mg and neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's Disease (PD), and Amyotrophic lateral sclerosis (ALS) in humans. Hence, the levels of Mg in blood, cerebrospinal fluid (CSF), urine, and hair from subjects with AD, PD, and ALS are compiled to detect possible variations in the levels of this mineral in the biological specimens of people with neurodegenerative illnesses. Additionally, the findings from an animal model are summarized to offer the reader a deeper insight into studies on Mg in the context of neuroprotection and neurodegeneration. Data provided in the present review indicate that Mg, due to its neuroprotective, antioxidant, anti-inflammatory, and mitochondrial-supportive properties, could be a potential therapeutic agent for AD, PD, and ALS. However, more epidemiological studies with standardized methods of dietary assessment and Mg measurement are necessary to recognize its exact role in neurodegenerative disorders. Moreover, extensive well-designed clinical trials are also needed to establish definitive therapeutic protocols and optimal dosages, and to ensure long-term safety of this mineral supplementation in AD, PD, and ALS patients.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów St. 1J, 20-708 Lublin, Poland
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, 18016 Granada, Spain
| | - Paweł P Dobrakowski
- Psychology Institute, Humanitas University in Sosnowiec, Jana Kilińskiego St. 43, 41-200 Sosnowiec, Poland
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 3 Maja St. 13, 41-800 Zabrze, Poland
- Collegium Medicum im. Dr Władysław Biegański, Jan Długosz University, Washington St. 4/8, 42-200 Częstochowa, Poland
| |
Collapse
|
4
|
Revisiting the Role of Vitamins and Minerals in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:antiox12020415. [PMID: 36829974 PMCID: PMC9952129 DOI: 10.3390/antiox12020415] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia that affects millions of individuals worldwide. It is an irreversible neurodegenerative disorder that is characterized by memory loss, impaired learning and thinking, and difficulty in performing regular daily activities. Despite nearly two decades of collective efforts to develop novel medications that can prevent or halt the disease progression, we remain faced with only a few options with limited effectiveness. There has been a recent growth of interest in the role of nutrition in brain health as we begin to gain a better understanding of what and how nutrients affect hormonal and neural actions that not only can lead to typical cardiovascular or metabolic diseases but also an array of neurological and psychiatric disorders. Vitamins and minerals, also known as micronutrients, are elements that are indispensable for functions including nutrient metabolism, immune surveillance, cell development, neurotransmission, and antioxidant and anti-inflammatory properties. In this review, we provide an overview on some of the most common vitamins and minerals and discuss what current studies have revealed on the link between these essential micronutrients and cognitive performance or AD.
Collapse
|
5
|
Yu J, He Y, Yu X, Gu L, Wang Q, Wang S, Tao F, Sheng J. Associations Between Mild Cognitive Impairment and Whole Blood Zinc and Selenium in the Elderly Cohort. Biol Trace Elem Res 2023; 201:51-64. [PMID: 35113349 DOI: 10.1007/s12011-022-03136-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023]
Abstract
Some studies have shown that an imbalance in trace element homeostasis can lead to cognitive dysfunction, but data are lacking. The purpose of this study was to investigate the association between whole blood zinc (Zn), selenium (Se), copper-zinc ratio (Cu/Zn), copper-selenium ratio (Cu/Se), and zinc-selenium ratio (Zn/Se) and mild cognitive impairment (MCI) in elderly Chinese individuals. The study was based on the Elderly Health and Controlled Environmental Factors Cohort in Lu'an, Anhui Province, China, from June to September 2016. The cognitive function of the elderly was determined by the Mini-Mental State Examination (MMSE) and activities of daily living (ADL) scales. The concentrations of Zn, Cu, and Se in the whole blood were measured by inductively coupled plasma-mass spectrometry (ICP-MS). Binary logistic regression was used to analyze the associations between trace elements and MCI. A total of 1006 participants with an average age of 71.70 years old were included in this study. Compared with healthy people, MCI patients had higher whole blood Zn levels and lower Se levels, and Cu/Zn, Cu/Se, and Zn/Se were also significantly different. Binary logistic regression analysis showed that Zn, Cu/Se, and Zn/Se exposure in the third tertile was associated with an increased risk of MCI, while Se exposure in the third tertile was associated with a reduced risk of MCI. After adjustment for sex, age, marital status, BMI, and living status, whole blood Zn, Se, Cu/Zn, Cu/Se, and Zn/Se were significantly associated with MCI risk, especially in elderly women.
Collapse
Affiliation(s)
- Jinhui Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yu He
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xuemin Yu
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ling Gu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Changzhou Center for Disease Control and Prevention, Changzhou, 213000, Jiangsu, China
| | - Qunan Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- MOE Key Laboratory of Population Health Across Life Cycle/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
| | - Jie Sheng
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- MOE Key Laboratory of Population Health Across Life Cycle/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China.
| |
Collapse
|
6
|
Mumtaz I, Ayaz MO, Khan MS, Manzoor U, Ganayee MA, Bhat AQ, Dar GH, Alghamdi BS, Hashem AM, Dar MJ, Ashraf GM, Maqbool T. Clinical relevance of biomarkers, new therapeutic approaches, and role of post-translational modifications in the pathogenesis of Alzheimer's disease. Front Aging Neurosci 2022; 14:977411. [PMID: 36158539 PMCID: PMC9490081 DOI: 10.3389/fnagi.2022.977411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that causes progressive loss of cognitive functions like thinking, memory, reasoning, behavioral abilities, and social skills thus affecting the ability of a person to perform normal daily functions independently. There is no definitive cure for this disease, and treatment options available for the management of the disease are not very effective as well. Based on histopathology, AD is characterized by the accumulation of insoluble deposits of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs). Although several molecular events contribute to the formation of these insoluble deposits, the aberrant post-translational modifications (PTMs) of AD-related proteins (like APP, Aβ, tau, and BACE1) are also known to be involved in the onset and progression of this disease. However, early diagnosis of the disease as well as the development of effective therapeutic approaches is impeded by lack of proper clinical biomarkers. In this review, we summarized the current status and clinical relevance of biomarkers from cerebrospinal fluid (CSF), blood and extracellular vesicles involved in onset and progression of AD. Moreover, we highlight the effects of several PTMs on the AD-related proteins, and provide an insight how these modifications impact the structure and function of proteins leading to AD pathology. Finally, for disease-modifying therapeutics, novel approaches, and targets are discussed for the successful treatment and management of AD.
Collapse
Affiliation(s)
- Ibtisam Mumtaz
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Mohamad Sultan Khan
- Neurobiology and Molecular Chronobiology Laboratory, Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Umar Manzoor
- Laboratory of Immune and Inflammatory Disease, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju, South Korea
| | - Mohd Azhardin Ganayee
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Ghulam Hassan Dar
- Sri Pratap College, Cluster University Srinagar, Jammu and Kashmir, India
| | - Badrah S. Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Department of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Centre for Scientific and Innovative Research, Ghaziabad, Utter Pradesh, India
| | - Gulam Md. Ashraf
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, Department of Nanotechnology, University of Kashmir, Srinagar, India
| |
Collapse
|
7
|
Zhou J, Benoit M, Sharoar MG. Recent advances in pre-clinical diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1703-1725. [PMID: 33900524 DOI: 10.1007/s11011-021-00733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia with currently no known cures or disease modifying treatments (DMTs), despite much time and effort from the field. Diagnosis and intervention of AD during the early pre-symptomatic phase of the disease is thought to be a more effective strategy. Therefore, the detection of biomarkers has emerged as a critical tool for monitoring the effect of new AD therapies, as well as identifying patients most likely to respond to treatment. The establishment of the amyloid/tau/neurodegeneration (A/T/N) framework in 2018 has codified the contexts of use of AD biomarkers in neuroimaging and bodily fluids for research and diagnostic purposes. Furthermore, a renewed drive for novel AD biomarkers and innovative methods of detection has emerged with the goals of adding additional insight to disease progression and discovery of new therapeutic targets. The use of biomarkers has accelerated the development of AD drugs and will bring new therapies to patients in need. This review highlights recent methods utilized to diagnose antemortem AD.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
- Molecular Medicine Program, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Marc Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
8
|
Nantachai G, Vasupanrajit A, Tunvirachaisakul C, Solmi M, Maes M. Oxidative stress and antioxidant defenses in mild cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 2022; 79:101639. [PMID: 35537662 DOI: 10.1016/j.arr.2022.101639] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/02/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
This study aims to systematically review and meta-analyze the nitro-oxidative stress (O&NS)/antioxidant (ANTIOX) ratio in the peripheral blood of people with mild cognitive impairment (MCI). We searched PubMed, Scopus, Google Scholar, and Web of Science for articles published from inception until July 31, 2021. Forty-six studies on 3.798 MCI individuals and 6.063 healthy controls were included. The O&NS/ANTIOX ratio was significantly higher in MCI than in controls with a Standardized Mean Difference (SMD)= 0.378 (95% CI: 0.250; 0.506). MCI individuals showed increased lipid peroxidation (SMD=0.774, 95%CI: 4.416; 1.132) and O&NS-associated toxicity (SMD=0.621, CI: 0.377; 0.865) and reduced glutathione (GSH) defenses (SMD=0.725, 95%CI: 0.269; 1.182) as compared with controls. MCI was also accompanied by significantly increased homocysteine (SMD=0.320, CI: 0.059; 0.581), but not protein oxidation, and lowered non-vitamin (SMD=0.347, CI: 0.168; 0.527) and vitamin (SMD=0.564, CI: 0.129; 0.999) antioxidant defenses. The results show that MCI is at least in part due to increased neuro-oxidative toxicity and suggest that treatments targeting lipid peroxidation and the GSH system may be used to treat or prevent MCI.
Collapse
Affiliation(s)
- Gallayaporn Nantachai
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Somdet Phra Sungharaj Nyanasumvara Geriatric Hospital, Department of Medical Services, Ministry of Public health, Chon Buri Province, Thailand.
| | - Asara Vasupanrajit
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chavit Tunvirachaisakul
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Marco Solmi
- Department of Psychiatry, University of Ottawa, Ontario, Canada; Department of Mental Health, The Ottawa Hospital, Ontario, Canada; Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ottawa, Ontario, Canada; Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Institute of Psychiatry, Psychology & Neuroscience, Department of Psychosis Studies, King's College London, London, United Kingdom; Centre for Innovation in Mental Health-Developmental Lab, School of Psychology, University of Southampton, and NHS Trust, Southampton, United Kingdom
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; IMPACT Strategic Research Center, Deakin University, Geelong, Australia; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| |
Collapse
|
9
|
Du K, Zheng X, Ma ZT, Lv JY, Jiang WJ, Liu MY. Association of Circulating Magnesium Levels in Patients With Alzheimer's Disease From 1991 to 2021: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2022; 13:799824. [PMID: 35082658 PMCID: PMC8784804 DOI: 10.3389/fnagi.2021.799824] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) remains a medical and social challenge worldwide. Magnesium (Mg) is one of the most frequently evaluated essential minerals with diverse biological functions in human body. However, the association between circulating Mg levels and AD remains controversial. We conducted a meta-analysis of 21 studies published between 1991 and 2021 to determine whether the Mg levels in the blood and cerebrospinal fluid (CSF) are abnormal in AD. Literatures were searched in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), and Wanfang Data without language limitations. A pooled subject sample including 1,112 AD patients and 1,001 healthy controls (HCs) was available to assess Mg levels in serum and plasma; 284 AD patients and 117 HCs were included for Mg levels in CSF. It was found that serum and plasma levels of Mg were significantly reduced in AD patients compared with HCs (standardized mean difference [SMD] = -0.89; 95% confidence interval [CI] [-1.36, -0.43]; P = 0.000). There was statistically non-significant for Mg level in CSF between AD and HCs, whereas a decreased tendency were detected (SMD = -0.16; 95% CI [-0.50, 0.18]; P = 0.364). .In addition, when we analyzed the Mg levels of serum, plasma and CSF together, the circulating Mg levels in AD patients was significantly lower (SMD = -0.74, 95% CI [-1.13; -0.35]; P = 0.000). These results indicate that Mg deficiency may be a risk factor of AD and Mg supplementation may be a potentially valuable adjunctive treatment for AD. Systematic Review Registration: www.crd.york.ac.uk/PROSPERO/, registration number CRD42021254557.
Collapse
Affiliation(s)
- Ke Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Xi Zheng
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zi-Tai Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Jun-Ya Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Wen-Juan Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ming-Yan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Chen C, Xun P, Unverzagt F, McClure LA, Irvin MR, Judd S, Cushman M, He K. Serum magnesium concentration and incident cognitive impairment: the reasons for geographic and racial differences in stroke study. Eur J Nutr 2021; 60:1511-1520. [PMID: 32737612 PMCID: PMC7854858 DOI: 10.1007/s00394-020-02353-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/27/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE To examine the prospective association between serum Mg level and the incidence of cognitive impairment. METHODS A random sub-cohort (n = 2063) from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort was included in this study. Baseline serum Mg concentration was measured using inductively coupled plasma mass spectrometry. According to the current reference interval of serum magnesium (0.75-0.95 mmol/L), we classified participants below the interval as Level 1 and used it as the referent. The rest of the study population were equally divided into three groups, named Level 2 to 4. Incident cognitive impairment was identified using the Six-Item Screener. Multivariable-adjusted odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were estimated using logistic regression models. RESULTS After adjustment for potential confounders, an inverse threshold association between serum Mg level and incident cognitive impairment was observed. Compared to those with hypomagnesemia (Level 1: < 0.75 mmol/L), the relative odds of incident cognitive impairment was reduced by 41% in the second level [OR (95% CI) = 0.59 (0.37, 0.94)]; higher serum Mg level did not provide further benefits [Level 3 and 4 versus Level 1: OR (95% CI) = 0.54 (0.34, 0.88) and 0.59 (0.36, 0.96), P for linear trend = 0.08]. CONCLUSIONS Findings from this prospective study suggest that sufficient Mg status within the normal range may be beneficial to cognitive health in the US general population.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Obstetrics and Gynecology and Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Pengcheng Xun
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| | - Frederick Unverzagt
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leslie A McClure
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA
| | - Marguerite Ryan Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Suzanne Judd
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - Ka He
- Department of Obstetrics and Gynecology and Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Obstetrics and Gynecology and Department of Epidemiology, Columbia University Irving Medical Center, 622 W 168th Street, Suite 16-62, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Navigatore Fonzo L, Alfaro M, Mazaferro P, Golini R, Jorge L, Cecilia Della Vedova M, Ramirez D, Delsouc B, Casais M, Anzulovich AC. An intracerebroventricular injection of amyloid-beta peptide (1-42) aggregates modifies daily temporal organization of clock factors expression, protein carbonyls and antioxidant enzymes in the rat hippocampus. Brain Res 2021; 1767:147449. [PMID: 33771518 DOI: 10.1016/j.brainres.2021.147449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer disease (AD) is the most frequent form of dementia in the elderly. It is characterized by the deterioration of memory and learning. The histopathological hallmarks of AD include the presence of extracellular deposits of amyloid beta peptide, intracellular neurofibrillary tangles, neuron and synapse loss, in the brain, including the hippocampus. Accumulation of Aβ peptide causes an increase in intracellular reactive oxygen species (ROS) and free radicals associated to a deficient antioxidant defense system. Besides oxidative stress and cognitive deficit, AD patients show alterations in their circadian rhythms. The objective of this work was to investigate the effects of an intracerebroventricular injection of amyloid beta peptide Aβ(1-42) aggregates on temporal patterns of protein oxidation, antioxidant enzymes and clock factors in the rat hippocampus. Four-month-old male Holtzman rats divided into the groups control (CO) and Aβ-injected (Aβ), were maintained under 12 h-light12h-dark conditions and received water and food ad-libitum. Hippocampus samples were isolated every 6 h during a 24 h period. Our results showed daily patterns of protein carbonyls, catalase (CAT) and glutathione peroxidase (GPx) expression and activity, as well as Rorα and Rev-erbß mRNA, in the rat hippocampus. Interestingly, an intracerebroventricular injection of Aβ aggregates modified daily oscillation of protein carbonyls levels, phase-shifted daily rhythms of clock genes and had a differential effect on the daily expression and activity of CAT and GPx. Thus, Aβ aggregates might affect clock-mediated transcriptional regulation of antioxidant enzymes, by affecting the formation of BMAL1:CLOCK heterodimer, probably, as a consequence of the alteration of the redox state observed in rats injected with Aβ.
Collapse
Affiliation(s)
| | - Mauro Alfaro
- Laboratory of Chronobiology, Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Paula Mazaferro
- Laboratory of Chronobiology, Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Rebeca Golini
- Laboratory of Chronobiology, Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Leporatti Jorge
- Faculty of Economic, Legal and Social Sciences, National University of San Luis (UNSL), Campus Universitario, Ruta Prov. N° 55 (Ex. 148) Extremo Norte, D5700HHW San Luis, Argentina
| | - Maria Cecilia Della Vedova
- Institute of Chemistry-San Luis,(INQUISAL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Darío Ramirez
- Laboratory of Experimental & Translational Medicine, Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Belén Delsouc
- Laboratory of Biology Reproduction, Multidisciplinary Institute of Biological Res-earch-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Marilina Casais
- Laboratory of Biology Reproduction, Multidisciplinary Institute of Biological Res-earch-San Luis (IMIBIO-SL), National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina
| | - Ana Cecilia Anzulovich
- Laboratory of Chronobiology, Av Ejército de los Andes N° 950, D5700HHW San Luis, Argentina.
| |
Collapse
|
12
|
Bagheri S, Saboury AA. What role do metals play in Alzheimer's disease? JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02181-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Low Serum Magnesium is Associated with Incident Dementia in the ARIC-NCS Cohort. Nutrients 2020; 12:nu12103074. [PMID: 33050118 PMCID: PMC7600951 DOI: 10.3390/nu12103074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 01/02/2023] Open
Abstract
Higher serum magnesium is associated with lower risk of multiple morbidities, including diabetes, stroke, and atrial fibrillation, but its potential neuroprotective properties have also been gaining traction in cognitive function and decline research. We studied 12,040 participants presumed free of dementia in the Atherosclerosis Risk in Communities (ARIC) study. Serum magnesium was measured in fasting blood samples collected in 1990–1992. Dementia status was ascertained through cognitive examinations in 2011–2013, 2016–2017, and 2018–2019, along with informant interviews and indicators of dementia-related hospitalization events and death. Participants’ cognitive functioning capabilities were assessed up to five times between 1990–1992 and 2018–2019. The cognitive function of participants who did not attend follow-up study visits was imputed to account for attrition. We identified 2519 cases of dementia over a median follow-up period of 24.2 years. The lowest quintile of serum magnesium was associated with a 24% higher rate of incident dementia compared to those in the highest quintile of magnesium (HR, 1.24; 95% CI, 1.07, 1.44). No relationship was found between serum magnesium and cognitive decline in any cognitive domain. Low midlife serum magnesium is associated with increased risk of incident dementia, but does not appear to impact rates of cognitive decline.
Collapse
|
14
|
Arslan J, Jamshed H, Qureshi H. Early Detection and Prevention of Alzheimer's Disease: Role of Oxidative Markers and Natural Antioxidants. Front Aging Neurosci 2020; 12:231. [PMID: 32848710 PMCID: PMC7397955 DOI: 10.3389/fnagi.2020.00231] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/01/2020] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress (OS) contributes to Alzheimer’s disease (AD) pathology. OS can be a result of increased reactive oxygen/nitrogen species, reduced antioxidants, oxidatively damaged molecules, and/or a combination of these factors. Scientific literature is scarce for the markers of OS-specific for detecting AD at an early stage. The first aim of the current review is to provide an overview of the potential OS markers in the brain, cerebrospinal fluid (CSF), blood and/or urine that can be used for early diagnosis of human AD. The reason for exploring OS markers is that the proposed antioxidant therapies against AD appear to start too late to be effective. The second aim is to evaluate the evidence for natural antioxidants currently proposed to prevent or treat AD symptoms. To address these two aims, we critically evaluated the studies on humans in which various OS markers for detecting AD at an early stage were presented. Non-invasive OS markers that can detect mild cognitive impairment (MCI) and AD at an early stage in humans with greater specificity and sensitivity are primarily related to lipid peroxidation. However, a combination of OS markers, family history, and other biochemical tests are needed to detect the disease early on. We also report that the long-term use of vitamins (vitamin E as in almonds) and polyphenol-rich foods (curcumin/curcuminoids of turmeric, ginkgo biloba, epigallocatechin-3-gallate in green tea) seem justified for ameliorating AD symptoms. Future research on humans is warranted to justify the use of natural antioxidants.
Collapse
Affiliation(s)
- Jamshed Arslan
- Department of Basic Medical Sciences, Faculty of Pharmacy, Barrett Hodgson University, Karachi, Pakistan
| | - Humaira Jamshed
- Department of Integrated Sciences and Mathematics, Dhanani School of Science and Engineering, Habib University, Karachi, Pakistan
| | - Humaira Qureshi
- Department of Integrated Sciences and Mathematics, Dhanani School of Science and Engineering, Habib University, Karachi, Pakistan
| |
Collapse
|
15
|
Minireview Exploring the Biological Cycle of Vitamin B3 and Its Influence on Oxidative Stress: Further Molecular and Clinical Aspects. Molecules 2020; 25:molecules25153323. [PMID: 32707945 PMCID: PMC7436124 DOI: 10.3390/molecules25153323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Vitamin B3, or niacin, is one of the most important compounds of the B-vitamin complex. Recent reports have demonstrated the involvement of vitamin B3 in a number of pivotal functions which ensure that homeostasis is maintained. In addition, the intriguing nature of its synthesis and the underlying mechanism of action of vitamin B3 have encouraged further studies aimed at deepening our understanding of the close link between the exogenous supply of B3 and how it activates dependent enzymes. This crucial role can be attributed to the gut microflora and its ability to shape human behavior and development by mediating the bioavailability of metabolites. Recent studies have indicated a possible interconnection between the novel coronavirus and commensal bacteria. As such, we have attempted to explain how the gastrointestinal deficiencies displayed by SARS-CoV-2-infected patients arise. It seems that the stimulation of a proinflammatory cascade and the production of large amounts of reactive oxygen species culminates in the subsequent loss of host eubiosis. Studies of the relationhip between ROS, SARS-CoV-2, and gut flora are sparse in the current literature. As an integrated component, oxidative stress (OS) has been found to negatively influence host eubiosis, in vitro fertilization outcomes, and oocyte quality, but to act as a sentinel against infections. In conclusion, research suggests that in the future, a healthy diet may be considered a reliable tool for maintaining and optimizing our key internal parameters.
Collapse
|
16
|
Peña-Bautista C, Álvarez L, Durand T, Vigor C, Cuevas A, Baquero M, Vento M, Hervás D, Cháfer-Pericás C. Clinical Utility of Plasma Lipid Peroxidation Biomarkers in Alzheimer's Disease Differential Diagnosis. Antioxidants (Basel) 2020; 9:antiox9080649. [PMID: 32707935 PMCID: PMC7464465 DOI: 10.3390/antiox9080649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Differential diagnosis of Alzheimer's disease (AD) is a complex task due to the clinical similarity among neurodegenerative diseases. Previous studies showed the role of lipid peroxidation in early AD development. However, the clinical validation of potential specific biomarkers in minimally invasive samples constitutes a great challenge in early AD diagnosis. METHODS Plasma samples from participants classified into AD (n = 138), non-AD (including MCI and other dementias not due to AD) (n = 70) and healthy (n = 50) were analysed. Lipid peroxidation compounds (isoprostanes, isofurans, neuroprostanes, neurofurans) were determined by ultra-performance liquid chromatography coupled with tandem mass spectrometry. Statistical analysis for biomarkers' clinical validation was based on Elastic Net. RESULTS A two-step diagnosis model was developed from plasma lipid peroxidation products to diagnose early AD specifically, and a bootstrap validated AUC of 0.74 was obtained. CONCLUSION A promising AD differential diagnosis model was developed. It was clinically validated as a screening test. However, further external validation is required before clinical application.
Collapse
Affiliation(s)
- Carmen Peña-Bautista
- Neonatal Research Unit, Health Research Institute La Fe, 46026 Valencia, Spain; (C.P.-B.); (M.V.)
| | - Lourdes Álvarez
- Neurology Unit, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (L.A.); (A.C.); (M.B.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, 34093 Montpellier, France; (T.D.); (C.V.)
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS ENSCM, 34093 Montpellier, France; (T.D.); (C.V.)
| | - Ana Cuevas
- Neurology Unit, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (L.A.); (A.C.); (M.B.)
| | - Miguel Baquero
- Neurology Unit, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain; (L.A.); (A.C.); (M.B.)
| | - Máximo Vento
- Neonatal Research Unit, Health Research Institute La Fe, 46026 Valencia, Spain; (C.P.-B.); (M.V.)
| | - David Hervás
- Biostatistical Unit, Health Research Institute La Fe, 46026 Valencia, Spain;
| | - Consuelo Cháfer-Pericás
- Neonatal Research Unit, Health Research Institute La Fe, 46026 Valencia, Spain; (C.P.-B.); (M.V.)
- Correspondence: ; Tel.: +34-961-246-721; Fax: +34-961-246-620
| |
Collapse
|
17
|
Ciobica A, Padurariu M, Curpan A, Antioch I, Chirita R, Stefanescu C, Luca AC, Tomida M. Minireview on the Connections between the Neuropsychiatric and Dental Disorders: Current Perspectives and the Possible Relevance of Oxidative Stress and Other Factors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6702314. [PMID: 32685098 PMCID: PMC7345607 DOI: 10.1155/2020/6702314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/21/2020] [Indexed: 01/14/2023]
Abstract
Although the connections between neuropsychiatric and dental disorders attracted the attention of some research groups for more than 50 years now, there is a general opinion in the literature that it remains a clearly understudied and underrated topic, with many unknowns and a multitude of challenges for the specialists working in both these areas of research. In this way, considering the previous experience of our groups in these individual matters which are combined here, we are summarizing in this minireport the current status of knowledge on the connections between neuropsychiatric and dental manifestations, as well as some general ideas on how oxidative stress, pain, music therapy or even irritable bowel syndrome-related manifestations could be relevant in this current context and summarize some current approaches in this matter.
Collapse
Affiliation(s)
- Alin Ciobica
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, Iasi, Romania
| | - Manuela Padurariu
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, Iasi, Romania
| | - Alexandrina Curpan
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Bd. Carol I, 20A, 700505 Iași, Romania
| | - Iulia Antioch
- Department of Research, Faculty of Biology, “Alexandru Ioan Cuza” University of Iasi, Carol I Avenue, 20A, Iasi, Romania
| | - Roxana Chirita
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, Iasi, Romania
| | - Cristinel Stefanescu
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, Iasi, Romania
| | - Alina-Costina Luca
- Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, Iasi, Romania
| | - Mihoko Tomida
- Department of Oral Science, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
18
|
Lefter R, Ciobica A, Antioch I, Ababei DC, Hritcu L, Luca AC. Oxytocin Differentiated Effects According to the Administration Route in a Prenatal Valproic Acid-Induced Rat Model of Autism. ACTA ACUST UNITED AC 2020; 56:medicina56060267. [PMID: 32485966 PMCID: PMC7353871 DOI: 10.3390/medicina56060267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022]
Abstract
Background and objectives: The hormone oxytocin (OXT) has already been reported in both human and animal studies for its promising therapeutic potential in autism spectrum disorder (ASD), but the comparative effectiveness of various administration routes, whether central or peripheral has been insufficiently studied. In the present study, we examined the effects of intranasal (IN) vs. intraperitoneal (IP) oxytocin in a valproic-acid (VPA) autistic rat model, focusing on cognitive and mood behavioral disturbances, gastrointestinal transit and central oxidative stress status. Materials and Methods: VPA prenatally-exposed rats (500 mg/kg; age 90 days) in small groups of 5 (n = 20 total) were given OXT by IP injection (10 mg/kg) for 8 days consecutively or by an adapted IN pipetting protocol (12 IU/kg, 20 μL/day) for 4 consecutive days. Behavioral tests were performed during the last three days of OXT treatment, and OXT was administrated 20 minutes before each behavioral testing for each rat. Biochemical determination of oxidative stress markers in the temporal area included superoxide dismutase (SOD), glutathione peroxidase (GPx) and malondialdehyde (MDA). A brief quantitative assessment of fecal discharge over a period of 24 hours was performed at the end of the OXT treatment to determine differences in intestinal transit. Results: OXT improved behavioral and oxidative stress status in both routes of administration, but IN treatment had significantly better outcome in improving short-term memory, alleviating depressive manifestations and mitigating lipid peroxidation in the temporal lobes. Significant correlations were also found between behavioral parameters and oxidative stress status in rats after OXT administration. The quantitative evaluation of the gastrointestinal (GI) transit indicated lower fecal pellet counts in the VPA group and homogenous average values for the control and both OXT treated groups. Conclusions: The data from the present study suggest OXT IN administration to be more efficient than IP injections in alleviating autistic cognitive and mood dysfunctions in a VPA-induced rat model. OXT effects on the cognitive and mood behavior of autistic rats may be associated with its effects on oxidative stress. Additionally, present results provide preliminary evidence that OXT may have a balancing effect on gastrointestinal motility.
Collapse
Affiliation(s)
- Radu Lefter
- Center of Biomedical Research, Romanian Academy, B dul Carol I, No 8, 700505 Iasi, Romania;
| | - Alin Ciobica
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I, No 11, 700506 Iasi, Romania;
- Correspondence: (A.C.); (L.H.)
| | - Iulia Antioch
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University, B dul Carol I, No 11, 700506 Iasi, Romania;
| | - Daniela Carmen Ababei
- “Grigore T.Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (A.-C.L.)
| | - Luminita Hritcu
- Faculty of Veterinary Medicine, University of Agricultural Sciencies and Veterinary Medicine “Ion Ionescu de la Brad” of Iasi, 3rd Mihail Sadoveanu Alley, 700490 Iasi, Romania
- Correspondence: (A.C.); (L.H.)
| | - Alina-Costina Luca
- “Grigore T.Popa” University of Medicine and Pharmacy, 16, Universitatii Street, 700115 Iasi, Romania; (D.C.A.); (A.-C.L.)
| |
Collapse
|
19
|
Al-Ghazali K, Eltayeb S, Musleh A, Al-Abdi T, Ganji V, Shi Z. Serum Magnesium and Cognitive Function Among Qatari Adults. Front Aging Neurosci 2020; 12:101. [PMID: 32351381 PMCID: PMC7174684 DOI: 10.3389/fnagi.2020.00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Previous studies found that low blood magnesium increases the risk of several diseases such as cardiovascular diseases (CVD), diabetes, and hypertension. These ailments are associated with declined cognitive function. Objective: We aimed to examine the association between serum magnesium and cognitive function among Qatari adults. In addition, we assessed the interaction relation between low serum magnesium, hypertension, and diabetes in relation to cognitive function. Method: Data from 1,000 Qatari participants aged ≥20 years old who participated in the Qatar Biobank (QBB) Study were analyzed. Serum magnesium was measured by an automated calorimetric method and suboptimal magnesium was characterized by <0.85 mmol/l. Cognitive function was determined by measuring the mean reaction time (MRT) based on a computer-based, self-administered test. Multivariable linear regression was used to examine the relation between serum magnesium concentrations and cognitive function. Results: The prevalence of suboptimal magnesium was 57.1%. Across the four quartiles of serum magnesium from the lowest to the highest, the regression coefficients (95% CI) for MRT were 0 (reference), −17.8, −18.3, and −31.9 (95% CI 2.4–3.1; p for trend 0.05). The presence of hypertension and diabetes significantly increased the MRT. Women with suboptimal magnesium and hypertension had the highest MRT. Conclusion: The prevalence of suboptimal magnesium is high in Qatar. There was a direct association between serum magnesium and cognitive function. Low magnesium concentrations were associated with a longer MRT.
Collapse
|
20
|
Zhang Y, Li Y, Wang R, Sha G, Jin H, Ma L. Elevated Urinary AD7c-NTP Levels in Older Adults with Hypertension and Cognitive Impairment. J Alzheimers Dis 2020; 74:237-244. [PMID: 32007954 DOI: 10.3233/jad-190944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yaxin Zhang
- Department of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yun Li
- Department of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Rong Wang
- Central Laboratory, Xuanwu Hospital Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Guiming Sha
- Department of Geriatrics, Beijing Geriatric Hospital, Beijing, China
| | - He Jin
- Central Laboratory, Xuanwu Hospital Capital Medical University, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
21
|
Shukla D, Mandal PK, Tripathi M, Vishwakarma G, Mishra R, Sandal K. Quantitation of in vivo brain glutathione conformers in cingulate cortex among age-matched control, MCI, and AD patients using MEGA-PRESS. Hum Brain Mapp 2019; 41:194-217. [PMID: 31584232 PMCID: PMC7268069 DOI: 10.1002/hbm.24799] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/22/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress (OS) plays an important role in Alzheimer's disease (AD) and glutathione (GSH) mitigates this effect by maintaining redox-imbalance and free-radical neutralization. Quantified brain GSH concentration provides distinct information about OS among age-matched normal control (NC), mild cognitive impairment (MCI) and AD patients. We report alterations of in vivo GSH conformers, along with the choline, creatine, and N-acetylaspartate levels in the cingulate cortex (CC) containing anterior (ACC) and posterior (PCC) regions of 64 (27 NC, 19 MCI, and 18 AD) participants using MEscher-GArwood-Point-RESolved spectroscopy sequence. Result indicated, tissue corrected GSH depletion in PCC among MCI (p = .001) and AD (p = .028) and in ACC among MCI (p = .194) and AD (p = .025) as compared to NC. Effects of the group, region, and group × region on GSH with age and gender as covariates were analyzed using a generalized linear model with Bonferroni correction for multiple comparisons. A significant effect of group with GSH depletion in AD and MCI was observed as compared to NC. Receiver operator characteristic (ROC) analysis of GSH level in CC differentiated between MCI and NC groups with an accuracy of 82.8% and 73.5% between AD and NC groups. Multivariate ROC analysis for the combined effect of the GSH alteration in both ACC and PCC regions provided improved diagnostic accuracy of 86.6% for NC to MCI conversion and 76.4% for NC to AD conversion. We conclude that only closed GSH conformer depletion in the ACC and PCC regions is critical and constitute a potential biomarker for AD.
Collapse
Affiliation(s)
- Deepika Shukla
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Pravat Kumar Mandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India.,Florey Institute of Neuroscience and Mental Health, Melbourne School of Medicine Campus, Melbourne, Australia
| | - Manjari Tripathi
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Gayatri Vishwakarma
- Department of Biostatistics, Indian Spinal Injuries Centre, New Delhi, India
| | - Ritwick Mishra
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| | - Kanika Sandal
- Neuroimaging and Neurospectroscopy (NINS) Laboratory, National Brain Research Centre, Gurgaon, India
| |
Collapse
|
22
|
Martins AC, Morcillo P, Ijomone OM, Venkataramani V, Harrison FE, Lee E, Bowman AB, Aschner M. New Insights on the Role of Manganese in Alzheimer's Disease and Parkinson's Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3546. [PMID: 31546716 PMCID: PMC6801377 DOI: 10.3390/ijerph16193546] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/19/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022]
Abstract
Manganese (Mn) is an essential trace element that is naturally found in the environment and is necessary as a cofactor for many enzymes and is important in several physiological processes that support development, growth, and neuronal function. However, overexposure to Mn may induce neurotoxicity and may contribute to the development of Alzheimer's disease (AD) and Parkinson's disease (PD). The present review aims to provide new insights into the involvement of Mn in the etiology of AD and PD. Here, we discuss the critical role of Mn in the etiology of these disorders and provide a summary of the proposed mechanisms underlying Mn-induced neurodegeneration. In addition, we review some new therapy options for AD and PD related to Mn overload.
Collapse
Affiliation(s)
- Airton Cunha Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| | - Patricia Morcillo
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| | - Omamuyovwi Meashack Ijomone
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology Akure, Akure 340252, Nigeria;
| | - Vivek Venkataramani
- Department of Hematology and Medical Oncology and Institute of Pathology, University Medical Center Göttingen (UMG), 37075 Göttingen, Germany;
| | - Fiona Edith Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32301, USA;
| | - Aaron Blaine Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA (P.M.)
| |
Collapse
|
23
|
Kot K, Kosik-Bogacka D, Łanocha-Arendarczyk N, Malinowski W, Szymański S, Mularczyk M, Tomska N, Rotter I. Interactions between 14 Elements in the Human Placenta, Fetal Membrane and Umbilical Cord. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091615. [PMID: 31071998 PMCID: PMC6540151 DOI: 10.3390/ijerph16091615] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/15/2022]
Abstract
The aim of the study was to investigate relationships between the concentrations of macroelements (Ca), microelements (Cr, Cu, Fe, Mn, Mo, Ni, Sn, Sr, V, Zn) and heavy metals (Ag, Cd, Pb) in the placenta, fetal membrane and umbilical cord. Furthermore, we examined relationships between the concentrations of these metals in the studied afterbirths and maternal age, gestational age, placenta parameters (breadth, length, weight) and newborn parameters (length, weight and Apgar score). This study confirms previously reported Zn-Cd, Pb-Cd and Ni-Pb interactions in the placenta. New types of interactions in the placenta, fetal membrane and umbilical cord were also noted. Analysis of the correlations between metal elements in the afterbirths (placenta, fetal membrane and umbilical cord) and biological parameters showed the following relationships: maternal age and Mn (in the fetal membrane); gestational age and Cr, Fe, Zn (in the fetal membrane), Ag and Cu (in the umbilical cord); newborn’s length and Sr (in the placenta), Ag (in the umbilical cord); newborn’s weight and Sr (in the placenta), Cu (in the fetal membrane), Ag (in the umbilical cord); Apgar score and Ca, Cr and Ni (in the umbilical cord); placenta’s length and Cr and Sn (in the fetal membrane), Cu (in the umbilical cord); placenta’s width and Mo, Pb (in the placenta) and placenta weight and Sr (in the placenta), Ag, Fe, Mn (in the fetal membrane). The results show the influence of metals on the placenta, mother and newborn parameters, and the same point indicates the essential trace elements during the course of pregnancy.
Collapse
Affiliation(s)
- Karolina Kot
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland.
| | - Danuta Kosik-Bogacka
- Independent of Pharmaceutical Botany, Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland.
| | - Natalia Łanocha-Arendarczyk
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland.
| | - Witold Malinowski
- Department of Obstetrical and Gynecological Nursing, Pomeranian Medical University in Szczecin, Zolnierska 48, 71-210 Szczecin, Poland.
| | - Sławomir Szymański
- Department of Obstetrical and Gynecological Nursing, Pomeranian Medical University in Szczecin, Zolnierska 48, 71-210 Szczecin, Poland.
| | - Maciej Mularczyk
- Chair and Department of Human and Clinical Anatomy, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland.
| | - Natalia Tomska
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Zolnierska 48, 71-210 Szczecin, Poland.
| | - Iwona Rotter
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, Zolnierska 48, 71-210 Szczecin, Poland.
| |
Collapse
|
24
|
Peña-Bautista C, Baquero M, Vento M, Cháfer-Pericás C. Free radicals in Alzheimer's disease: Lipid peroxidation biomarkers. Clin Chim Acta 2019; 491:85-90. [DOI: 10.1016/j.cca.2019.01.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
|
25
|
Cariccio VL, Samà A, Bramanti P, Mazzon E. Mercury Involvement in Neuronal Damage and in Neurodegenerative Diseases. Biol Trace Elem Res 2019; 187:341-356. [PMID: 29777524 DOI: 10.1007/s12011-018-1380-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis are characterized by a chronic and selective process of neuronal cell death. Although the causes of neurodegenerative diseases remain still unknown, it is now a well-established idea that more factors, such as genetic, endogenous, and environmental, are involved. Among environmental causes, the accumulation of mercury, a heavy metal considered a toxic agent, was largely studied as a probable factor involved in neurodegenerative disease course. Mercury exists in three main forms: elemental mercury, inorganic mercury, and organic mercury (methylmercury and ethylmercury). Sources of elemental mercury can be natural (volcanic emission) or anthropogenic (coal-fired electric utilities, waste combustion, hazardous-waste incinerators, and gold extraction). Moreover, mercury is still used as an antiseptic, as a medical preservative, and as a fungicide. Dental amalgam can emit mercury vapor. Mercury vapor, being highly volatile and lipid soluble, can cross the blood-brain barrier and the lipid cell membranes and can be accumulated into the cells in its inorganic forms. Also, methylmercury can pass through blood-brain and placental barriers, causing serious damage in the central nervous system. This review describes the toxic effects of mercury in cell cultures, in animal models, and in patients with neurodegenerative diseases. In vitro experiments showed that mercury exposure was principally involved in oxidative stress and apoptotic processes. Moreover, motor and cognitive impairment and neural loss have been confirmed in various studies performed in animal models. Finally, observational studies on patients with neurodegenerative diseases showed discordant data about a possible mercury involvement.
Collapse
Affiliation(s)
- Veronica Lanza Cariccio
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Annalisa Samà
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124, Messina, Italy.
| |
Collapse
|
26
|
Kim JH, He MT, Kim MJ, Yang CY, Shin YS, Yokozawa T, Park CH, Cho EJ. Safflower (Carthamus tinctorius L.) seed attenuates memory impairment induced by scopolamine in mice via regulation of cholinergic dysfunction and oxidative stress. Food Funct 2019; 10:3650-3659. [DOI: 10.1039/c9fo00615j] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Safflower seed extract containing serotonin and its derivatives improves scopolamine-induced memory impairment, it could be a promising herbal medicine for the treatment of dementia.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Food Science and Nutrition & Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Mei Tong He
- Department of Food Science and Nutrition & Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Min Jo Kim
- Department of Medicinal Crop Research
- National Institute of Horticultural and Herbal Science
- Rural Development Administration
- Eumseong 27709
- Republic of Korea
| | - Chang Yeol Yang
- Department of Medicinal Crop Research
- National Institute of Horticultural and Herbal Science
- Rural Development Administration
- Eumseong 27709
- Republic of Korea
| | - Yu Su Shin
- Department of Medicinal Crop Research
- National Institute of Horticultural and Herbal Science
- Rural Development Administration
- Eumseong 27709
- Republic of Korea
| | - Takako Yokozawa
- Graduate School of Science and Engineering for Research
- University of Toyama
- Toyama 930-8555
- Japan
| | - Chan Hum Park
- Department of Medicinal Crop Research
- National Institute of Horticultural and Herbal Science
- Rural Development Administration
- Eumseong 27709
- Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
27
|
Ayromlou H, Pourvahed P, Jahanjoo F, Dolatkhah H, Shakouri SK, Dolatkhah N. Dietary and Serum Level of Antioxidants in the Elderly with Mild Impaired and Normal Cognitive Function: A Case-Control Study. IRANIAN RED CRESCENT MEDICAL JOURNAL 2018. [DOI: 10.5812/ircmj.64847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
28
|
Kirkland AE, Sarlo GL, Holton KF. The Role of Magnesium in Neurological Disorders. Nutrients 2018; 10:E730. [PMID: 29882776 PMCID: PMC6024559 DOI: 10.3390/nu10060730] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022] Open
Abstract
Magnesium is well known for its diverse actions within the human body. From a neurological standpoint, magnesium plays an essential role in nerve transmission and neuromuscular conduction. It also functions in a protective role against excessive excitation that can lead to neuronal cell death (excitotoxicity), and has been implicated in multiple neurological disorders. Due to these important functions within the nervous system, magnesium is a mineral of intense interest for the potential prevention and treatment of neurological disorders. Current literature is reviewed for migraine, chronic pain, epilepsy, Alzheimer’s, Parkinson’s, and stroke, as well as the commonly comorbid conditions of anxiety and depression. Previous reviews and meta-analyses are used to set the scene for magnesium research across neurological conditions, while current research is reviewed in greater detail to update the literature and demonstrate the progress (or lack thereof) in the field. There is strong data to suggest a role for magnesium in migraine and depression, and emerging data to suggest a protective effect of magnesium for chronic pain, anxiety, and stroke. More research is needed on magnesium as an adjunct treatment in epilepsy, and to further clarify its role in Alzheimer’s and Parkinson’s. Overall, the mechanistic attributes of magnesium in neurological diseases connote the macromineral as a potential target for neurological disease prevention and treatment.
Collapse
Affiliation(s)
- Anna E Kirkland
- Department of Psychology, Behavior, Cognition and Neuroscience Program, American University, Washington, DC 20016, USA.
| | - Gabrielle L Sarlo
- Department of Psychology, Behavior, Cognition and Neuroscience Program, American University, Washington, DC 20016, USA.
| | - Kathleen F Holton
- Department of Health Studies, American University, Washington, DC 20016, USA.
- Center for Behavioral Neuroscience, American University, Washington, DC 20016, USA.
| |
Collapse
|