1
|
Tian D, Zheng XY, Hou SL, Yu ZW, Wu Y, Liu PZ, Liu LX, Chen YX, Zhao Y, Li Y, Tang HT, Chen WY, Liu YL, Zhang CF, Wang Y, Wen HY, Pu Q, Sato M, Liu LX. Baicalein relieves lung graft ischemia-reperfusion injury by reducing advanced glycation endproducts: From screens to mechanisms. J Heart Lung Transplant 2025; 44:932-947. [PMID: 39954833 DOI: 10.1016/j.healun.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND The lack of effective drugs for treating ischemia-reperfusion injury (IRI) in lung transplants (LTx) remains an issue. Traditional Chinese medicine (TCM) ingredients are promising but poorly studied in LTx. This study aimed to identify potential ingredients and elucidate their mechanisms. METHODS Ten TCM ingredients, including (-)-epigallocatechin-3-gallate, quercetin, wogonin, triptolide, berberine, fisetin, coumestrol, luteolin, nobiletin, and baicalein, were identified as promising candidates using a network pharmacology approach. All the candidates were tested for their ability to improve clamp-induced IRI. Multiple-dose validation was conducted in LTx models, with a focus on baicalein. The pharmacological efficacy of baicalin was verified in an ex-vivo rat lung perfusion model. RESULTS All ten TCM ingredients improved clamp-induced IRI. Multiple-dose validation confirmed that baicalein mitigated IRI-induced graft damage and dysfunction. Baicalein reduced the elevated levels of advanced glycation endproducts (AGEs) and their downstream pathogenic effects induced by IRI. Exogenous AGEs counteracted the therapeutic effect of baicalein. Baicalein inhibited AGE formation by modulating glucose oxidation rather than polyol metabolism. CONCLUSIONS This study provides a laboratory foundation for the use of TCM ingredients in the treatment of IRI in LTx.
Collapse
Affiliation(s)
- Dong Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiang-Yun Zheng
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sen-Lin Hou
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeng-Wei Yu
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Wu
- Heart and Lung Transplant Research Laboratory, North Sichuan Medical College, Nanchong 637000, China
| | - Pei-Zhi Liu
- Heart and Lung Transplant Research Laboratory, North Sichuan Medical College, Nanchong 637000, China
| | - Lin-Xi Liu
- Heart and Lung Transplant Research Laboratory, North Sichuan Medical College, Nanchong 637000, China
| | - Yu-Xuan Chen
- Heart and Lung Transplant Research Laboratory, North Sichuan Medical College, Nanchong 637000, China
| | - Yang Zhao
- Heart and Lung Transplant Research Laboratory, North Sichuan Medical College, Nanchong 637000, China
| | - Yang Li
- Heart and Lung Transplant Research Laboratory, North Sichuan Medical College, Nanchong 637000, China
| | - Hong-Tao Tang
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei-Yang Chen
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang 110002, China
| | - Ya-Ling Liu
- Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chuan-Fen Zhang
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yun Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong-Ying Wen
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Masaaki Sato
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Lun-Xu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; Lung Transplant Research Laboratory, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Devos L, Dubois A, Fieuws S, Vanden Berghe T, Pirenne J, Ceulemans LJ, Monbaliu D, Jochmans I. The Efficacy of Ferroptosis Inhibition on Ischemia-Reperfusion Injury of Abdominal Organs: A Systematic Review and Meta-analysis. Transplantation 2025:00007890-990000000-01071. [PMID: 40269342 DOI: 10.1097/tp.0000000000005405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Solid organ transplantation is hampered by complications that arise after ischemia-reperfusion injury (IRI), a detrimental type of injury for which no adequate treatment options are available. Ferroptosis, an iron-dependent form of regulated cell death, is a major driver of IRI. This systematic review and meta-analysis summarizes the effects of pharmacological ferroptosis inhibition in abdominal organs in the setting of IRI. PubMed, Embase, Web of Science and Cochrane were searched for concepts "ferroptosis" and "IRI" in August 2023. To allow for meta-analyses, inhibitors were divided into different intervention pathways: (I) lipophilic radical scavengers, (II) iron chelators, (III) antioxidants, (IV) lipid metabolism inhibitors, (V) combination treatments, and (VI) others. When available, organ function and injury effect sizes were extracted and used for random-effects meta-analyses. In total 79 articles were included, describing 59 unique inhibitors in kidney, liver, and intestinal IRI. No studies in pancreas were found. Overall bias and study quality was unclear and average to low, respectively. Apart from 1 clinical study, all inhibitors were tested in preclinical settings. The vast majority of the studies showed ferroptosis inhibition to be protective against IRI under various treatment conditions. In liver and kidney IRI, meta-analyses on standardized effect sizes from 43 articles showed a combined protective effect against IRI compared with a nontreated controls for all analyzed intervention pathways. In conclusion, ferroptosis inhibition protects against abdominal IRI in preclinical research. Important questions regarding optimal intervention pathway, bioavailability, optimal dosage, side effects etc. should be addressed before clinical introduction.
Collapse
Affiliation(s)
- Lene Devos
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Antoine Dubois
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Steffen Fieuws
- Department of Public Health, Interuniversity Centre for Biostatistics and Statistical Bioinformatics, KU Leuven, Leuven, Belgium
| | - Tom Vanden Berghe
- Cell Death Signaling Lab, Department of Biomedical Sciences, Inflamed Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Jacques Pirenne
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Department of Chronic Diseases and Metabolism, BREATHE, KU Leuven, Leuven, Belgium
- Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Diethard Monbaliu
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation, Transplantation Research Group, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
- Abdominal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Tajbakhsh A, Hosseinpour-Soleimani F, Abedi M, Hashempur MH, Negahdaripour M. Modulation of Neuroinflammation in Poststroke Rehabilitation: The Role of 12/15-Lipoxygenase Inhibition and Baicalein. Stroke 2025; 56:1092-1103. [PMID: 40052290 DOI: 10.1161/strokeaha.124.049048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Neuroinflammation significantly contributes to stroke pathophysiology, leading to tissue damage and neurological deficits. Baicalein, a potent 12/15-LOX (12/15-lipoxygenase) inhibitor, demonstrates neuroprotective effects by reducing inflammatory lipid mediators, modulating key inflammatory pathways, and attenuating oxidative stress. Experimental studies indicate that baicalein can diminish infarct size and neurological deficits while improving safety and tolerability. Combination therapies with baicalein show promise in enhancing stroke outcomes. Overall, targeting 12/15-LOX and employing baicalein represents a promising approach to modulating neuroinflammation and improving recovery in stroke patients. This review highlights the therapeutic potential of inhibiting the 12/15-LOX pathway and utilizing the natural compound baicalein to mitigate poststroke neuroinflammation.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center (A.T., M.A., M.N.), Shiraz University of Medical Sciences, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies (A.T.), Shiraz University of Medical Sciences, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies (A.T.), Shiraz University of Medical Sciences, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee (F.H.-S.), Shiraz University of Medical Sciences, Iran
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies (F.H.-S.), Shiraz University of Medical Sciences, Iran
| | - Mehdi Abedi
- Pharmaceutical Sciences Research Center (A.T., M.A., M.N.), Shiraz University of Medical Sciences, Iran
| | - Mohammad Hashem Hashempur
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine (M.H.H.), Shiraz University of Medical Sciences, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center (A.T., M.A., M.N.), Shiraz University of Medical Sciences, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy (M.N.), Shiraz University of Medical Sciences, Iran
| |
Collapse
|
4
|
Ren H, Feng J, Hong M, Liu Z, Muyey DM, Zhang Y, Xu Z, Tan Y, Ren F, Chang J, Chen X, Wang H. Baicalein attenuates oxidative damage in mice haematopoietic cells through regulation of PDGFRβ. Mol Cell Probes 2024; 76:101966. [PMID: 38866345 DOI: 10.1016/j.mcp.2024.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Platelet-derived growth factor receptor β (PDGFRβ) plays a crucial role in murine haematopoiesis. Baicalein (BAI), a naturally occurring flavonoid, can alleviate disease damage through anti-oxidative, anti-apoptotic, and anti-inflammatory mechanisms. However, whether BAI attenuates oxidative damage in murine haematopoietic cells by PDGFRβ remains unexplored. In this study, we utilized a tert-butyl hydroperoxide (TBHP)-induced BaF3 cell injury model and an ionising radiation (IR)-induced mice injury model to investigate the impact of the presence or absence of PDGFRβ on the pharmacological effects of BAI. In addition, the BAI-PDGFRβ interaction was characterized by molecular docking and dynamics simulations. The results show that a specific concentration of BAI led to increased cell viability, reduced reactive oxygen species (ROS) content, upregulated nuclear factor erythroid 2-related factor 2 (NRF2) expression, and its downstream target genes heme oxygenase 1 (HO-1) and NAD(P)H Quinone Dehydrogenase 1 (NQO1), and activated protein kinase B (AKT) pathway in cells expressing PDGFRβ plasmid and experiencing damage. Similarly, BAI elevated lineage-Sca1+cKIT+ (LSK) cell proportion, promoted haematopoietic restoration, enhanced NRF2-mediated antioxidant response in PDGFRβ+/+ mice. However, despite BAI usage, PDGFRβ knockout mice (PDGFRβ-/-) showed lower LSK proportion and less antioxidant capacity than the total body irradiation (TBI) group. Furthermore, we demonstrated an interaction between BAI and PDGFRβ at the molecular level. Collectively, our results indicate that BAI attenuates oxidative stress injury and helps promote haematopoietic cell recovery through regulation of PDGFRβ.
Collapse
Affiliation(s)
- Huanying Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jingyi Feng
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Minglin Hong
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zhuang Liu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Daniel Muteb Muyey
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yaofang Zhang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Zhifang Xu
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yanhong Tan
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Fanggang Ren
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jianmei Chang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiuhua Chen
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Hongwei Wang
- Institute of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
5
|
Guo S, Li Z, Liu Y, Cheng Y, Jia D. Ferroptosis: a new target for hepatic ischemia-reperfusion injury? Free Radic Res 2024; 58:396-416. [PMID: 39068663 DOI: 10.1080/10715762.2024.2386075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) can seriously affect graft survival and prognosis and is an unavoidable event during liver transplantation. Ferroptosis is a novel iron-dependent form of cell death characterized by iron accumulation and overwhelming lipid peroxidation; it differs morphologically, genetically, and biochemically from other well-known cell death types (autophagy, necrosis, and apoptosis). Accumulating evidence has shown that ferroptosis is involved in the pathogenesis of hepatic IRI, and targeting ferroptosis may be a promising therapeutic approach. Here, we review the pathways and phenomena involved in ferroptosis, explore the associations and implications of ferroptosis and hepatic IRI, and discuss possible strategies for modulating ferroptosis to alleviate the hepatic IRI.
Collapse
Affiliation(s)
- Shanshan Guo
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zexin Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yi Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Ying Cheng
- Department of Organ Transplantation, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Degong Jia
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Chen F, Zhan J, Al Mamun A, Tao Y, Huang S, Zhao J, Zhang Y, Xu Y, Du S, Lu W, Li X, Chen Z, Xiao J. Sulforaphane protects microvascular endothelial cells in lower limb ischemia/reperfusion injury mice. Food Funct 2023; 14:7176-7194. [PMID: 37462424 DOI: 10.1039/d3fo01801f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Background: Microvascular damage is a key pathological factor in acute lower limb ischemia/reperfusion (I/R) injury. Current evidence suggests that sulforaphane (SFN) protects tissue from I/R injury. However, the role of SFN in acute lower limb I/R injury remains elusive. This study aimed to investigate the role and potential mechanism of SFN in I/R-related microvascular damage in the limb. Methods: Limb viability was evaluated by laser Doppler imaging, tissue edema analysis and histological analysis. Western blotting and immunofluorescence were applied to analyze the levels of apoptosis, oxidative stress, autophagy, transcription factor EB (TFEB) activity and mucolipin 1 (MCOLN1)-calcineurin signaling pathway. Results: SFN administration significantly ameliorated I/R-induced hypoperfusion, tissue edema, skeletal muscle fiber injury and endothelial cell (EC) damage in the limb. Pharmacological inhibition of NFE2L2 (nuclear factor, erythroid 2 like 2) reversed the anti-oxidation and anti-apoptosis effects of SFN on ECs. Additionally, silencing of TFEB by interfering RNA abolished the SFN-induced autophagy restoration, anti-oxidant response and anti-apoptosis effects on ECs. Furthermore, silencing of MCOLN1 by interfering RNA and pharmacological inhibition of calcineurin inhibited the activity of TFEB induced by SFN, demonstrating that SFN regulates the activity of TFEB through the MCOLN1-calcineurin signaling pathway. Conclusion: SFN protects microvascular ECs against I/R injury by TFEB-mediated autophagy restoration and anti-oxidant response.
Collapse
Affiliation(s)
- Fanfeng Chen
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayu Zhan
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yibing Tao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shanshan Huang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaxin Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Yitie Xu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Shenghu Du
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Lu
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xiaokun Li
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Zimiao Chen
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| | - Jian Xiao
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
7
|
Kar F, Yıldız F, Hacioglu C, Kar E, Donmez DB, Senturk H, Kanbak G. LoxBlock-1 or Curcumin attenuates liver, pancreas and cardiac ferroptosis, oxidative stress and injury in Ischemia/reperfusion-damaged rats by facilitating ACSL/GPx4 signaling. Tissue Cell 2023; 82:102114. [PMID: 37210761 DOI: 10.1016/j.tice.2023.102114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
In this study, the effects of the pretreatment of Curcumin and LoxBlock-1 on liver, pancreas, and cardiac dysfunction following Ischemia-Reperfusion-induced (IR) Acute Kidney Injury (AKI) were investigated through the mechanisms of oxidative stress and ferroptosis. Total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) parameters in the tissue were analyzed to investigate the oxidative stress occurring in the liver, pancreas, and heart, and Acyl-Coa synthetase long-chain family member (ACSL4). Glutathione peroxidase 4 (GPx4) enzyme levels were also analyzed by ELISA to investigate the effect on ferroptosis. In addition, hematoxylin-eosin staining was performed for histopathological examination of the tissues. As a result of biochemical analyzes, it was observed that oxidative stress parameters increased significantly in the IR group. In addition, while the ACSL4 enzyme level increased in the IR group in all tissues, the GPx4 enzyme level decreased. In the histopathological examination, it was observed that IR caused serious damage to the heart, liver, and pancreas tissues. The present study shows that Curcumin and LoxBlock-1 have a protective effect on the liver, pancreas, and cardiac ferroptosis following the effect on AKI. In addition, Curcumin was found to be more effective than LoxBlock-1 in I/R injury with its antioxidant property.
Collapse
Affiliation(s)
- Fatih Kar
- Department of Medical Biochemistry, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Fatma Yıldız
- Department of Medical Laboratory Techniques, Health Services Vocational School, Alanya Alaaddin Keykubat University, Alanya, Turkey.
| | - Ceyhan Hacioglu
- Department of Biochemistry, Faculty of Pharmacy, Duzce University, Duzce, Turkey
| | - Ezgi Kar
- Training and Research Center, Kütahya Health Science University, Kütahya, Turkey
| | - Dilek Burukoglu Donmez
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Hakan Senturk
- Department of Biology, Faculty of Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Gungor Kanbak
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
8
|
Liu Y, Wan Y, Yi J, Zhang L, Cheng W. GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer 2023; 1878:188890. [PMID: 37001616 DOI: 10.1016/j.bbcan.2023.188890] [Citation(s) in RCA: 155] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
Glutathione peroxidase 4 (GPx4) moonlights as structural protein and antioxidase that powerfully inhibits lipid oxidation. In the past years, it is considered as a key regulator of ferroptosis, which takes role in the lipid and amine acid metabolism and influences the cell aging, oncogenesis, and cell death. More and more evidences show that targeting GPX4-induced ferroptosis is a promising strategy for disease therapy, especially cancer treatment. In view of these, we generalize the function of GPX4 and regulatory mechanism between GPX4 and ferroptosis, discuss its roles in the disease pathology, and focus on the recent advances of disease therapeutic potential.
Collapse
|
9
|
Guo J, Song Z, Yu J, Li C, Jin C, Duan W, Liu X, Liu Y, Huang S, Tuo Y, Pei F, Jian Z, Zhou P, Zheng S, Zou Z, Zhang F, Gong Q, Liang S. Hepatocyte-specific TMEM16A deficiency alleviates hepatic ischemia/reperfusion injury via suppressing GPX4-mediated ferroptosis. Cell Death Dis 2022; 13:1072. [PMID: 36572666 PMCID: PMC9792590 DOI: 10.1038/s41419-022-05518-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
Abstract
Ischemia/reperfusion (I/R)-induced liver injury with severe cell death is a major complication of liver transplantation. Transmembrane member 16A (TMEM16A), a component of hepatocyte Ca2+-activated chloride channel, has been implicated in a variety of liver diseases. However, its role in hepatic I/R injury remains unknown. Here, mice with hepatocyte-specific TMEM16A knockout or overexpression were generated to examine the effect of TMEM16A on hepatic I/R injury. TMEM16A expression increased in liver samples from patients and mice with I/R injury, which was correlated with liver damage progression. Hepatocyte-specific TMEM16A knockout alleviated I/R-induced liver damage in mice, ameliorating inflammation and ferroptotic cell death. However, mice with hepatic TMEM16A overexpression showed the opposite phenotype. In addition, TMEM16A ablation decreased inflammatory responses and ferroptosis in hepatocytes upon hypoxia/reoxygenation insult in vitro, whereas TMEM16A overexpression promoted the opposite effects. The ameliorating effects of TMEM16A knockout on hepatocyte inflammation and cell death were abolished by chemically induced ferroptosis, whereas chemical inhibition of ferroptosis reversed the potentiated role of TMEM16A in hepatocyte injury. Mechanistically, TMEM16A interacted with glutathione peroxidase 4 (GPX4) to induce its ubiquitination and degradation, thereby enhancing ferroptosis. Disruption of TMEM16A-GPX4 interaction abrogated the effects of TMEM16A on GPX4 ubiquitination, ferroptosis, and hepatic I/R injury. Our results demonstrate that TMEM16A exacerbates hepatic I/R injury by promoting GPX4-dependent ferroptosis. TMEM16A-GPX4 interaction and GPX4 ubiquitination are therefore indispensable for TMEM16A-regulated hepatic I/R injury, suggesting that blockades of TMEM16A-GPX4 interaction or TMEM16A inhibition in hepatocytes may represent promising therapeutic strategies for acute liver injury.
Collapse
Affiliation(s)
- Jiawei Guo
- grid.410654.20000 0000 8880 6009Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou, China
| | - Zihao Song
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jie Yu
- grid.284723.80000 0000 8877 7471Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chengyi Li
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Chenchen Jin
- grid.508040.90000 0004 9415 435XCenter for Neuro-Metabolism and Regeneration Research, The Bioland Laboratory, Guangzhou, China
| | - Wei Duan
- grid.410654.20000 0000 8880 6009Department of Oncology, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, China
| | - Xiu Liu
- grid.416466.70000 0004 1757 959XDepartment of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingying Liu
- grid.413428.80000 0004 1757 8466Guangzhou Women and Children’s Medical Center, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Shuai Huang
- grid.412534.5Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yonghua Tuo
- grid.412534.5Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fei Pei
- grid.12981.330000 0001 2360 039XDepartment of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China ,Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, China
| | - Zhengyang Jian
- Center For Drug Inspection of Guizhou Medical Products Administration, Guiyang, China
| | - Pengyu Zhou
- grid.416466.70000 0004 1757 959XDepartment of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- grid.416466.70000 0004 1757 959XDepartment of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhaowei Zou
- grid.284723.80000 0000 8877 7471Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Zhang
- grid.34477.330000000122986657Department of Radiology, University of Washington School of Medicine, Seattle, WA USA
| | - Quan Gong
- grid.410654.20000 0000 8880 6009Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Sijia Liang
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
10
|
Baicalein Relieves Ferroptosis-Mediated Phagocytosis Inhibition of Macrophages in Ovarian Endometriosis. Curr Issues Mol Biol 2022; 44:6189-6204. [PMID: 36547083 PMCID: PMC9777460 DOI: 10.3390/cimb44120422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Iron overload and oxidative stress have been reported to contribute to ferroptosis in endometriotic lesions. However, the possible roles of iron overload on macrophages in endometriosis (EMs) remain unknown. Based on recent reports by single-cell sequencing data of endometriosis, here we found significant upregulations of ferroptosis-associated genes in the macrophage of the endometriotic lesion. Additionally, there was an elevated expression of HMOX1, FTH1, and FTL in macrophages of peritoneal fluid in EMs, as well as iron accumulation in the endometriotic lesions. Notably, cyst fluid significantly up-regulated levels of intracellular iron and ferroptosis in Phorbol-12-myristate-13-acetate (PMA)-stimulated THP-1 cells. Additionally, high iron-induced ferroptosis obviously reduced PMA-stimulated THP-1 cells' phagocytosis and increased the expression of angiogenic cytokines, such as vascular endothelial growth factor A (VEGFA) and interleukin 8 (IL8). Baicalein, a potential anti-ferroptosis compound, increased GPX4 expression, significantly inhibited ferroptosis, and restored phagocytosis of THP-1 cells in vitro. Collectively, our study reveals that ferroptosis triggered by high iron in cyst fluid promotes the development of EMs by impairing macrophage phagocytosis and producing more angiogenic cytokines (e.g., IL8 and VEGFA). Baicalein displays the potential for the treatment of EMs, especially in patients with high ferroptosis and low phagocytosis of macrophages.
Collapse
|
11
|
Wei SM, Huang YM. Baicalein Alleviates Testicular Ischemia-Reperfusion Injury in a Rat Model of Testicular Torsion-Detorsion. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1603469. [PMID: 36388170 PMCID: PMC9652068 DOI: 10.1155/2022/1603469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 07/27/2023]
Abstract
Testicular torsion/detorsion-induced ischemia/reperfusion injury is partly due to the overgeneration of reactive oxygen species. Baicalein, a main bioactive constituent derived from the dried root of Scutellaria baicalensis Georgi, possesses powerful antioxidative and anti-inflammatory properties. Therefore, we designed the research to explore the possible protective effect of baicalein against testicular ischemia-reperfusion injury. Sprague-Dawley rats were randomized into 4 groups, including control, testicular ischemia-reperfusion, testicular ischemia-reperfusion+vehicle injection, and testicular ischemia-reperfusion+baicalein therapy groups. The control group received surgical exposure of the left testis without torsion-detorsion. In the testicular ischemia-reperfusion group, the left testis underwent 720° counterclockwise torsion for two hours and then was allowed detorsion. Rats in the testicular ischemia-reperfusion+vehicle injection group received intraperitoneal injection of the vehicle at detorsion. In the baicalein-treated group, the intraperitoneal administration of baicalein dissolved in the vehicle was performed at detorsion. At four hours or three months following testicular detorsion, testicular tissues were removed to detect the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) which can recruit neutrophils into the testis, myeloperoxidase activity (an index of neutrophil infiltration in the testis), protein expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in neutrophils which can catalyze reactive oxygen species production, malondialdehyde concentration (a common marker of reactive oxygen species), and spermatogenesis. Both testicular ischemia-reperfusion and testicular ischemia-reperfusion+vehicle injection significantly increased the TNF-α and IL-1β levels, myeloperoxidase activity, NADPH oxidase protein expression, and malondialdehyde concentration, while decreased spermatogenesis in ipsilateral testes. In contrast, baicalein administration remarkably reduced TNF-α and IL-1β levels, myeloperoxidase activity, NADPH oxidase protein expression, and malondialdehyde concentration and also elevated spermatogenesis in ipsilateral testes. The results of our experiment demonstrate that baicalein alleviates testicular ischemia-reperfusion injury by inhibiting TNF-α and IL-1β secretion, neutrophil infiltration in the testis, and NADPH oxidase protein expression in neutrophils to reduce reactive oxygen species production.
Collapse
Affiliation(s)
- Si-Ming Wei
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou City, Zhejiang Province 310015, China
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province 310053, China
| | - Yu-Min Huang
- Department of Sport Science, College of Education, Zhejiang University, Hangzhou City, Zhejiang Province 310058, China
| |
Collapse
|
12
|
Ma TL, Chen JX, Zhu P, Zhang CB, Zhou Y, Duan JX. Focus on ferroptosis regulation: Exploring novel mechanisms and applications of ferroptosis regulator. Life Sci 2022; 307:120868. [DOI: 10.1016/j.lfs.2022.120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
13
|
Su W, Wu L, Liang Q, Lin X, Xu X, Yu S, Lin Y, Zhou J, Fu Y, Gao X, Zhang B, Li L, Li D, Yin Y, Song G. Extraction Optimization, Structural Characterization, and Anti-Hepatoma Activity of Acidic Polysaccharides From Scutellaria barbata D. Don. Front Pharmacol 2022; 13:827782. [PMID: 35444545 PMCID: PMC9014130 DOI: 10.3389/fphar.2022.827782] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
The Chinese medicinal herb Scutellaria barbata D. Don has antitumour effects and is used to treat liver cancer in the clinic. S. barbata polysaccharide (SBP), one of the main active components extracted from S. barbata D. Don, exhibits antitumour activity. However, there is still a lack of research on the extraction optimization, structural characterization, and anti-hepatoma activity of acidic polysaccharides from S. barbata D. Don. In this study, the optimal extraction conditions for SBP were determined by response surface methodology (RSM): the material-liquid ratio was 1:25, the extraction time was 2 h, and the extraction temperature was 90°C. Under these conditions, the average extraction efficiency was 3.85 ± 0.13%. Two water-soluble polysaccharides were isolated from S. barbata D. Don, namely, SBP-1A and SBP-2A, these homogeneous acidic polysaccharide components with average molecular weights of 1.15 × 105 Da and 1.4 × 105 Da, respectively, were obtained at high purity. The results showed that the monosaccharide constituents of the two components were fucose, galactosamine hydrochloride, rhamnose, arabinose, glucosamine hydrochloride, galactose, glucose, xylose, and mannose; the molar ratio of these constituents in SBP-1A was 0.6:0.3:0.6:30.6:3.3:38.4:16.1:8:1.4, and that in SBP-2A was 0.6:0.5:0.8:36.3:4.4:42.7:9.2:3.6:0.7. In addition, SBP-1A and SBP-2A contained uronic acid and β-glucan, and the residue on the polysaccharide was mainly pyranose. The in vitro results showed that the anti-hepatoma activity of SBP-2A was better than that of SBP-1A and SBP. In addition, SBP-2A significantly enhanced HepG2 cell death, as cell viability was decreased, and SBP-2A induced HepG2 cell apoptosis and blocked the G1 phase. This phenomenon was coupled with the upregulated expression of P53 and Bax/Bcl-2 ratio, as well as the downregulated expression of the cell cycle-regulating protein cyclinD1, CDK4, and Bcl-2 in this study. Further analysis showed that 50 mg/kg SBP-2A inhibited the tumour growth in H22 tumour-bearing mice, with an average inhibition rate of 40.33%. Taken together, SBP-2A, isolated and purified from S. barbata showed good antitumour activity in vivo and in vitro, and SBP-2A may be a candidate drug for further evaluation in cancer prevention. This study provides insight for further research on the molecular mechanism of the anti-hepatoma activity of S. barbata polysaccharide.
Collapse
Affiliation(s)
- Wenwen Su
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Leilei Wu
- Collage of Pharmacology, Mudanjiang Medical University, Mudanjiang, China
| | - Qichao Liang
- Collage of Pharmacology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaoyue Lin
- The First Clinical College of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoyi Xu
- The First Clinical College of Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Shikai Yu
- Collage of Basic Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yitong Lin
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Jiadong Zhou
- Collage of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Yang Fu
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaoyan Gao
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Bo Zhang
- Department of Oncology, Mudanjiang Cancer Hospital, Mudanjiang, China
| | - Li Li
- Collage of Basic Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Li
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| | - Yongkui Yin
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Gaochen Song
- Department of Biochemistry and Molecular Biology, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
14
|
Zhang J, Liu L, Zhang L, Chen S, Chen Y, Cai C. Targeted fatty acid metabolomics to discover Parkinson's disease associated metabolic alteration. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4781. [PMID: 34523199 DOI: 10.1002/jms.4781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/31/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The pathogenesis of Parkinson's disease (PD) remains to be elucidated, and the metabolomics analysis has the potential to identify metabolic profiles that are involved in PD pathogenesis. Here we applied a target metabolomics approach to measure the plasma levels of 158 fatty acid metabolites in a discovery cohort including 42 PD patients and 54 health volunteers, and found two upregulated (arachidonic acid and 13-hydroxy-octadecatrienoic acid) and eleven down-regulated (docosahexaenoic acid, lyso-platelet-activating factor, 12-hydroxy-eicosatetraenoic acid, dihydroxy-eicosatrienoic acids, dihidroxy-octadecenoic acids, 17,18-dihydroxy-eicosatetraenoic acid, and hydroperoxy-octadecadienoic acids) metabolites as primary candidate marker of PD. A support vector machine algorithm with primary candidate marker was used in an independent validation cohort to identify PD. Arachidonic acid and 13-hydroxy-octadecatrienoic acid were evaluated as an effective tool in that area under the receiver operating characteristic curve reached 0.995 and 0.912 in the validation set for diagnosing PD from healthy volunteers. Besides, the sensitivity and specificity of arachidonic acid as diagnostic factor of PD in validation set were 100% and 94.10%. Similarly, the sensitivity and specificity of 13-hydroxy-octadecatrienoic acid were 100% and 82.40% for identifying PD. This target fatty acid metabolomics demonstrated a series of plasma fatty acid metabolite as PD candidate marker with high efficiency and provided insights into the understanding of PD metabolic regulation.
Collapse
Affiliation(s)
- Junjie Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Lulu Liu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Lijiang Zhang
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| | - Simei Chen
- Neurology Department, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Yusen Chen
- Neurology Department, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Chun Cai
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, China
- School of Pharmacy, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
15
|
Tsai WC, Aleem AM, Whittington C, Cortopassi WA, Kalyanaraman C, Baroz A, Iavarone AT, Skrzypczak-Jankun E, Jacobson MP, Offenbacher AR, Holman T. Mutagenesis, Hydrogen-Deuterium Exchange, and Molecular Docking Investigations Establish the Dimeric Interface of Human Platelet-Type 12-Lipoxygenase. Biochemistry 2021; 60:802-812. [PMID: 33635645 DOI: 10.1021/acs.biochem.1c00053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It was previously shown that human platelet 12S-lipoxygenase (h12-LOX) exists as a dimer; however, the specific structure is unknown. In this study, we create a model of the dimer through a combination of computational methods, experimental mutagenesis, and hydrogen-deuterium exchange (HDX) investigations. Initially, Leu183 and Leu187 were replaced by negatively charged glutamate residues and neighboring aromatic residues were replaced with alanine residues (F174A/W176A/L183E/L187E/Y191A). This quintuple mutant disrupted both the hydrophobic and π-π interactions, generating an h12-LOX monomer. To refine the determinants for dimer formation further, the L183E/L187E mutant was generated and the equilibrium shifted mostly toward the monomer. We then submitted the predicted monomeric structure to protein-protein docking to create a model of the dimeric complex. A total of nine of the top 10 most energetically favorable docking conformations predict a TOP-to-TOP dimeric arrangement of h12-LOX, with the α-helices containing a Leu-rich region (L172, L183, L187, and L194), corroborating our experimental results showing the importance of these hydrophobic interactions for dimerization. This model was supported by HDX investigations that demonstrated the stabilization of four, non-overlapping peptides within helix α2 of the TOP subdomain for wt-h12-LOX, consistent with the dimer interface. Most importantly, our data reveal that the dimer and monomer of h12-LOX have distinct biochemical properties, suggesting that the structural changes due to dimerization have allosteric effects on active site catalysis and inhibitor binding.
Collapse
Affiliation(s)
- Wan-Chen Tsai
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Ansari Mukhtar Aleem
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Chris Whittington
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Wilian A Cortopassi
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, California 94143, United States
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, California 94143, United States
| | - Angel Baroz
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, California 94720, United States
| | - Ewa Skrzypczak-Jankun
- Department of Urology, University of Toledo, Health Science Campus, Toledo, Ohio 43614, United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, San Francisco, California 94143, United States
| | - Adam R Offenbacher
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, United States
| | - Theodore Holman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| |
Collapse
|
16
|
Xiao X, Liu D, Chen S, Li X, Ge M, Huang W. Sevoflurane preconditioning activates HGF/Met-mediated autophagy to attenuate hepatic ischemia-reperfusion injury in mice. Cell Signal 2021; 82:109966. [PMID: 33639217 DOI: 10.1016/j.cellsig.2021.109966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 11/26/2022]
Abstract
Sevoflurane (SEV) preconditioning plays a protective effect against liver ischemia reperfusion (IR) injury, while the role of autophagy in SEV-mediated hepatoprotection and the precise mechanism is unclear. In the current study, mice were pretreated with SEV or autophagy inhibitor before liver IR injury. In vitro, primary rat hepatocytes were pretreated with SEV and then exposed to hypoxia/reoxygenation (H/R). Liver function was measured by biochemical and histopathological examinations, and markers associated with inflammation, oxidation, apoptosis and autophagy were subsequently measured. We found that SEV preconditioning dramatically reduced hepatic damage, alleviated cell inflammatory response, oxidative stress and apoptosis in mice suffering hepatic IR injury, whereas these protective effects were abolished by the autophagy inhibitor 3-MA. In addition, pretreatment with SEV markedly activated HGF/Met signaling pathway regulation. Besides, pretreatment with an hepatocyte growth factor (HGF) inhibitor or knocking down HGF expression significantly downregulated phosphorylated met (p-met) and autophagy levels, and abolished the protective effects of SEV against hepatic IR or hepatocyte H/R injury. Conversely, HGF overexpression efficiently increased the p-met and autophagy levels and strengthened the protective effects of SEV. These results indicated that sevoflurane preconditioning ameliorates hepatic IR injury by activating HGF/Met-mediated autophagy.
Collapse
Affiliation(s)
- Xiaoyu Xiao
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China; Department of Anesthesiology, Fifth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 519000, Guangdong, China
| | - Dezhao Liu
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Sufang Chen
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Xiang Li
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China
| | - Mian Ge
- Department of Anesthesiology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Wenqi Huang
- Department of Anesthesiology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
17
|
Novais AK, Deschêne K, Martel-Kennes Y, Roy C, Laforest JP, Lessard M, Matte JJ, Lapointe J. Weaning differentially affects mitochondrial function, oxidative stress, inflammation and apoptosis in normal and low birth weight piglets. PLoS One 2021; 16:e0247188. [PMID: 33606751 PMCID: PMC7894895 DOI: 10.1371/journal.pone.0247188] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/02/2021] [Indexed: 01/22/2023] Open
Abstract
Weaning is associated with increased occurrence of infections and diseases in piglets. Recent findings indicate that weaning induces mitochondrial dysfunction and oxidative stress conditions that more severely impact smaller piglets. The objective of this study was to characterize the molecular mechanisms underlying these physiological consequences and the relation with systemic inflammatory status in both normal and low birth weight (NBW and LBW) piglets throughout the peri-weaning period. To conduct the study, 30 sows were inseminated, and specific piglets from their litters were assigned to one of two experimental groups: NBW (n = 60, 1.73 ± 0.01 kg,) and LBW piglets weighing less than 1.2 kg (n = 60, 1.01 ± 0.01 kg). Then, 10 piglets from each group were selected at 14, 21 (weaning), 23, 25, 29 and 35 days of age to collect organ and plasma samples. Specific porcine RT2 Profiler™ PCR Arrays related to mitochondrial function, oxidative stress, inflammation and apoptosis processes were first used to target genes that are modulated after weaning in NBW piglets (d 23 and d 35 vs. d 14). Expression of selected genes was evaluated by quantitative PCR. These analyses revealed that expression of inflammatory genes CXCL10 and CCL19 increased after weaning in intestinal mucosa, while expression of genes encoding subunits of the mitochondrial respiratory chain was downregulated in liver and kidney of both groups. Interestingly, major modulators of mitophagy (BNIP3), cell survival (BCL2A1) and antioxidant defense system (TXNRD2, GPx3, HMOX1) were found to be highly expressed in NBW piglets. The systemic levels of TNF-α and IL1-β significantly increased following weaning and were higher in NBW piglets. These results provide novel information about the molecular origin of mitochondrial dysfunction and oxidative stress observed in weaned piglets and suggest that clearance of dysfunctional mitochondria, antioxidant defenses and inflammatory response are compromised in LBW piglets.
Collapse
Affiliation(s)
- Aliny K. Novais
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
- Department of Animal Science, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Karine Deschêne
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
| | - Yan Martel-Kennes
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
- Département des Sciences Animales, Université Laval, Ville de Québec, Québec, Canada
| | - Caroline Roy
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
| | - Jean-Paul Laforest
- Département des Sciences Animales, Université Laval, Ville de Québec, Québec, Canada
| | - Martin Lessard
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
| | - J. Jacques Matte
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
| | - Jerome Lapointe
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|
18
|
Xue Y, Deng Q, Zhang Q, Ma Z, Chen B, Yu X, Peng H, Yao S, Liu J, Ye Y, Pan G. Gigantol ameliorates CCl 4-induced liver injury via preventing activation of JNK/cPLA2/12-LOX inflammatory pathway. Sci Rep 2020; 10:22265. [PMID: 33335297 PMCID: PMC7746690 DOI: 10.1038/s41598-020-79400-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
Arachidonic acid (AA) signaling pathway is an important constituent of inflammatory processes. In our previous study, it was found that dihydro-stilbene gigantol relieved hepatic inflammation in mice with CCl4-induced acute liver injury. This study aimed to investigate the involvement of arachidonate metabolic cascade in this process. Our results showed CCl4 activated AA metabolism with the evidence of cPLA2 phosphorylation, which was dependent on the MAPK/JNK activation. Pretreatment with JNK inhibitor SU3327 or gigantol abolished the cPLA2 activation, along with the attenuation of liver damage. Besides, gigantol markedly decreased immune cells activation. Metabolomic analysis revealed that gigantol universally reversed the upregulation of major AA metabolites in injured mouse livers induced by CCl4, especially 12-hydroxyeicosatetraenoic acid (12-HETE). Gigantol also decreased the mRNA and protein expression of platelet-, and leukocyte-type 12-lipoxxygenase (LOX) in the liver. Furthermore, pan-LOX inhibitor nordihydroguaiaretic acid (NDGA) and specific 12-LOX inhibitors baicalein and ML351 attenuated the liver injury to the same extent as gigantol. Overall, our study elucidated a comprehensive profile of AA metabolites during hepatic inflammation caused by CCl4, highlighting the role of 12-LOX-12-HETE pathway in this process. And gigantol alleviated liver inflammation partly through inhibiting the JNK/cPLA2/12-LOX pathway.
Collapse
Affiliation(s)
- Yaru Xue
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiangqiang Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qingli Zhang
- Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhenghua Ma
- State Key Laboratory of Drug Research and Natural Products Chemistry Department Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,SIMM-CUHK Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines, Shanghai, 201203, China.,School of Life Science and Technology, Shanghai Tech University, Shanghai, 201203, China
| | - Binfan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolu Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huige Peng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Sheng Yao
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,State Key Laboratory of Drug Research and Natural Products Chemistry Department Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,SIMM-CUHK Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines, Shanghai, 201203, China
| | - Jia Liu
- Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang Ye
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,State Key Laboratory of Drug Research and Natural Products Chemistry Department Shanghai, Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,SIMM-CUHK Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines, Shanghai, 201203, China. .,School of Life Science and Technology, Shanghai Tech University, Shanghai, 201203, China.
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Xu Y, Li X, Cheng Y, Yang M, Wang R. Inhibition of ACSL4 attenuates ferroptotic damage after pulmonary ischemia-reperfusion. FASEB J 2020; 34:16262-16275. [PMID: 33070393 DOI: 10.1096/fj.202001758r] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 02/05/2023]
Abstract
Lung ischemia-reperfusion (IR) injury is a common clinical pathology associated with high mortality. Ferroptosis, a novel mode of cell death elicited by iron-dependent phospholipid peroxidation, has been implicated in ischemic events. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is one of the main enzymes in pro-ferroptotic lipid metabolism. In this study, the involvement of ferroptotic death in different durations of reperfusion was evaluated by assessing the iron content, malondialdehyde, and glutathione levels, ferroptosis-related protein expression, and mitochondria morphology. The roles of ferroptosis-specific inhibitor, liproxastin-1 (Lip-1), and ACSL4 modulation in a preventive regimen were assessed in vivo and in vitro. The hallmarks of pulmonary function, such as histological lung injury score, wet/dry ratio, and oxygenation index, were evaluated as well. Results showed that lung IR increased the tissue iron content and lipid peroxidation accumulation, along with key protein (GPX4 and ACSL4) expression alteration during reperfusion. Pretreatment with Lip-1 inhibited ferroptosis and ameliorated lung IR-induced injury in animal and cell models. In addition, administering ACSL4 inhibitor rosiglitazone before ischemia diminished the ferroptotic damage in IR-injured lung tissue, consistent with the protective effect of ACSL4 knockdown on lung epithelial cells subjected to hypoxia/reoxygenation. Thus, this study delineated that IR-induced ferroptotic cell death in lung tissue and ACSL4 were correlated with this process. Inhibition of ferroptosis and ACSL4 mitigated the ferroptotic damage in IR-induced lung injury by reducing lipid peroxidation and increasing the glutathione and GPX4 levels.
Collapse
Affiliation(s)
- Yixin Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, The Research Units of West China (2018RU12), Chinese Academy of Medical Sciences, Chengdu, China.,Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuehan Li
- Department of Anesthesiology, West China Hospital, Sichuan University, The Research Units of West China (2018RU12), Chinese Academy of Medical Sciences, Chengdu, China.,Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Cheng
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mingan Yang
- Division of Biostatistics & Epidemiology, School of Public Health, San Diego State University, San Diego, CA, USA
| | - Rurong Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, The Research Units of West China (2018RU12), Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
20
|
Wang Y, Han B, Ding J, Qiu C, Wang W. Endoplasmic reticulum stress mediates osteocyte death under oxygen-glucose deprivation in vitro. Acta Histochem 2020; 122:151577. [PMID: 32778239 DOI: 10.1016/j.acthis.2020.151577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/06/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
As a vascularized organ, bone is known to be susceptible to ischemia. Ischemic osteonecrosis or skeletal unloading lead to ischemia in bone microenvironment that causes osteocytes to suffer hypoxia and nutrition deprivation. OBJECTIVE To explore the effects of Oxygen-glucose deprivation (OGD) on osteocytes and the potential mechanism. METHODS OGD model was established in cultured MLO-Y4 cell. Cell damage, intracellular oxidative stress and cell apoptosis were detected at different OGD times (0, 2, 4, 8, 12, 24 h), and the changes in endoplasmic reticulum (ER) stress-related indicators were observed. Furthermore, cells were treated with 4-phenylbutyrate sodium (4-PBA) to inhibit ER stress, and cell damage and oxidative stress level were detected. RESULTS The cell viability under OGD exhibited a significantly reduced in a time-dependent manner, and the level of intracellular reactive oxygen species (ROS) were increased, cell apoptosis and ER stress was induced. Inhibition of ER stress can reduce cell death and intracellular ROS levels. CONCLUSION Our study demonstrated that ER stress regulates OGD-induced apoptotic cell death in MLO-Y4 cells via intracellular ROS.
Collapse
|
21
|
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 2020; 23:299-314. [PMID: 32246225 DOI: 10.1007/s10456-020-09720-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
As reperfusion therapies have become more widely used in acute myocardial infarction patients, ischemia-induced myocardial damage has been markedly reduced, but reperfusion-induced cardiac injury has become increasingly evident. The features of cardiac ischemia-reperfusion (I/R) injury include microvascular perfusion defects, platelet activation and sequential cardiomyocyte death due to additional ischemic events at the reperfusion stage. Microvascular obstruction, defined as a no-reflow phenomenon, determines the infarct zone, myocardial function and peri-operative mortality. Cardiac microvascular endothelial cell injury may occur much earlier and with much greater severity than cardiomyocyte injury. Endothelial cells contain fewer mitochondria than other cardiac cells, and several of the pathological alterations during cardiac microvascular I/R injury involve mitochondria, such as increased mitochondrial reactive oxygen species (mROS) levels and disturbed mitochondrial dynamics. Although mROS are necessary physiological second messengers, high mROS levels induce oxidative stress, endothelial senescence and apoptosis. Mitochondrial dynamics, including fission, fusion and mitophagy, determine the shape, distribution, size and function of mitochondria. These adaptive responses modify extracellular signals and orchestrate intracellular processes such as cell proliferation, migration, metabolism, angiogenesis, permeability transition, adhesive molecule expression, endothelial barrier function and anticoagulation. In this review, we discuss the involvement of mROS and mitochondrial morphofunction in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China. .,Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
22
|
Forcina GC, Dixon SJ. GPX4 at the Crossroads of Lipid Homeostasis and Ferroptosis. Proteomics 2019; 19:e1800311. [PMID: 30888116 DOI: 10.1002/pmic.201800311] [Citation(s) in RCA: 629] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/27/2019] [Indexed: 12/16/2022]
Abstract
Oxygen is necessary for aerobic metabolism but can cause the harmful oxidation of lipids and other macromolecules. Oxidation of cholesterol and phospholipids containing polyunsaturated fatty acyl chains can lead to lipid peroxidation, membrane damage, and cell death. Lipid hydroperoxides are key intermediates in the process of lipid peroxidation. The lipid hydroperoxidase glutathione peroxidase 4 (GPX4) converts lipid hydroperoxides to lipid alcohols, and this process prevents the iron (Fe2+ )-dependent formation of toxic lipid reactive oxygen species (ROS). Inhibition of GPX4 function leads to lipid peroxidation and can result in the induction of ferroptosis, an iron-dependent, non-apoptotic form of cell death. This review describes the formation of reactive lipid species, the function of GPX4 in preventing oxidative lipid damage, and the link between GPX4 dysfunction, lipid oxidation, and the induction of ferroptosis.
Collapse
Affiliation(s)
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
23
|
FGF21 Mediates Mesenchymal Stem Cell Senescence via Regulation of Mitochondrial Dynamics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4915149. [PMID: 31178962 PMCID: PMC6501200 DOI: 10.1155/2019/4915149] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cell- (MSC-) based therapy is a novel strategy in regenerative medicine. The functional and regenerative capacities of MSCs decline with senescence. Nonetheless, the potential mechanisms that underlie their senescence are not fully understood. This study was aimed at exploring the potential mechanisms of fibroblast growth factor 21 (FGF21) in the regulation of MSC senescence. The senescence of MSCs was determined by senescence-associated β-galactosidase (SA-β-gal) staining. The morphology and the level of mitochondrial reactive oxygen species (ROS) of MSCs were assessed by MitoTracker and Mito-Sox staining, respectively. The expression of FGF21 and mitochondrial dynamics-related proteins was detected by Western blotting. As MSCs were expanded in vitro, the expression of FGF21 decreased. Depletion of FGF21 enhanced production of mitochondrial reactive oxidative species (ROS) and increased the senescence of early-passage MSCs whereas inhibition of ROS abolished these effects. The senescent MSCs exhibited increased mitochondrial fusion and decreased mitochondrial fission. Treatment of early-passage MSCs with FGF21 siRNA enhanced mitochondrial fusion and reduced mitochondrial fission. Moreover, treatment of mitofusin2- (Mfn2-) siRNA inhibited depletion of FGF21-induced MSC senescence. Furthermore, we demonstrated that depletion of FGF21-induced mitochondrial fusion was regulated by the AMPK signaling pathway. Treatment with an AMPK activator, AICAR, abrogated the depletion of FGF21-induced senescence of MSCs by inhibiting mitochondrial fusion. Compared with MSCs isolated from young donors, those derived from aged donors showed a lower level of FGF21 and a higher level of senescent activity. Furthermore, overexpression of FGF21 in aged MSCs inhibited senescence. Our study shows that FGF21, via the AMPK signaling pathway, regulates the senescence of MSCs by mediating mitochondrial dynamics. Targeting FGF21 might represent a novel strategy to improve the quality and quantity of MSCs.
Collapse
|
24
|
Associations of Oxidative Stress and Postoperative Outcome in Liver Surgery with an Outlook to Future Potential Therapeutic Options. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3950818. [PMID: 30906502 PMCID: PMC6393879 DOI: 10.1155/2019/3950818] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022]
Abstract
Several types of surgical procedures have shown to elicit an inflammatory stress response, leading to substantial cytokine production and formation of oxygen-based or nitrogen-based free radicals. Chronic liver diseases including cancers are almost always characterized by increased oxidative stress, in which hepatic surgery is likely to potentiate at least in the short term and hereby furthermore impair the hepatic redox state. During liver resection, intermittent inflow occlusion is commonly applied to prevent excessive blood loss but resulting ischemia and reperfusion of the liver have been linked to increased oxidative stress, leading to impairment of cell functions and subsequent cell death. In the field of liver transplantation, ischemia/reperfusion injury has extensively been investigated in the last decades and has recently been in the scientific focus again due to increased use of marginal donor organs and new machine perfusion concepts. Therefore, given the intriguing role of oxidative stress in the pathogenesis of numerous diseases and in the perioperative setting, the interest for a therapeutic antioxidative agent has been present for several years. This review is aimed at giving an introduction to oxidative stress in surgical procedures in general and then examines the role of oxidative stress in liver surgery in particular, discussing both transplantation and resection. Results from studies in the animal and human settings are included. Finally, potential therapeutic agents that might be beneficial in reducing the burden of oxidative stress in hepatic diseases and during surgery are presented. While there is compelling evidence from animal models and a limited number of clinical studies showing that oxidative stress plays a major role in both liver resection and transplantation and several recent studies have suggested a potential for antioxidative treatment in chronic liver disease (e.g., steatosis), the search for effective antioxidants in the field of liver surgery is still ongoing.
Collapse
|
25
|
Aleem AM, Tsai WC, Tena J, Alvarez G, Deschamps J, Kalyanaraman C, Jacobson MP, Holman T. Probing the Electrostatic and Steric Requirements for Substrate Binding in Human Platelet-Type 12-Lipoxygenase. Biochemistry 2019; 58:848-857. [PMID: 30565457 DOI: 10.1021/acs.biochem.8b01167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human platelet ALOX12 (hALOX12 or h12-LOX) has been implicated in a variety of human diseases. The present study investigates the active site of hALOX12 to more thoroughly understand how it positions the substrate and achieves nearly perfect regio- and stereospecificities (i.e., 100 ± 5% of the 12(S)-hydroperoxide product), utilizing site-directed mutagenesis. Specifically, we have determined that Arg402 is not as important in substrate binding as previously seen for hALOX15 but that His596 may play a role in anchoring the carboxy terminal of the arachidonic acid during catalysis. In addition, Phe414 creates a π-stacking interaction with a double bond of arachidonic acid (Δ11), and Ala417/Val418 define the bottom of the cavity. However, the influence of Ala417/Val418 on the profile is markedly less for hALOX12 than that seen in hALOX15. Mutating these two residues to larger amino acids (Ala417Ile/Val418Met) only increased the generation of 15-HpETE by 24 ± 2%, but conversely, smaller residues at these positions converted hALOX15 to almost 100% hALOX12 reactivity [Gan et al. (1996) J. Biol. Chem. 271, 25412-25418]. However, we were able to increase 15-HpETE to 46 ± 3% by restricting the width of the active site with the Ala417Ile/Val418Met/Ser594Thr mutation, indicating both depth and width of the active site are important. Finally, residue Leu407 is shown to play a critical role in positioning the substrate correctly, as seen by the increase of 15-HpETE to 21 ± 1% for the single Leu407Gly mutant. These results outline critical differences between the active site requirements of hALOX12 relative to hALOX15 and explain both their product specificity and inhibitory differences.
Collapse
Affiliation(s)
- Ansari Mukhtar Aleem
- Department of Chemistry and Biochemistry , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Wan-Chen Tsai
- Department of Chemistry and Biochemistry , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Jennyfer Tena
- Department of Chemistry and Biochemistry , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | | | - Joshua Deschamps
- Department of Chemistry and Biochemistry , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, School of Pharmacy , University of California San Francisco , San Francisco , California 94143 , United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, School of Pharmacy , University of California San Francisco , San Francisco , California 94143 , United States
| | - Theodore Holman
- Department of Chemistry and Biochemistry , University of California Santa Cruz , Santa Cruz , California 95064 , United States
| |
Collapse
|
26
|
Hinman A, Holst CR, Latham JC, Bruegger JJ, Ulas G, McCusker KP, Amagata A, Davis D, Hoff KG, Kahn-Kirby AH, Kim V, Kosaka Y, Lee E, Malone SA, Mei JJ, Richards SJ, Rivera V, Miller G, Trimmer JK, Shrader WD. Vitamin E hydroquinone is an endogenous regulator of ferroptosis via redox control of 15-lipoxygenase. PLoS One 2018; 13:e0201369. [PMID: 30110365 PMCID: PMC6093661 DOI: 10.1371/journal.pone.0201369] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023] Open
Abstract
Ferroptosis is a form of programmed cell death associated with inflammation, neurodegeneration, and ischemia. Vitamin E (alpha-tocopherol) has been reported to prevent ferroptosis, but the mechanism by which this occurs is controversial. To elucidate the biochemical mechanism of vitamin E activity, we systematically investigated the effects of its major vitamers and metabolites on lipid oxidation and ferroptosis in a striatal cell model. We found that a specific endogenous metabolite of vitamin E, alpha-tocopherol hydroquinone, was a dramatically more potent inhibitor of ferroptosis than its parent compound, and inhibits 15-lipoxygenase via reduction of the enzyme's non-heme iron from its active Fe3+ state to an inactive Fe2+ state. Furthermore, a non-metabolizable isosteric analog of vitamin E which retains antioxidant activity neither inhibited 15-lipoxygenase nor prevented ferroptosis. These results call into question the prevailing model that vitamin E acts predominantly as a non-specific lipophilic antioxidant. We propose that, similar to the other lipophilic vitamins A, D and K, vitamin E is instead a pro-vitamin, with its quinone/hydroquinone metabolites responsible for its anti-ferroptotic cytoprotective activity.
Collapse
Affiliation(s)
- Andrew Hinman
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Charles R. Holst
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Joey C. Latham
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Joel J. Bruegger
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Gözde Ulas
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Kevin P. McCusker
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Akiko Amagata
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Dana Davis
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Kevin G. Hoff
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Amanda H. Kahn-Kirby
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Virna Kim
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Yuko Kosaka
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Edgar Lee
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Stephanie A. Malone
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Janet J. Mei
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Steve James Richards
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Veronica Rivera
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Guy Miller
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - Jeffrey K. Trimmer
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| | - William D. Shrader
- BioElectron Technology Corporation, Inc., Mountain View, California, United States of America
| |
Collapse
|
27
|
Gu Y, Huang F, Wang Y, Chen C, Wu S, Zhou S, Hei Z, Yuan D. Connexin32 plays a crucial role in ROS-mediated endoplasmic reticulum stress apoptosis signaling pathway in ischemia reperfusion-induced acute kidney injury. J Transl Med 2018; 16:117. [PMID: 29728112 PMCID: PMC5935959 DOI: 10.1186/s12967-018-1493-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 04/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R)-induced acute kidney injury (AKI) not only prolongs the length of hospital stay, but also seriously affects the patient's survival rate. Although our previous investigation has verified that reactive oxygen species (ROS) transferred through gap junction composed of connexin32 (Cx32) contributed to AKI, its underlying mechanisms were not fully understood and viable preventive or therapeutic regimens were still lacking. Among various mechanisms involved in organs I/R-induced injuries, endoplasmic reticulum stress (ERS)-related apoptosis is currently considered to be an important participant. Thus, in present study, we focused on the underlying mechanisms of I/R-induced AKI, and postulated that Cx32 mediated ROS/ERS/apoptosis signal pathway activation played an important part in I/R-induced AKI. METHODS We established renal I/R models with Cx32+/+ and Cx32-/- mice, which underwent double kidneys clamping and recanalization. ROS scavenger (N-acetylcysteine, NAC) and ERS inhibitors (4-phenyl butyric acid, 4-PBA, and tauroursodeoxycholic acid, TUDCA) were used to decrease the content of ROS and attenuate ERS activation, respectively. RESULTS Renal damage was progressively exacerbated in a time-dependent manner at the reperfusion stage, that was consistent with the alternation of ERS activation, including glucose regulated protein 78 (BiP/GRP78), X box-binding protein1, and C/EBP homologous protein expression. TUDCA or 4-PBA application attenuated I/R-induced ERS activation and protected against renal tubular epithelial cells apoptosis and renal damage. Cx32 deficiency decreased ROS generation and distribution between the neighboring cells, which attenuated I/R-induced ERS activation, and improved cell apoptosis and renal damage. CONCLUSION Cx32 mediated ROS/ERS/apoptosis signal pathway activation played an important part in I/R-induced AKI. Cx32 deficiency, ROS elimination, and ERS inhibition all could protect against I/R-induced AKI.
Collapse
Affiliation(s)
- Yu Gu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Fei Huang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Chaojin Chen
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Shan Wu
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| | - Dongdong Yuan
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou, 510630 Guangdong Province China
| |
Collapse
|
28
|
Guo BQ, Xu JB, Xiao M, Ding M, Duan LJ. Puerarin reduces ischemia/reperfusion-induced myocardial injury in diabetic rats via upregulation of vascular endothelial growth factor A/angiotensin-1 and suppression of apoptosis. Mol Med Rep 2018; 17:7421-7427. [PMID: 29568939 DOI: 10.3892/mmr.2018.8754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/16/2017] [Indexed: 11/05/2022] Open
Abstract
Puerarin is an active ingredient of pueraria, which has been developed for puerarin injections, used in the treatment of cardiovascular diseases including arrhythmia, myocardial ischemia and hypertension. However, the molecular mechanisms of puerarin on ischemia/reperfusion (I/R)‑induced myocardial apoptosis in diabetic rats are not fully understood. The present study aimed to investigate whether puerarin can attenuate I/R‑induced myocardial apoptosis in diabetic rats, and to investigate the underlying mechanism. A hemodynamic analyzing system was employed to analyze the left ventricular developed pressure (LVDP), the left ventricular end‑systolic interior dimension (LVIDs) and the left ventricular end diastolic interior dimension (LVIDd). ELISA kits were used to analyze malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor‑α (TNF‑α) and interleukin (IL)‑6 levels, NO production and caspase‑3 activity. Nuclear factor (NF)‑κB, ascular endothelial growth factor A (VEGFA), angiotensin (Ang)‑I, phosphorylated (p)‑endothelial nitric oxide synthase protein expression was analyzed using western blot analysis. Puerarin significantly reduced the myocardial infarct area, and increased left ventricular developed pressure in diabetic rats with myocardial I/R. Oxidative stress, inflammation and nuclear factor‑κB protein expression were significantly reduced by puerarin. Furthermore, puerarin activated the protein expression levels of VEGFA and Ang‑I, and increased nitric oxide production, phosphorylated‑endothelial nitric oxide synthase protein expression and caspase‑3 activity. These results demonstrated that the myocardial protective effect of puerarin serves to reduce myocardial I/R injury, via upregulation of VEGFA/Ang‑1 and suppression of apoptosis, in diabetic rats with myocardial I/R.
Collapse
Affiliation(s)
- Bao-Qiang Guo
- Department of Endocrinology, The Second People's Hospital of Liaocheng, Linqing, Shandong 252601, P.R. China
| | - Jing-Bo Xu
- Department of Endocrinology, Jiamusi Central Hospital, Jiamusi, Heilongjiang 154002, P.R. China
| | - Ming Xiao
- Department of Cardiology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Min Ding
- Department of Podiatry, 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, Hebei 300070, P.R. China
| | - Li-Jun Duan
- Department of Endocrinology, Tianjin First Central Hospital, Tianjin, Hebei 300192, P.R. China
| |
Collapse
|
29
|
Li Y, An C, Han D, Dang Y, Liu X, Zhang F, Xu Y, Zhong H, Sun X. Neutrophil affinity for PGP and HAIYPRH (T7) peptide dual-ligand functionalized nanoformulation enhances the brain delivery of tanshinone IIA and exerts neuroprotective effects against ischemic stroke by inhibiting proinflammatory signaling pathways. NEW J CHEM 2018. [DOI: 10.1039/c8nj04819c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A great challenge to the therapy of ischemic stroke is the poor physicochemical properties and inability of the drug to cross the blood–brain barrier (BBB).
Collapse
Affiliation(s)
- Yutao Li
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Chiying An
- The First Affiliated Hospital of Harbin Medical University
- Harbin
- China
| | - Danan Han
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Yanxin Dang
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Xin Liu
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Fengming Zhang
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| | - Yuan Xu
- Department of Pharmacology
- School of Medicine
- Yale University
- New Haven
- USA
| | - Haijing Zhong
- Department of Pharmacology
- School of Medicine
- Yale University
- New Haven
- USA
| | - Xiaojun Sun
- Department of Pharmaceutical Engineering
- School of Chemical and Environmental Engineering
- Key Laboratory of Green Chemical Engineering
- Harbin University of Science and Technology
- Harbin
| |
Collapse
|
30
|
Chen M, Jiang L, Li Y, Bai G, Zhao J, Zhang M, Zhang J. Hydrogen protects against liver injury during CO 2 pneumoperitoneum in rats. Oncotarget 2017; 9:2631-2645. [PMID: 29416797 PMCID: PMC5788665 DOI: 10.18632/oncotarget.23498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the current study was to identify the protective effect of hydrogen gas against liver injury during CO2 pneumoperitoneum. Rats were randomly divided into three groups: control group (C group), pneumoperitoneum group (P15 group) and hydrogen group (H2 group). Rats in the C group were subjected to anesthesia for 90 min. Rats in the P15 group received an abdominal insufflation of CO2 for 90 min at an intra-abdominal pressure of 15 mmHg. Rats in the H2 group received a hypodermic injection of hydrogen gas (0.2 mL/kg) and after 10 min they received an abdominal insufflation of CO2 for 90 min at an intra-abdominal pressure of 15 mmHg. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured to evaluate liver function. Malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione (GSH) content were measured to evaluate oxidative stress. Nuclear factor E2-related factor 2 (Nrf2) and Nrf2 downstream target genes, apoptosis-related genes and inflammatory cytokine mRNA and protein expression were detected. Liver injury was detected under the microscope. Our results revealed that liver function, antioxidants content, inflammation and liver injury were improved after hydrogen preconditioning in H2 group compared with P15 group. Overall, our results revealed that subcutaneous hydrogen injection could exert a protective effect against liver injury during CO2 pneumoperitoneum through reducing oxidative stress, cell apoptosis and inflammatory cytokines release.
Collapse
Affiliation(s)
- Mingzi Chen
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lihong Jiang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yue Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ge Bai
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jinghua Zhao
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Ming Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiantao Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
31
|
Ferrosenescence: The iron age of neurodegeneration? Mech Ageing Dev 2017; 174:63-75. [PMID: 29180225 DOI: 10.1016/j.mad.2017.11.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Abstract
Aging has been associated with iron retention in many cell types, including the neurons, promoting neurodegeneration by ferroptosis. Excess intracellular iron accelerates aging by damaging the DNA and blocking genomic repair systems, a process we define as ferrosenescence. Novel neuroimaging and proteomic techniques have pinpointed indicators of both iron retention and ferrosenescence, allowing for their early correction, potentially bringing prevention of neurodegenerative disorders within reach. In this review, we take a closer look at the early markers of iron dyshomeostasis in neurodegenerative disorders, focusing on preventive strategies based on nutritional and microbiome manipulations.
Collapse
|