1
|
Kucera J, Chalupova Z, Wabitsch M, Bienertova-Vasku J. Endocrine disruption of adipose physiology: Screening in SGBS cells. J Appl Toxicol 2024; 44:1784-1792. [PMID: 39044430 DOI: 10.1002/jat.4679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
The increasing use of industrial chemicals has raised concerns regarding exposure to endocrine-disrupting chemicals (EDCs), which interfere with developmental, reproductive and metabolic processes. Of particular concern is their interaction with adipose tissue, a vital component of the endocrine system regulating metabolic and hormonal functions. The SGBS (Simpson Golabi Behmel Syndrome) cell line, a well-established human-relevant model for adipocyte research, closely mimics native adipocytes' properties. It responds to hormonal stimuli, undergoes adipogenesis and has been successfully used to study the impact of EDCs on adipose biology. In this study, we screened human exposure-relevant doses of various EDCs on the SGBS cell line to investigate their effects on viability, lipid accumulation and adipogenesis-related protein expression. Submicromolar doses were generally well tolerated; however, at higher doses, EDCs compromised cell viability, with cadmium chloride (CdCl2) showing the most pronounced effects. Intracellular lipid levels remained unaffected by EDCs, except for tributyltin (TBT), used as a positive control, which induced a significant increase. Analysis of adipogenesis-related protein expression revealed several effects, including downregulation of fatty acid-binding protein 4 (FABP4) by dibutyl phthalate, upregulation by CdCl2 and downregulation of perilipin 1 and FABP4 by perfluorooctanoic acid. Additionally, TBT induced dose-dependent upregulation of C/EBPα, perilipin 1 and FABP4 protein expression. These findings underscore the importance of employing appropriate models to study EDC-adipocyte interactions. Conclusions from this research could guide strategies to reduce the negative impacts of EDC exposure on adipose tissue.
Collapse
Affiliation(s)
- Jan Kucera
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Zuzana Chalupova
- Department of Internal Medicine and Cardiology, University Hospital Brno, Brno, Czech Republic
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Julie Bienertova-Vasku
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Ulfig A, Jakob U. Redox heterogeneity in mouse embryonic stem cells individualizes cell fate decisions. Dev Cell 2024; 59:2118-2133.e8. [PMID: 39106861 PMCID: PMC11338707 DOI: 10.1016/j.devcel.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/23/2024] [Accepted: 07/09/2024] [Indexed: 08/09/2024]
Abstract
Pluripotent embryonic stem cells (ESCs) can develop into any cell type in the body. Yet, the regulatory mechanisms that govern cell fate decisions during embryogenesis remain largely unknown. We now demonstrate that mouse ESCs (mESCs) display large natural variations in mitochondrial reactive oxygen species (mitoROS) levels that individualize their nuclear redox state, H3K4me3 landscape, and cell fate. While mESCs with high mitoROS levels (mitoROSHIGH) differentiate toward mesendoderm and form the primitive streak during gastrulation, mESCs, which generate less ROS, choose the alternative neuroectodermal fate. Temporal studies demonstrated that mesendodermal (ME) specification of mitoROSHIGH mESCs is mediated by a Nrf2-controlled switch in the nuclear redox state, triggered by the accumulation of redox-sensitive H3K4me3 marks, and executed by a hitherto unknown ROS-dependent activation process of the Wnt signaling pathway. In summary, our study explains how ESC heterogeneity is generated and used by individual cells to decide between distinct cellular fates.
Collapse
Affiliation(s)
- Agnes Ulfig
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Biological Chemistry Department, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Spice DM, Cooper TT, Lajoie GA, Kelly GM. Never in Mitosis Kinase 2 regulation of metabolism is required for neural differentiation. Cell Signal 2022; 100:110484. [PMID: 36195199 DOI: 10.1016/j.cellsig.2022.110484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Wnt and Hh are known signalling pathways involved in neural differentiation and recent work has shown the cell cycle regulator, Never in Mitosis Kinase 2 (Nek2) is able to regulate both pathways. Despite its known function in pathway regulation, few studies have explored Nek2 within embryonic development. The P19 embryonal carcinoma cell model was used to investigate Nek2 and neural differentiation through CRISPR knockout and overexpression studies. Loss of Nek2 reduced cell proliferation in the undifferentiated state and during directed differentiation, while overexpression increased cell proliferation. Despite these changes in proliferation rates, Nek2 deficient cells maintained pluripotency markers after neural induction while Nek2 overexpressing cells lost these markers in the undifferentiated state. Nek2 deficient cells lost the ability to differentiate into both neurons and astrocytes, although Nek2 overexpressing cells enhanced neuron differentiation at the expense of astrocytes. Hh and Wnt signalling were explored, however there was no clear connection between Nek2 and these pathways causing the observed changes to differentiation phenotypes. Mass spectrometry was also used during wildtype and Nek2 knockout cell differentiation and we identified reduced electron transport chain components in the knockout population. Immunoblotting confirmed the loss of these components and additional studies showed cells lacking Nek2 were exclusively glycolytic. Interestingly, hypoxia inducible factor 1α was stabilized in these Nek2 knockout cells despite culturing them under normoxic conditions. Since neural differentiation requires a metabolic switch from glycolysis to oxidative phosphorylation, we propose a mechanism where Nek2 prevents HIF1α stabilization, thereby allowing cells to use oxidative phosphorylation to facilitate neuron and astrocyte differentiation.
Collapse
Affiliation(s)
- Danielle M Spice
- Department of Biology, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada.
| | - Tyler T Cooper
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada.
| | - Gilles A Lajoie
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON N6A 5C1, Canada; Don Rix Protein Identification Facility, University of Western, Ontario, London, ON N6G 2V4, Canada.
| | - Gregory M Kelly
- Department of Biology, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada; Child Health Research Institute, 345 Westminster Ave, London, ON N6C 4V3, Canada.
| |
Collapse
|
4
|
Šafaříková E, Ehlich J, Stříteský S, Vala M, Weiter M, Pacherník J, Kubala L, Víteček J. Conductive Polymer PEDOT:PSS-Based Platform for Embryonic Stem-Cell Differentiation. Int J Mol Sci 2022; 23:ijms23031107. [PMID: 35163031 PMCID: PMC8835127 DOI: 10.3390/ijms23031107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/12/2023] Open
Abstract
Organic semiconductors are constantly gaining interest in regenerative medicine. Their tunable physico-chemical properties, including electrical conductivity, are very promising for the control of stem-cell differentiation. However, their use for combined material-based and electrical stimulation remains largely underexplored. Therefore, we carried out a study on whether a platform based on the conductive polymer poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) can be beneficial to the differentiation of mouse embryonic stem cells (mESCs). The platform was prepared using the layout of a standard 24-well cell-culture plate. Polyethylene naphthalate foil served as the substrate for the preparation of interdigitated gold electrodes by physical vapor deposition. The PEDOT:PSS pattern was fabricated by precise screen printing over the gold electrodes. The PEDOT:PSS platform was able to produce higher electrical current with the pulsed-direct-current (DC) electrostimulation mode (1 Hz, 200 mV/mm, 100 ms pulse duration) compared to plain gold electrodes. There was a dominant capacitive component. In proof-of-concept experiments, mESCs were able to respond to such electrostimulation by membrane depolarization and elevation of cytosolic calcium. Further, the PEDOT:PSS platform was able to upregulate cardiomyogenesis and potentially inhibit early neurogenesis per se with minor contribution of electrostimulation. Hence, the present work highlights the large potential of PEDOT:PSS in regenerative medicine.
Collapse
Affiliation(s)
- Eva Šafaříková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Jiří Ehlich
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Stanislav Stříteský
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Martin Vala
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Martin Weiter
- Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic; (J.E.); (S.S.); (M.V.); (M.W.)
| | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekařská 53, 656 91 Brno, Czech Republic
| | - Jan Víteček
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic; (E.Š.); (L.K.)
- Correspondence: ; Tel./Fax: +420-541-517104; Fax: +420-541-517104
| |
Collapse
|
5
|
Wahlin KJ, Cheng J, Jurlina SL, Jones MK, Dash NR, Ogata A, Kibria N, Ray S, Eldred KC, Kim C, Heng JS, Phillips J, Johnston RJ, Gamm DM, Berlinicke C, Zack DJ. CRISPR Generated SIX6 and POU4F2 Reporters Allow Identification of Brain and Optic Transcriptional Differences in Human PSC-Derived Organoids. Front Cell Dev Biol 2021; 9:764725. [PMID: 34869356 PMCID: PMC8635054 DOI: 10.3389/fcell.2021.764725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 01/29/2023] Open
Abstract
Human pluripotent stem cells (PSCs) represent a powerful tool to investigate human eye development and disease. When grown in 3D, they can self-assemble into laminar organized retinas; however, variation in the size, shape and composition of individual organoids exists. Neither the microenvironment nor the timing of critical growth factors driving retinogenesis are fully understood. To explore early retinal development, we developed a SIX6-GFP reporter that enabled the systematic optimization of conditions that promote optic vesicle formation. We demonstrated that early hypoxic growth conditions enhanced SIX6 expression and promoted eye formation. SIX6 expression was further enhanced by sequential inhibition of Wnt and activation of sonic hedgehog signaling. SIX6 + optic vesicles showed RNA expression profiles that were consistent with a retinal identity; however, ventral diencephalic markers were also present. To demonstrate that optic vesicles lead to bona fide "retina-like" structures we generated a SIX6-GFP/POU4F2-tdTomato dual reporter line that labeled the entire developing retina and retinal ganglion cells, respectively. Additional brain regions, including the hypothalamus and midbrain-hindbrain (MBHB) territories were identified by harvesting SIX6 + /POU4F2- and SIX6- organoids, respectively. Using RNAseq to study transcriptional profiles we demonstrated that SIX6-GFP and POU4F2-tdTomato reporters provided a reliable readout for developing human retina, hypothalamus, and midbrain/hindbrain organoids.
Collapse
Affiliation(s)
- Karl J. Wahlin
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States,*Correspondence: Karl J. Wahlin,
| | - Jie Cheng
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shawna L. Jurlina
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Melissa K. Jones
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Nicholas R. Dash
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Anna Ogata
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Nawal Kibria
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Sunayan Ray
- Shiley Eye Institute, University of California, San Diego, San Diego, CA, United States
| | - Kiara C. Eldred
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Catherine Kim
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jacob S. Heng
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Ophthalmology and Visual Science, Yale School of Medicine, New Haven, CT, United States
| | - Jenny Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert J. Johnston
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David M. Gamm
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States,Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Cynthia Berlinicke
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Donald J. Zack
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Pereckova J, Pekarova M, Szamecova N, Hoferova Z, Kamarytova K, Falk M, Perecko T. Nitro-Oleic Acid Inhibits Stemness Maintenance and Enhances Neural Differentiation of Mouse Embryonic Stem Cells via STAT3 Signaling. Int J Mol Sci 2021; 22:ijms22189981. [PMID: 34576143 PMCID: PMC8468660 DOI: 10.3390/ijms22189981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Accepted: 09/12/2021] [Indexed: 12/15/2022] Open
Abstract
Nitro-oleic acid (NO2-OA), pluripotent cell-signaling mediator, was recently described as a modulator of the signal transducer and activator of transcription 3 (STAT3) activity. In our study, we discovered new aspects of NO2-OA involvement in the regulation of stem cell pluripotency and differentiation. Murine embryonic stem cells (mESC) or mESC-derived embryoid bodies (EBs) were exposed to NO2-OA or oleic acid (OA) for selected time periods. Our results showed that NO2-OA but not OA caused the loss of pluripotency of mESC cultivated in leukemia inhibitory factor (LIF) rich medium via the decrease of pluripotency markers (NANOG, sex-determining region Y-box 1 transcription factor (SOX2), and octamer-binding transcription factor 4 (OCT4)). The effects of NO2-OA on mESC correlated with reduced phosphorylation of STAT3. Subsequent differentiation led to an increase of the ectodermal marker orthodenticle homolog 2 (Otx2). Similarly, treatment of mESC-derived EBs by NO2-OA resulted in the up-regulation of both neural markers Nestin and β-Tubulin class III (Tubb3). Interestingly, the expression of cardiac-specific genes and beating of EBs were significantly decreased. In conclusion, NO2-OA is able to modulate pluripotency of mESC via the regulation of STAT3 phosphorylation. Further, it attenuates cardiac differentiation on the one hand, and on the other hand, it directs mESC into neural fate.
Collapse
Affiliation(s)
- Jana Pereckova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
- Correspondence:
| | - Michaela Pekarova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
| | - Nikoletta Szamecova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zuzana Hoferova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
| | - Kristyna Kamarytova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Falk
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
| | - Tomas Perecko
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
| |
Collapse
|
7
|
Modulation of Differentiation of Embryonic Stem Cells by Polypyrrole: The Impact on Neurogenesis. Int J Mol Sci 2021; 22:ijms22020501. [PMID: 33419082 PMCID: PMC7825406 DOI: 10.3390/ijms22020501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/30/2022] Open
Abstract
The active role of biomaterials in the regeneration of tissues and their ability to modulate the behavior of stem cells in terms of their differentiation is highly advantageous. Here, polypyrrole, as a representantive of electro-conducting materials, is found to modulate the behavior of embryonic stem cells. Concretely, the aqueous extracts of polypyrrole induce neurogenesis within embryonic bodies formed from embryonic stem cells. This finding ledto an effort to determine the physiological cascade which is responsible for this effect. The polypyrrole modulates signaling pathways of Akt and ERK kinase through their phosphorylation. These effects are related to the presence of low-molecular-weight compounds present in aqueous polypyrrole extracts, determined by mass spectroscopy. The results show that consequences related to the modulation of stem cell differentiation must also be taken into account when polypyrrole is considered as a biomaterial.
Collapse
|
8
|
Das T, Soren K, Yerasi M, Kamle A, Kumar A, Chakravarty S. Molecular Basis of Sex Difference in Neuroprotection induced by Hypoxia Preconditioning in Zebrafish. Mol Neurobiol 2020; 57:5177-5192. [PMID: 32862360 DOI: 10.1007/s12035-020-02091-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
Hypoxia, the major cause of ischemic injury, leads to debilitating disease in infants via birth asphyxia and cerebral palsy, whereas in adults via heart attack and stroke. A widespread, natural protective phenomenon termed 'hypoxic preconditioning' (PH) occurs when prior exposures to hypoxia eventually result in robust hypoxia resistance. Accordingly, we have developed and optimized a novel model of hypoxic preconditioning in adult zebrafish to mimic the tolerance of mini stroke(s) in human, which appears to protect against the severe damage inflicted by a major stroke event. Here, we observed a remarkable difference in the progression pattern of neuroprotection between preconditioning hypoxia followed by acute hypoxia (PH) group, and acute hypoxia (AH) only group, with noticeable sex difference when compared with normoxia behaviour upon recovery. Since gender difference has been reported in stroke risk factors and disease history, it was pertinent to investigate whether any such sex difference also exists in PH's protective mechanism against acute ischemic stroke. In order to elucidate the neural molecular mechanisms behind sex difference in neuroprotection induced by PH, a high throughput proteomics approach utilizing iTRAQ was performed, followed by protein enrichment analysis using ingenuity pathway analysis (IPA) tool. Out of thousands of significantly altered proteins in zebrafish brain, the ones having critical role either in neuroglial proliferation/differentiation or neurotrophic functions were validated by analyzing their expression levels in preconditioned (PH), acute hypoxia (AH), and normoxia groups. The data indicate that female zebrafish brains are more protected against the severity of AH when exposed to the hypoxic preconditioning. The study also sheds light on the involvement of many signalling pathways underlying sex difference in preconditioning-induced neuroprotective mechanism, which can be further validated for the therapeutic approach.
Collapse
Affiliation(s)
- Tapatee Das
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., 201002, India
| | - Kalyani Soren
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., 201002, India
| | - Mounica Yerasi
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
| | - Avijeet Kamle
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Arvind Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., 201002, India.,CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sumana Chakravarty
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., 201002, India.
| |
Collapse
|
9
|
Večeřa J, Procházková J, Šumberová V, Pánská V, Paculová H, Lánová MK, Mašek J, Bohačiaková D, Andersson ER, Pacherník J. Hypoxia/Hif1α prevents premature neuronal differentiation of neural stem cells through the activation of Hes1. Stem Cell Res 2020; 45:101770. [PMID: 32276221 DOI: 10.1016/j.scr.2020.101770] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/02/2023] Open
Abstract
Embryonic neural stem cells (NSCs), comprising neuroepithelial and radial glial cells, are indispensable precursors of neurons and glia in the mammalian developing brain. Since the process of neurogenesis occurs in a hypoxic environment, the question arises of how NSCs deal with low oxygen tension and whether it affects their stemness. Genes from the hypoxia-inducible factors (HIF) family are well known factors governing cellular response to hypoxic conditions. In this study, we have discovered that the endogenous stabilization of hypoxia-inducible factor 1α (Hif1α) during neural induction is critical for the normal development of the NSCs pool by preventing its premature depletion and differentiation. The knock-out of the Hif1α gene in mESC-derived neurospheres led to a decrease in self-renewal of NSCs, paralleled by an increase in neuronal differentiation. Similarly, neuroepithelial cells differentiated in hypoxia exhibited accelerated neurogenesis soon after Hif1α knock-down. In both models, the loss of Hif1α was accompanied by an immediate drop in neural repressor Hes1 levels while changes in Notch signaling were not observed. We found that active Hif1α/Arnt1 transcription complex bound to the evolutionarily conserved site in Hes1 gene promoter in both neuroepithelial cells and neural tissue of E8.5 - 9.5 embryos. Taken together, these results emphasize the novel role of Hif1α in the regulation of early NSCs population through the activation of neural repressor Hes1, independently of Notch signaling.
Collapse
Affiliation(s)
- Josef Večeřa
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic.
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Veronika Šumberová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Veronika Pánská
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Hana Paculová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Martina Kohutková Lánová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Mašek
- Department of Biosciences and Nutrition, Neo, Blickagången 16, SE-141 83 Huddinge, Sweden
| | - Dáša Bohačiaková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Emma Rachel Andersson
- Department of Biosciences and Nutrition, Neo, Blickagången 16, SE-141 83 Huddinge, Sweden; Department of Cell and Molecular Biology, Biomedicum, Solnavägen 9, SE-171 65 Solna, Sweden
| | - Jiří Pacherník
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|